2,375 research outputs found

    A Selectivity based approach to Continuous Pattern Detection in Streaming Graphs

    Full text link
    Cyber security is one of the most significant technical challenges in current times. Detecting adversarial activities, prevention of theft of intellectual properties and customer data is a high priority for corporations and government agencies around the world. Cyber defenders need to analyze massive-scale, high-resolution network flows to identify, categorize, and mitigate attacks involving networks spanning institutional and national boundaries. Many of the cyber attacks can be described as subgraph patterns, with prominent examples being insider infiltrations (path queries), denial of service (parallel paths) and malicious spreads (tree queries). This motivates us to explore subgraph matching on streaming graphs in a continuous setting. The novelty of our work lies in using the subgraph distributional statistics collected from the streaming graph to determine the query processing strategy. We introduce a "Lazy Search" algorithm where the search strategy is decided on a vertex-to-vertex basis depending on the likelihood of a match in the vertex neighborhood. We also propose a metric named "Relative Selectivity" that is used to select between different query processing strategies. Our experiments performed on real online news, network traffic stream and a synthetic social network benchmark demonstrate 10-100x speedups over selectivity agnostic approaches.Comment: in 18th International Conference on Extending Database Technology (EDBT) (2015

    Graphulo Implementation of Server-Side Sparse Matrix Multiply in the Accumulo Database

    Full text link
    The Apache Accumulo database excels at distributed storage and indexing and is ideally suited for storing graph data. Many big data analytics compute on graph data and persist their results back to the database. These graph calculations are often best performed inside the database server. The GraphBLAS standard provides a compact and efficient basis for a wide range of graph applications through a small number of sparse matrix operations. In this article, we implement GraphBLAS sparse matrix multiplication server-side by leveraging Accumulo's native, high-performance iterators. We compare the mathematics and performance of inner and outer product implementations, and show how an outer product implementation achieves optimal performance near Accumulo's peak write rate. We offer our work as a core component to the Graphulo library that will deliver matrix math primitives for graph analytics within Accumulo.Comment: To be presented at IEEE HPEC 2015: http://www.ieee-hpec.org

    Proceedings of the 3rd Workshop on Domain-Specific Language Design and Implementation (DSLDI 2015)

    Full text link
    The goal of the DSLDI workshop is to bring together researchers and practitioners interested in sharing ideas on how DSLs should be designed, implemented, supported by tools, and applied in realistic application contexts. We are both interested in discovering how already known domains such as graph processing or machine learning can be best supported by DSLs, but also in exploring new domains that could be targeted by DSLs. More generally, we are interested in building a community that can drive forward the development of modern DSLs. These informal post-proceedings contain the submitted talk abstracts to the 3rd DSLDI workshop (DSLDI'15), and a summary of the panel discussion on Language Composition

    UpStream: storage-centric load management for streaming applications with update semantics

    Get PDF
    This paper addresses the problem of minimizing the staleness of query results for streaming applications with update semantics under overload conditions. Staleness is a measure of how out-of-date the results are compared with the latest data arriving on the input. Real-time streaming applications are subject to overload due to unpredictably increasing data rates, while in many of them, we observe that data streams and queries in fact exhibit "update semantics” (i.e., the latest input data are all that really matters when producing a query result). Under such semantics, overload will cause staleness to build up. The key to avoid this is to exploit the update semantics of applications as early as possible in the processing pipeline. In this paper, we propose UpStream, a storage-centric framework for load management over streaming applications with update semantics. We first describe how we model streams and queries that possess the update semantics, providing definitions for correctness and staleness for the query results. Then, we show how staleness can be minimized based on intelligent update key scheduling techniques applied at the queue level, while preserving the correctness of the results, even for complex queries that involve sliding windows. UpStream is based on the simple idea of applying the updates in place, yet with great returns in terms of lowering staleness and memory consumption, as we also experimentally verify on the Borealis syste

    Querying XML data streams from wireless sensor networks: an evaluation of query engines

    Get PDF
    As the deployment of wireless sensor networks increase and their application domain widens, the opportunity for effective use of XML filtering and streaming query engines is ever more present. XML filtering engines aim to provide efficient real-time querying of streaming XML encoded data. This paper provides a detailed analysis of several such engines, focusing on the technology involved, their capabilities, their support for XPath and their performance. Our experimental evaluation identifies which filtering engine is best suited to process a given query based on its properties. Such metrics are important in establishing the best approach to filtering XML streams on-the-fly

    Asymptotically near-optimal RRT for fast, high-quality, motion planning

    Full text link
    We present Lower Bound Tree-RRT (LBT-RRT), a single-query sampling-based algorithm that is asymptotically near-optimal. Namely, the solution extracted from LBT-RRT converges to a solution that is within an approximation factor of 1+epsilon of the optimal solution. Our algorithm allows for a continuous interpolation between the fast RRT algorithm and the asymptotically optimal RRT* and RRG algorithms. When the approximation factor is 1 (i.e., no approximation is allowed), LBT-RRT behaves like RRG. When the approximation factor is unbounded, LBT-RRT behaves like RRT. In between, LBT-RRT is shown to produce paths that have higher quality than RRT would produce and run faster than RRT* would run. This is done by maintaining a tree which is a sub-graph of the RRG roadmap and a second, auxiliary graph, which we call the lower-bound graph. The combination of the two roadmaps, which is faster to maintain than the roadmap maintained by RRT*, efficiently guarantees asymptotic near-optimality. We suggest to use LBT-RRT for high-quality, anytime motion planning. We demonstrate the performance of the algorithm for scenarios ranging from 3 to 12 degrees of freedom and show that even for small approximation factors, the algorithm produces high-quality solutions (comparable to RRG and RRT*) with little running-time overhead when compared to RRT

    Knowledge-infused and Consistent Complex Event Processing over Real-time and Persistent Streams

    Full text link
    Emerging applications in Internet of Things (IoT) and Cyber-Physical Systems (CPS) present novel challenges to Big Data platforms for performing online analytics. Ubiquitous sensors from IoT deployments are able to generate data streams at high velocity, that include information from a variety of domains, and accumulate to large volumes on disk. Complex Event Processing (CEP) is recognized as an important real-time computing paradigm for analyzing continuous data streams. However, existing work on CEP is largely limited to relational query processing, exposing two distinctive gaps for query specification and execution: (1) infusing the relational query model with higher level knowledge semantics, and (2) seamless query evaluation across temporal spaces that span past, present and future events. These allow accessible analytics over data streams having properties from different disciplines, and help span the velocity (real-time) and volume (persistent) dimensions. In this article, we introduce a Knowledge-infused CEP (X-CEP) framework that provides domain-aware knowledge query constructs along with temporal operators that allow end-to-end queries to span across real-time and persistent streams. We translate this query model to efficient query execution over online and offline data streams, proposing several optimizations to mitigate the overheads introduced by evaluating semantic predicates and in accessing high-volume historic data streams. The proposed X-CEP query model and execution approaches are implemented in our prototype semantic CEP engine, SCEPter. We validate our query model using domain-aware CEP queries from a real-world Smart Power Grid application, and experimentally analyze the benefits of our optimizations for executing these queries, using event streams from a campus-microgrid IoT deployment.Comment: 34 pages, 16 figures, accepted in Future Generation Computer Systems, October 27, 201
    corecore