22,584 research outputs found

    A Framework and Architecture for Multi-Robot Coordination

    Get PDF
    In this paper, we present a framework and the software architecture for the deployment of multiple autonomous robots in an unstructured and unknown environment with applications ranging from scouting and reconnaissance, to search and rescue and manipulation tasks. Our software framework provides the methodology and the tools that enable robots to exhibit deliberative and reactive behaviors in autonomous operation, to be reprogrammed by a human operator at run-time, and to learn and adapt to unstructured, dynamic environments and new tasks, while providing performance guarantees. We demonstrate the algorithms and software on an experimental testbed that involves a team of car-like robots using a single omnidirectional camera as a sensor without explicit use of odometry

    Multi-Robot System Control Architecture (MRSCA) for Agricultural Production

    Get PDF
    Coordinating multiple autonomous robots for achieving an assigned collective task presents a complex engineering challenge. In this paper multi robot system control architecture (MRSCA) for the coordination of multiple agricultural robots is developed. The two important aspects of MRSCA; coordination strategy and inter-robot communication were discussed with typical agricultural tasks as examples. Classification of MRS into homogeneous and heterogeneous robots was done to identify appropriate form of cooperative behavior and inter-robot communication. The framework developed, proposes that inter-robot communication is not always required for a MRS. Three types of cooperative behaviors; No-cooperation, modest cooperation and absolute cooperation for a MRS were devised for accomplishing a variety of coordinated operations in agricultural production

    Multi-Robot System Control Architecture (MRSCA) for Agricultural Production

    Get PDF
    Coordinating multiple autonomous robots for achieving an assigned collective task presents a complex engineering challenge. In this paper multi robot system control architecture (MRSCA) for the coordination of multiple agricultural robots is developed. The two important aspects of MRSCA; coordination strategy and inter-robot communication were discussed with typical agricultural tasks as examples. Classification of MRS into homogeneous and heterogeneous robots was done to identify appropriate form of cooperative behavior and inter-robot communication. The framework developed, proposes that inter-robot communication is not always required for a MRS. Three types of cooperative behaviors; No-cooperation, modest cooperation and absolute cooperation for a MRS were devised for accomplishing a variety of coordinated operations in agricultural productio

    Follow-the-leader Formation Marching Through a Scalable O(log2n) Parallel Architecture.

    Get PDF
    An important topic in the field of Multi Robot Systems focuses on motion coordination and synchronization for formation keeping. Although several works have addressed such problem, little attention has been devoted to study the computational complexity within the framework of large-scale systems. This paper presents our current work on how to achieve high computational performance for systems composed by a large number of robots that must fulfill with a marching and formation task. A scalable Multi-Processor Parallel Architecture is introduced with the purpose of achieving scalability, i.e., computation time of O(log2n) for a n-robots system. Our architecture has been tested onto a multi-processor system and validated against several simulations testing

    Blockchain Solutions for Multi-Agent Robotic Systems: Related Work and Open Questions

    Full text link
    The possibilities of decentralization and immutability make blockchain probably one of the most breakthrough and promising technological innovations in recent years. This paper presents an overview, analysis, and classification of possible blockchain solutions for practical tasks facing multi-agent robotic systems. The paper discusses blockchain-based applications that demonstrate how distributed ledger can be used to extend the existing number of research platforms and libraries for multi-agent robotic systems.Comment: 5 pages, FRUCT-2019 conference pape

    Ontology-based collaborative framework for disaster recovery scenarios

    Full text link
    This paper aims at designing of adaptive framework for supporting collaborative work of different actors in public safety and disaster recovery missions. In such scenarios, firemen and robots interact to each other to reach a common goal; firemen team is equipped with smart devices and robots team is supplied with communication technologies, and should carry on specific tasks. Here, reliable connection is mandatory to ensure the interaction between actors. But wireless access network and communication resources are vulnerable in the event of a sudden unexpected change in the environment. Also, the continuous change in the mission requirements such as inclusion/exclusion of new actor, changing the actor's priority and the limitations of smart devices need to be monitored. To perform dynamically in such case, the presented framework is based on a generic multi-level modeling approach that ensures adaptation handled by semantic modeling. Automated self-configuration is driven by rule-based reconfiguration policies through ontology
    • …
    corecore