47,559 research outputs found

    Improved Fourier Mellin Invariant for Robust Rotation Estimation with Omni-cameras

    Full text link
    Spectral methods such as the improved Fourier Mellin Invariant (iFMI) transform have proved faster, more robust and accurate than feature based methods on image registration. However, iFMI is restricted to work only when the camera moves in 2D space and has not been applied on omni-cameras images so far. In this work, we extend the iFMI method and apply a motion model to estimate an omni-camera's pose when it moves in 3D space. This is particularly useful in field robotics applications to get a rapid and comprehensive view of unstructured environments, and to estimate robustly the robot pose. In the experiment section, we compared the extended iFMI method against ORB and AKAZE feature based approaches on three datasets showing different type of environments: office, lawn and urban scenery (MPI-omni dataset). The results show that our method boosts the accuracy of the robot pose estimation two to four times with respect to the feature registration techniques, while offering lower processing times. Furthermore, the iFMI approach presents the best performance against motion blur typically present in mobile robotics.Comment: 5 pages, 4 figures, 1 tabl

    Diattenuation of Brain Tissue and its Impact on 3D Polarized Light Imaging

    Full text link
    3D-Polarized Light Imaging (3D-PLI) reconstructs nerve fibers in histological brain sections by measuring their birefringence. This study investigates another effect caused by the optical anisotropy of brain tissue - diattenuation. Based on numerical and experimental studies and a complete analytical description of the optical system, the diattenuation was determined to be below 4 % in rat brain tissue. It was demonstrated that the diattenuation effect has negligible impact on the fiber orientations derived by 3D-PLI. The diattenuation signal, however, was found to highlight different anatomical structures that cannot be distinguished with current imaging techniques, which makes Diattenuation Imaging a promising extension to 3D-PLI.Comment: 32 pages, 15 figure

    3D Imaging of a Phase Object from a Single Sample Orientation Using an Optical Laser

    Full text link
    Ankylography is a new 3D imaging technique, which, under certain circumstances, enables reconstruction of a 3D object from a single sample orientation. Here, we provide a matrix rank analysis to explain the principle of ankylography. We then present an ankylography experiment on a microscale phase object using an optical laser. Coherent diffraction patterns are acquired from the phase object using a planar CCD detector and are projected onto a spherical shell. The 3D structure of the object is directly reconstructed from the spherical diffraction pattern. This work may potentially open the door to a new method for 3D imaging of phase objects in the visible light region. Finally, the extension of ankylography to more complicated and larger objects is suggested.Comment: 22 pages 5 figure

    Computer vision for real-time orbital operations. Center directors discretionary fund

    Get PDF
    Machine vision research is examined as it relates to the NASA Space Station program and its associated Orbital Maneuvering Vehicle (OMV). Initial operation of OMV for orbital assembly, docking, and servicing are manually controlled from the ground by means of an on board TV camera. These orbital operations may be accomplished autonomously by machine vision techniques which use the TV camera as a sensing device. Classical machine vision techniques are described. An alternate method is developed and described which employs a syntactic pattern recognition scheme. It has the potential for substantial reduction of computing and data storage requirements in comparison to the Two-Dimensional Fast Fourier Transform (2D FFT) image analysis. The method embodies powerful heuristic pattern recognition capability by identifying image shapes such as elongation, symmetry, number of appendages, and the relative length of appendages
    • …
    corecore