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Wireless Sensor Networks (WSNs) are more and more considered a key enabling technology for the realisation of the Internet of
Things (IoT) vision.With the long termgoal of designing fault-tolerant IoT systems, this paper proposes a fault detection framework
for WSNs with the perspective of energy efficiency to facilitate the design of fault detection methods and the evaluation of their
energy efficiency. Following the same design principle of the fault detection framework, the paper proposes a classification for
fault detection approaches. The classification is applied to a number of fault detection approaches for the comparison of several
characteristics, namely, energy efficiency, correlation model, evaluation method, and detection accuracy. The design guidelines
given in this paper aim at providing an insight into better design of energy-efficient detection approaches in resource-constraint
WSNs.

1. Introduction

The new paradigm of the Internet of Things (IoT) envisions
a computing era outside the realm of the traditional desktop,
where devices (as well as any kind of object) will be more and
more connected, ubiquitous, dynamic, adaptive, and even
embedded, so thatwewill encounter and use them in a variety
of contexts, sometimes even without being aware of it. With
the rapid technological development of sensors, Wireless
Sensor Networks (WSNs) are more and more becoming a
key enabling technology to realise the IoT vision [1]. Indeed,
a WSN is a network formed by a large number of sensor
nodes where each node is equipped with a sensor to detect
and monitor physical phenomena such as light, heat, and
pressure. Compared with the wired solution, WSNs feature
easier deployment and better flexibility of devices. As a result,
WSNs are regarded as a key information gatheringmethod to

build the information and communication infrastructure of
future IoT systems.

The correctness of sensor data is crucial to WSN applica-
tions. False data may cause severe problems in some critical
applications. However, faults are inevitable and WSNs are
prone to be faulty [2], whichmay be due to abnormal software
or hardware, poor communication link quality, or depletion
of battery. Recent data shows that the quality of sensor data
is not so satisfactory. Szewczyk et al. [3] classified 3% to 60%
of data from each sensor as faulty in a deployment at Great
Duck Island. Tolle et al. [4] also discovered that only 49% of
the collected data could be used formeaningful interpretation
in a sensor network for examiningmicroclimate surrounding
a redwood tree.

(1) Challenges in Fault Detection in WSNs. Before processing
the faults to meet application requirements, firstly we need
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to know whether there is a fault or not, which is usually
called fault detection. Fault detection in WSNs is much more
challenging mainly in the following aspects compared with
that in traditional wired networks.

Resource Constraints. Traditional observing and polling are
not appropriate for detecting faults in resource-constrained
WSNs. Periodic polling inside the whole network will quickly
deplete the power supplies of sensors because of high energy-
consuming wireless communications. It is also hardly possi-
ble or practical for human beings to take care of sensor nodes
in the wild, especially for those being deployed in harsh areas.

Lack of Well-Defined Models. Complexity and uncertainty
of the environment under monitoring make it not easy
to have a well-defined model for the natural phenomenon
being observed. Consequently, most WSN applications lack
empirical models for sensor behaviors, sensor readings, and
sensor faults.

Network Dynamics. Most WSNs have a great number of
distributed sensor nodes involved across a large area.Wireless
multihop communications are easily impacted by external
environments. Dynamic network conditions, such as tem-
porary link breakdown and frequent changing topologies,
increase the complexity of fault detection.

(2) Energy Efficiency. Resource constraints make WSNs dis-
tinct from other networks. There are two typical ways to
prolong the lifetime of WSNs. One is reducing the energy
consumption of relevant tasks. Another is harvesting energy
from external environments. Here our focus is the former,
reducing the energy consumption of fault detection tasks.
For fault-prone WSNs, fault detection is indispensable. The
energy efficiency of a fault detection approach impacts a lot
on the performance of WSNs. A fault detection approach
should not increase too much energy consumption burden
to the major monitoring tasks of WSN applications. The
fault detection approach needs to be energy-efficient enough
to be deployed in real WSNs. Besides detection accuracy,
fault detection approaches designing must also have energy
efficiency considered carefully.

Energy consumption mainly resides in wireless commu-
nication and computation tasks, while the former consumes
much more energy than the latter. We can say that the
number of messages exchanged is directly related to the
energy consumption of WSNs. It is difficult to directly count
the number of messages exchanged in a WSN, which is
dependent on the details of the detection method itself and
also on the topology of the network and number of sensor
nodes in the network. Nevertheless, we can figure out when
and where message exchanging takes place.

(3) Related Work. Many fault detection techniques for WSNs
have been proposed in recent years. Energy-efficient fault
detection approaches are especially attractivewhen deploying
real WSN applications. While current literature discusses
detection approaches in different ways, it is hard to find
one explicitly discussing the position of message exchanging

during the process of fault detection and how this message
exchanging impacts the energy efficiency of a fault detection
approach.

Yu et al. [5] investigate the three-phase fault management
process, that is, fault detection, diagnosis, and recovery.
They discuss explicit and implicit detection, centralized and
distributed approaches, neighbor coordination, clustering,
and distributed detection techniques. Paradis and Han [6]
also give a survey to fault management in WSNs. They
describe fault prevention, detection, isolation, identification,
and recovery techniques separately.

Mahapatro and Khilar [2] adopt a fault type model from
[7] and provide their own taxonomy of fault detection
techniques. They discuss both centralized and distributed
fault diagnosis approaches. Particularly, they classify distrib-
uted approaches into several categories, including hier-
archical detection, node self-detection, and clustering-
based approaches from architectural viewpoint; test-based
approaches, neighbor coordination approaches, soft-com-
puting approaches, watchdog approaches, and probabilistic
approaches with their focuses on how to make decision; and
also diagnosis in event detection domain. What is worth
mentioning is that the neighbor coordination in [2] concerns
majority voting and weighted majority voting, instead of
focusing only on coordination between neighbors discussed
in [5].

Sharma et al. [8] classify fault detectionmethods into four
categories: rule-based methods, estimation methods, time-
series-analysis-based methods, and learning-based methods.
Jurdak et al. [9] present a model including different types
of WSN anomalies. They illustrate a set of anomaly detec-
tion strategies and divide them according to centralized,
distributed, and hybrid architectures.They also provide some
design guidelines for anomaly detection strategies. Rodrigues
et al. [10] evaluate fault diagnosis tools in WSNs in a
comparative way. The comparison framework consists of
architectural, functional, and dynamic aspects as different
dimensions.

Ding [11] classifies fault diagnosis schemes into the
following four categories and gives the schematic framework
of each scheme from a system view.

(i) Hardware redundancy-based schemes reconstruct
identical redundant hardware components for the
process components and check if the output of the
process component is different from the one of that
of the redundant one.

(ii) Signal processing-based schemes focus on processing
signals of the symptoms of faults such as time domain
functions, frequency domain functions, and statistical
methods to achieve fault diagnosis.

(iii) Plausibility test-based schemes check some physical
laws for the process components to detect the faults.

(iv) Software/analytical redundancy-based schemes are
the focuses of [11], that is, model-based fault diagno-
sis. Based on the well-established process modeling
techniques, a process model describes characteristics,
whether quantitative or qualitative, of the process
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behaviors. Adopting similar concept of hardware
redundancy and reconstructing the process behavior
online, faults are detected by comparing the output
signals of the measured process with their estimates
determined by the process model.

Liu et al. [12] propose a self-learning sensor fault detec-
tion framework emphasizing implementation details, such as
threads and database. The framework is more like an archi-
tecture description specific to those self-learning detection
approaches. It is not general enough to describe other types
of fault detection approaches.

(4) Contribution and Outline of the Paper. This paper focuses
on fault detection approaches of WSNs from the perspective
of energy efficiency. The contributions of the paper are as
follows.

A Fault Detection Framework. We abstract common tasks
of fault detection approaches and propose a fault detection
framework from a function view, instead of from a system
view [11] or an architecture view [12], to cover as many
fault detection approaches as possible. Meanwhile, instead
of only figuring out how fault detection decision is calcu-
lated, we adopt in the proposed framework a perspective
of energy efficiency and explicitly identify the positions
of message exchanging in the fault detection process, as
energy consumption due to communication is much greater
than that due to computation. The proposed framework can
facilitate the design process of fault detection methods and
the evaluation of their energy efficiency.

A Classification of Fault Detection Approaches. We propose
a classification of fault detection approaches based on the
proposed fault detection framework. For better and easier
evaluation of energy efficiency, the classification also focuses
on identifying the position of message exchanging in fault
detection approaches.

Evaluation of Fault Detection Approaches. We investigate a
number of existing fault detection approaches and classify
them into four categories according to the proposed classi-
fication. After describing the main idea of each approach,
we evaluate energy efficiency, correlation model, evalua-
tion methods, and detection accuracy of existing detection
approaches. Besides, we give some advice for designing
energy-efficient fault detection approaches.

In the rest of the paper, we first illustrate our proposed
fault detection framework (Section 2). Then, in Section 3,
we propose a classification of fault detection approaches. In
Section 4 we compare fault detection approaches according
to their characteristics. In Section 5 we sum up some guide-
lines for energy-efficient fault detection. Section 6 concludes
the paper.

2. Fault Detection Framework

In [11], Ding gives the schematic frameworks of the fault
diagnosis schemes in his classification, that is, hardware

Model establishment

Correlation model

Learning

Decision making

Comparison

Inference

Information collection

Sensor readings/
system attributes/

probabilities

Figure 1: Fault detection framework.

redundancy-based, signal processing-based, plausibility test-
based, and model-based schemes, with a system view. With
the schematic descriptions, the differences between fault
diagnosis schemes are depicted. However, the schematic
descriptions look very alike especially for the latter three
schemes. Ding regards residual generation in model-based
schemes as an extended plausibility test and considers the
process input-output behavior as the plausibility. The symp-
toms adopted by signal processing-based schemes can also be
the basis of process models in model-based ones.

As we can see, the differences between those frameworks
described in [11] are not very large. It is possible to define
a more general framework to cover different types of fault
detection approaches. Furthermore, both Ding [11] and Liu
et al. [12] have not considered energy efficiency aspect of
fault detection approaches in their frameworks. Here we
try to define a fault detection framework general enough
to cover as many fault detection approaches as possible
from a function view to facilitate the design process of fault
detection approaches. We also consider energy efficiency in
this framework to ease the identification and evaluation of
energy efficiency of fault detection approaches.

We consider fault detection as a decisionmaking problem
and focus on its functional components with the perspective
of energy efficiency. For WSNs, wireless communication
consumes most part of energy. This makes information
collection during fault detection process greatly dependent
on energy consumption. To evaluate the energy efficiency of a
fault detection approach, we need to find out where andwhen
information collection takes place. We use the following
as design principles while designing the fault detection
framework: firstly, identifying the position of communication
during fault detection, the most energy-consuming part,
and secondly, abstracting fault detection process into several
tasks.

By investigating fault detection approaches in current
literature, we propose a fault detection framework in Figure 1
with the position of information collection identified. Those
blocks and edges in dash line are optional. Three major com-
ponents in this model are model establishment, information
collection, and decision making. We describe the details of
them in the following.
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2.1. Model Establishment. Fault detection decisions are usu-
ally made based on some assumed correlation model for
describing the relationships between sensor readings or other
system attributes. Here we give a categorization of typical
correlation models found in the literature.

(i) Spatial correlation models assume that there is a
relationship between the sensor readings of sensor
nodes within a certain physical spatial range such as
neighborhood [13–15], cluster [16], or logical spatial
range like a group of trusted sensors [17]. Typically,
the spatial correlated sensor readings are assumed
with similar values.

(ii) Temporal correlation models assume that there is a
relationship between the sensor reading at timestep
𝑛 and those at previous timesteps.

(iii) Phenomenon-related correlation models assume that
there is a relationship between some phenomenon-
related parameters. This might be setting a threshold
to some sensor readings [18, 19] or describing the
relationships between different kinds of sensor read-
ings or other system attributes, for example, between
sensor readings and energy level [20] and between a
set of state attributes and root causes [21].

Traditional fault detectionmainly focuses on establishing
system model based on physical properties. The system
model usually covers temporal and phenomenon-related
correlation model described in this paper. Spatial correlation
model is seldom considered in the system model since the
system under monitoring is usually centralized. To achieve
better performance, most approaches [13–15, 17, 22, 23]
consider both spatial and temporal correlations instead of
only one kind of correlation.What isworthmentioning is that
not all the approaches give their correlationmodels explicitly.
Nevertheless, the correlation model can be established based
on ground truth, or empirically, or through learning. The
learning process, usually based on probabilistic and statistical
methods and state-space analysis, can either use some exist-
ing training data or collect the data for training during the
process of fault detection. Here we call these twomechanisms
as offline-learning and online-learning. Obviously, the latter
needs extra information collection. Based on the correla-
tion models and model establishment mechanism, the fault
detection approach collects required information and makes
detection decisions.

2.2. Information Collection. The main objective of our pro-
posed framework is to identify the position of informa-
tion collection, the most energy-consuming part, in fault
detection in WSNs. As analyzed in Section 2.1, information
is collected either for making fault detection decisions or
for establishing the correlation model. During the phase of
information collection, there are three aspects that need to
be considered:

(i) How to design messages: the content and size of
messages are two main focuses here. Besides the
assumed correlationmodels, the content of a message

consists of the major input to the decision making
phase and it is highly related to the correlationmodel.
Most approaches collect sensor readings, while some
approachesmight collect other systemattributes, such
as transmission time [24], energy level [20], or a set of
state attributes [21]. There are also some approaches
collecting probabilistic decisions [25]. As to the
message size, whether to use some efficient coding
mechanism to describe the information collected in a
compact form also has impacts on energy consump-
tion during communication.There must be a tradeoff
between compact message size and comprehensive
meaning.

(ii) How to exchange messages: wireless sensor nodes
may use different ways to communicate with their
counterparts. Two typical patterns are adopted during
message exchanging: two-way request-response and
one-way broadcasting. The former usually uses pair-
wise query-basedmessages in hierarchical topologies,
while the latter is more common in flat topologies,
with messages sent without being requested.

(iii) Who receives messages: the range of information
collection is greatly dependent on the correlation
model. Those approaches adopt spatial correlation
models that usually collect information according
to the spatial correlation. For instance, messages
can be exchanged between neighbors, a pair of two
nodes, a set of nodes within the same cluster, or a
central sensor node and other sensor nodes. For those
approaches adopting temporal correlation models,
information at some previous timesteps is collected.

2.3. Decision Making. To make decisions on whether there is
a fault, fault detection approaches need input for calculation.
As mentioned in the previous sections, one part of the
input, for example, sensor readings, system attributes, or
relevant probabilities, can be collected from the contents of
messages exchanged. Another important part of the input
is the established correlation models. They comprise the
context that the fault detection approach is running in.
With those models and collected information, fault detection
approaches can use predefined or estimated thresholds for
direct comparison or indirect inference to make their detec-
tion decisions. Statistical methods are commonly adopted
in estimating thresholds. And the inference process usually
involves iterated information collection with regard to the
correlation models until it converges.

3. Approach Classification

As mentioned in Section 1, there are several existing clas-
sifications for fault detection approaches in WSNs [2, 5,
6, 8, 9]. However, it is not easy to design a classification
to cover all the detection approaches. And most of the
existing classifications focus on architectural aspects and
decisionmakingmethods.They do not have energy efficiency
considered in detail. According to the fault detection frame-
work in Section 2, information collection takes place during
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the process of decision making and model establishment.
Specifically, online learning-based model establishment and
inference-based decision making will involve extra message
exchanging. Following the same design principle as that of
the fault detection framework, we propose a classification for
fault detection approaches with the position of information
collection identified. We classify current fault detection
approaches in WSNs into the following categories according
to the learning method, if it exists, in model establishment
and the calculation method adopted in decision making.

(i) Non-InferenceNon-Learning (NINL) approaches adopt
direct comparison with predefined models, which
could be ground truth or empirically established.

(ii) Non-Inference OFfline-Learning (NIOFL) approaches
adopt direct comparison with models learned offline.

(iii) Non-Inference ONline-Learning (NIONL) approaches
adopt direct comparison with models learned online.

(iv) Inference Non-Learning (INL) approaches adopt indi-
rect inference with predefined models, which could
be ground truth or empirically established.

(v) Inference OFfline-Learning (IOFL) approaches adopt
indirect inference with models learned offline.

(vi) Inference ONline-Learning (IONL) approaches adopt
indirect inference with models learned online.

As mentioned in Section 2.3, inference is dependent on
the assumption models. If a fault detection approach makes
its detection decisions without inference, there is no need for
this approach to adopt learning mechanism during model
establishment. This makes Non-Inference OFfline-Learning
(NIOFL) and Non-Inference ONline-Learning (NIONL) in
the above classification impractical. Thus, we apply the pro-
posed classification to distributed fault detection approaches
found in the literature and organize them into the following
four subsections.

3.1. Non-Inference Non-Learning. Venkataraman et al. [18]
deal with permanent faults due to energy depletion to keep
connections in a cluster. They define two kinds of messages
for every node in a cluster to its parent and children nodes:
a hello msg including location, energy, and node ID for
indicating the existence of a node and a fail report msg,
sent by a node whose energy is going to be exhausted,
triggering the failure recovery process. The detection of
energy exhaustion is done by simply checking the current
energy level.

Taleb et al. [19] take into account faults when a node has
died or it is not able to provide data at all. They adopt the
De Bruijn graph in constructing multilayer clusters. A cluster
header detects faulty leaf nodes by sending test packets within
the cluster and comparing test results with expected values.

3.2. Inference Non-Learning. Chen et al. [13] adopt majority
voting techniques to consider hardware level faults including
calibration systematic error, random noise error, and com-
plete malfunctioning. Nevertheless, the faulty sensor nodes

are still able to communicate process data. Each sensor sends
its sensor readings to its neighbors regularly so that the
sensor can check the differences between the sensor reading
of itself and those of its neighbors. They use two predefined
thresholds 𝜃

1
and 𝜃
2
to generate a test result 𝑐

𝑖𝑗
for indicating

if the statuses of sensor 𝑆
𝑖
and sensor 𝑆

𝑗
are different. If

𝑑
𝑡

𝑖𝑗
, the difference between sensor readings of 𝑆

𝑖
and 𝑆

𝑗
at

time 𝑡, is larger than 𝜃
1
, and Δ𝑑Δ𝑡𝑙

𝑖𝑗
, the difference between

𝑑
𝑡𝑙+1

𝑖𝑗
and 𝑑𝑡𝑙

𝑖𝑗
, is larger than 𝜃

2
, then the test result 𝑐

𝑖𝑗
will be

set to 1, which means 𝑆
𝑖
and 𝑆

𝑗
are more likely in different

statuses. If the status of 𝑆
𝑖
is more likely the same as those of

most of its neighbors, then 𝑆
𝑖
will decide its tendency value

𝑇
𝑖
= LG; otherwise 𝑇

𝑖
= LF. After sending this tendency

value 𝑇
𝑖
to its neighbors, 𝑆

𝑖
can decide its status to be faulty

(𝑇
𝑖
= FT) or fault-free (𝑇

𝑖
= GD) according to the number

of its LG neighbors sensors with the same test results. This
approach does not have any constraints on topology and it
has a high detection accuracy with the requirements on the
number of neighbors and higher communication overhead
due to several rounds of message exchanging.

Based on [13], Jiang [15] improves the decision making
criteria for detecting a sensor node in faulty status: for a
node and its neighbors which are possibly normal, that is,
LG neighbors, if the number of test results indicating faulty
within this neighborhood is more than the number of test
results indicating normal, then the status of the node is faulty
(FT). The improved approach decreases the requirement on
the number of neighbors without decreasing the detection
accuracy.

Lee and Choi [14] detect faulty sensor nodes based on
comparisons of the differences between sensor readings of
neighboring nodes and dissemination of local decision made
at each node. Specifically, they adopt threshold tests and
aggregation of the decision to complete the fault detection.
They also use time redundancy to tolerate transient faults in
communication and sensor readings.

De [26] designs a faulty sensor reading detection algo-
rithm based on weighted voting with both distance and
reliability used as weight.The reliability here is derived from a
localization error detection algorithm with two-way request-
reply messages sent between neighbors; that is, a node sends
a hello or dummymessage to its neighbors and each neighbor
answers a reply message with calculated relative position
information included. By this way every node is able to know
its position and confidential level. Afterwards a weighted
voting algorithm for detecting faulty sensor readings takes
place, which exploits the confidence or reliability data from
the previous algorithm plus distance. This approach has no
specific requirement on node degree but it is specific to long-
thin topology.

Kim and Prabhakaran [27] propose non-history-based
and history-based fault detection methods for a Body Sensor
Network (BSN) to detect faulty sensors and sensor readings.
The non-history-based approach is used for getting sufficient
amount of data entries or verifying the relative position of
body joints. The history-based method has lower false alarm
rate. Firstly, all the sensors readings are divided into multiple
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motion groups, including faulty node reading as well as
abnormal motion reading, by using Gaussian Mixture Model
Clustering. Secondly, the method computes the posterior
probability of each sensor’s input vector and its nearest cluster
set to detect abnormal behaviors.

Farruggia and Vitabile [23] detect faulty sensors and
correct corrupted data of those faulty sensors by exploiting
the assumption that the sensor readings are spatiotemporal
correlated.Theyuse theMarkovRandomField (MRF) to clas-
sify sensors that work properly and, in combination with the
Locally Weighted Regression model, correct sensor readings
from damaged sensors with the sensor model trained from
the data of working sensors and its neighbors according to
the degree of the average correlation.

3.3. Inference Offline-Learning. Zhuang et al. [25] use train-
ing data to learn parameters in divergence function and joint
probability distributions to establish correlationmodels.They
design three detection algorithms: centralized detection,
distributed simultaneous detection with pure decision, and
distributed collective detection with probabilistic decision.
The first two use sensor readings to compute the mutual
divergence value.Thedistributed collective detectionmethod
produces probabilistic decision results and offers higher
accuracy. Every node sends its initial decision in uniform
distribution to its neighbors; in this way a sensor obtains 𝑁
samples from the distribution to update his own distribution
and then calculates the probability to be faulty. If the proba-
bility is higher than a certain threshold, then the sensor node
is faulty.

Dereszynski and Dietterich [22] present a method that
exploits the spatial and temporal correlations in the data to
distinguish sensor failures from valid observations. Sensor
data got from the SensorScope project provide background
knowledge for distinguishing data anomalies. They set up
a Bayesian network and extend it to a dynamic Bayesian
network to describe spatial relationships between sensors and
temporal correlations separately. They also incorporate the
sensor model to describe the state and the observation of the
sensor.Then they infer themost likely state of the sensorswith
spatial and temporal correlated observations included, that is,
the current observations and those of the immediate past.

The research byGao et al. [28] introduces a fault detection
method based on Hidden Markov Random Field (HMRF)
model by exploring spatial correlations. They use measure-
ments during a certain period at the initial state of network
deployment as training data to obtain the coefficients for
estimation under the HMRF model. Each node uses its own
measurement, the coefficients, and its neighbor readings for
measurement estimation. Then the differences between the
current and estimated measurements of the node will be
checked according to a threshold. Furthermore, a majority
voting by weighted confidence technique is used to ensure
higher accuracy to the results of the model.

Warriach et al. [29] focus on detecting faults in sen-
sor readings, including outliers, spikes, stuck-at, and high
noise or variance. They illustrate a fault detection approach

which is a combination of three methods, namely, rule-
based, learning-based, and estimation-based methods. The
rule-based method exploits domain and expert knowledge
to construct heuristic rules for identifying faults by using
histogram method. The estimation method, Linear Least-
Square Estimation method, uses the spatial and temporal
correlations to predict normal behavior of a sensor and
identify faulty measurements. Finally, the learning-based
method is designed for those WSNs applications that may
not be spatiotemporally correlated.Thismethod uses training
data to infer amodel, such asHiddenMarkovModel or neural
networks, for the faulty sensor readings and statistically
calculate if a reading is faulty or not.

Nie et al. [20] present a fault detection framework by
deducing the root cause of the failures without adding any
additional network burden. All the sensed data are directed
to the base station, where they are checked by using a self-
learning failure knowledge library, which is set up according
to the relationships between the sensing data and the failures
in the sensor networks.

Ma et al. [21] consider faults including node crash, traffic
contention, and route loop.They present an in-network diag-
nosis approach named Local-Diagnosis (LD2) by distributed
evidence fusion operations. It uses a Naive Bayesian Model
to encode the probabilistic correlation between a set of state
attributes and root causes.The parameter values of the model
are learned from the historical data. Every node forwards its
own evidence through a fusion tree within local area and the
Dempster-Shafer theory is used for the fusion of the evidence.

Salem et al. [30] present a fault detection approach for
healthcare applications in medical WSNs.The proposed fault
detectionmethod adopts the decision tree algorithm to detect
abnormal records. For those abnormal records, they use
linear regression to predict the measurement value. The J48
decision tree model and the coefficients of the regressors are
learned during the training phase. And a threshold test is used
to check the difference between the predicted and current
value in order to differentiate faulty sensor readings with
patient health degradation. The method is based on the fact
that the physiological results are correlated.

Lo et al. [31] model the sensor monitoring system as
a linear dynamical system. They divide sensor nodes into
arbitrary groups and detect faults based on group testing
and Kalman filtering. In their experiments on real bridge
vibration sensing data, they consider faults including spike,
nonlinear transduction,mean drift, and excessive noise.They
also use measured data to learn parameters in the dynamical
model for Kalman filtering.

Lau et al. [24] propose a centralized hardware fault
detection technique based on Näıve Bayes Framework. The
nodes send their readings to the sink and the sink extracts
end-to-end transmission time. In the training phase, they
estimate conditional probability and marginal probability of
transmission time with Maximum Likelihood Estimation to
build the Näıve Bayes classifier to be used in a following test
phase.Then they compare themode value of the transmission
time with the normal conditional probability and analyze the
last five transmission times with the Näıve Bayes classifier
to detect the status of the network and the faulty sensors.
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They analyze the performance of the approach under three
different network traffic conditions for a 100-nodeWSNwith
faulty node numbers ranging from one to five.

3.4. Inference Online-Learning. Miao et al. [32] deploy a fault
detection algorithm in GreenOrbs to detect ingress drops,
routing failures, link failures, and node failures based on
temporal and spatial correlation between system metrics.
Temporal detection investigates sudden change in the cor-
relation graph of a node, while spatial detection discovers
pattern differences in the graphs of nodes with similarities.
Each node in the network periodically sends 22 metrics
along with sensor readings to the base station. In each time
window, correlation graphs are constructed. The longer the
time window is, the more the detection accuracy increases
with increasing detection delay.

Ni and Pottie [17] design a two-phase modular fault
detection framework which includes four modules: blind
modeling, trusted sensor selection, model reevaluation, and
sensor evaluation. They first use prior knowledge of the
phenomenon behavior to determine the parameters of the
Hierarchical Bayesian Space Time (HBST) model adopted
for sensor data modeling. Based on this model, they use
maximum a posteriori (MAP) selection to identify a trusted
group of sensors for evaluating the received data. Using the
selected sensors, they reevaluate the HBST model. Then they
check if the sensor reading is within calculated bounds. The
approach is evaluated with injection of two types of faults,
outlier and stuck-at, defined in [8, 33]. The results show
that this HBST model-based approach has better detection
accuracy than their previous linear autoregressive model-
based approach [34].

Kamal et al. [35] give a two-phase framework called
Packet-Level Attestation (PLA).They design a learning phase
to establish spatial correlations among sensor readings and
choose possible verifying nodes (PVN). Then they introduce
an operational phase in which a sensor node sends its reading
to its verifying node, which is the one-hop neighbors. The
verifying nodes check if the data is fault-free by comparison
and then forward the received data packet to the sink by
adding one indication bit of individual check result.

Fang et al. [36] design a two-tiered data validation frame-
work with a two-phase in-network, hierarchical, demand-
based, adaptive fault detection (DAFD) method. During the
learning phase, tier-one (local) model and tier-two (spatial)
model are established in each node and between local nodes.
The local model is learnt by ordinary least-square (OLS)
estimation to describe the correlation between temperature
and humidity. And the spatial correlation model is learned
based on sensor readings of one-hop neighbors. The oper-
ational phase uses the above two models to check sensor
readings to determine faulty data and uses feedback of the
spatial model part to update local model.They also design an
adaptive spatial validation selection mechanism to use either
group voting or singular spatial validation for detecting faulty
data. The approach demonstrates good detection accuracy
during the evaluation with consideration of faults like short,
constant, noise, and drift.

Nguyen et al. [37] model sensor data faults into dis-
continuous faults and continuous faults. Their detection
approach considers spatial and temporal correlation. In
detail, a sensor has its current reading compared with a
value calculated by neighbor voting technique and with an
expected value predicted by AutoRegressive-Moving Average
(ARMA) model, a time series data analysis model. They use
maximum likelihood (ML) computational method to learn
the parameters in the above ARMAmodel with training data
before deployment. Those parameters can also be updated
during runtime through online learning. The correctness of
the reading is decided based on the intersection or the union
of the above two techniques.

4. Comparison of Fault Detection Approaches

Table 1 compares the approaches described in the above
section according to the proposed classification in Section 3.
It is easy to roughly identify the energy efficiency according
to the category of the fault detection approach. As we have
discussed, online learning-based model establishment and
inference-based decision making will involve extra message
exchanging. This makes NINL approaches the most energy-
efficient, while IONL approaches are the least energy-efficient
and INL and IOFL approaches fall in between.

We extract the detection accuracy and false alarm rate
based on the data provided by the papers we have inves-
tigated. We also explicitly identify the evaluation meth-
ods for detection accuracy and false alarm rate in Table 1,
including simulation, fault injection, real dataset validation,
and testbed. Although different evaluation mechanisms may
impact the accuracy of comparison, it is still possible to have
a relative comparison before carrying out further comparison
with a common evaluation method. In the following we
would discuss the relationship between detection accuracy
and other listed characteristics, that is, category/energy effi-
ciency, correlationmodel, and evaluationmethod, separately.

Category/Energy Efficiency versus Detection Accuracy. Most
fault detection approaches are inference based. Unless having
a comprehensive understanding of the phenomenon under
monitoring, it is not easy for the NINL approaches to
make precise detection decisions simply according to existing
model by direct comparison. That also explains why few
approaches belong to NINL. Most IONL approaches have
better detection accuracy and false alarm rate as they make
decisions adaptively. For INL and IOFL approaches, it is hard
to tell which category can make more accurate detection
decisions if we only look at the numbers listed in Table 1. Both
correlation model and evaluation method that the approach
adopts have impacts on the detection accuracy.

Correlation Model versus Detection Accuracy. As we can
see from Table 1, those approaches adopt more than one
kind of correlation models which usually have better detec-
tion accuracy than those only considering one kind of
correlation model. Nevertheless, the more the correlation
models considered, the more the complexity for calculating
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the detection decision. In most cases, correlation models are
application-specific, especially for those approaches adopting
phenomenon-related models.

Evaluation Method versus Detection Accuracy. There are four
typical means for evaluating the detection accuracy of fault
detection approaches. They are simulation, fault injection,
real dataset validation, and testbed. Detection accuracy
results obtained through simulation are usually better as the
simulation environments are more ideal and easy to estab-
lish. Real dataset validation is another commonly adopted
method, while it is a static way. Fault injection is especially
useful when the detection approach is designed for detecting
certain faults. Testbed, the closest to real network environ-
ment, is the most costly to setup. Only a few approaches use
testbed to evaluate their approaches.

5. Discussion

Our investigation has highlighted some thoughts/guidelines
that WSNs developers could take into consideration for
designing energy-efficient fault detection approaches.

(i) Before designing fault detection approach, it is nec-
essary to have a comprehensive understanding of the
phenomenon under monitoring and to check if there
is some existing systemmodel that can be used as part
of correlation model.

(ii) Bayesian networks and Markov Random Field are
two commonly adopted probability graph models for
illustrating spatial and temporal correlations.

(iii) When spatial correlation is considered, the detection
accuracy is dependent on the number of neighbors of
sensor nodes.

(iv) There are lots of uncertainties in the deployment envi-
ronments of distributedWSNs. It is not easy forWSN
applications to establish precise correlation models.
Online learning seems to be the most promising way
to acquire precise and adaptive models. However, it
is costly with regard to extra message exchanging.
Unless the WSN application is very critical and the
detection accuracy is more important than the energy
efficiency, offline-learning is a more energy-efficient
choice.

(v) Theoretically, the detection accuracy can be improved
with more precise correlation model and more infor-
mation collected. However, it is not practical to
pursue detection accuracy too much with energy
efficiency sacrificed. Establishing more precise cor-
relation models based on existing dataset is more
feasible.

(vi) As we have discussed in Section 2.2, what to send
in messages, how to exchange messages, and who
receives messages are three major aspects that have
direct impacts on the efficiency of information col-
lection. If the architecture of a WSN is centralized,

overload of multihop communication should also be
considered.

(vii) Besides correlation models, threshold computation
is also important during decision making. Statisti-
cal and probabilistic methods, including root-mean-
square (RMS), hypothesis test, likelihood ratio (LR),
Neyman-Pearson criterion, maximum a posteriori
probability (MAP) criterion, and Bayes’ criterion, are
commonly adopted in threshold computation.

(viii) Convergence condition is essential for the inference
process during decision making which is greatly
relevant to the correlation model adopted.

(ix) We have not found existing approaches which have
mobility considered. And only a few [14] consider
transient faults.More dynamics need to be considered
when designing fault detection to tackle mobility and
transient faults.

6. Conclusion

Considering resource limitations in WSNs, in this paper, we
have proposed a fault detection framework from the per-
spective of energy efficiency. In particular, we have focused
on message exchanging, as it constitutes the most energy-
consuming part of the network. Following the same design
principle of the fault detection framework, we have proposed
a classification for fault detection approaches, which is
then used to classify and compare existing fault detection
approaches. Based on the data provided by the papers we
investigate, we mainly compare energy efficiency, correlation
model, evaluation method, and detection accuracy of fault
detection approaches. The comparison and the resulting
design guidelines aim at identifying the characteristics of
different existing approaches and facilitating the design of
energy-efficient fault detection in WSNs. While investigat-
ing existing detection approaches, we noticed that event
detection and anomaly detection in WSNs adopt similar
mechanisms for fault detection. We are going to extend our
detection framework and classification to the above field in
the future work.
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