
Querying XML Data Streams from Wireless Sensor
Networks: An Evaluation of Query Engines

Martin F. O’Connor∗, Kenneth Conroy∗†, Mark Roantree∗, Alan F. Smeaton† and Niall M. Moyna†‡
∗Interoperable Systems Group, Dublin City University

†CLARITY: Centre for Sensor Web Technologies, Dublin City University
‡School of Health and Human Performance, Dublin City University

{moconnor,kconroy,mark.roantree}@computing.dcu.ie, {alan.smeaton,niall.moyna}@dcu.ie

Abstract—As the deployment of wireless sensor networks
increase and their application domain widens, the opportunity
for effective use of XML filtering and streaming query engines
is ever more present. XML filtering engines aim to provide
efficient real-time querying of streaming XML encoded data.
This paper provides a detailed analysis of several such engines,
focusing on the technology involved, their capabilities, their
support for XPath and their performance. Our experimental
evaluation identifies which filtering engine is best suited to process
a given query based on its properties. Such metrics are important
in establishing the best approach to filtering XML streams on-
the-fly.

Index Terms—XML, Streaming, Query, Filtering Engine, Sen-
sor.

I. INTRODUCTION

Sensor devices provide a bridge between the physical
world and the digital domain. They facilitate an automated
quantification and analysis of real-world events and optional
automated responses should they be required. Sensors were
traditionally deployed in domains such as environmental
monitoring, home automation and traffic control. The recent
advances and availability of wireless networks has increased
the rate of adoption of ubiquitous wireless sensor devices. In
particular, the healthcare and sport science domains have been
quick to exploit the new functionality and flexibility afforded
by these devices.

The proliferation of wireless sensor networks present new
and unique challenges for the management and querying of
the data streams they generate. Traditionally, data streams were
employed in activities such as the dissemination of news feeds
and stock market updates. The primary purpose of data stream
queries were to monitor key values and flag them should they
move outside a user-defined boundary. XML, a key format for
system interoperability, has become the de facto representation
for the encoding and transmission of data streams. Each new
sensor device leads to the provision of increased and more
complex functionality. As a result the wireless sensor networks
in which they participate necessitate a query filtering engine
at the data management layer to facilitate the efficient and
effective querying of these data streams.

A. Background

An area of active research is the deployment of wireless
sensor devices to monitor physiological and movement char-

acteristics of athletes. The use case presented in this paper
is contextually based on the integration of sensor streams in
personal health networks [1]. The study was a collaboration
between sports scientists and data engineers whereby a series
of experiments were performed on teams playing Gaelic
(Irish) football. Each player wore several biometric sensors
monitoring and recording a number of physiological responses.
The data was later uploaded from the sensor devices through
USB connections to a computer in order to be queried. Indeed
the focus of this earlier study lay in the provision of semantic
enrichment and data integration services as part of a wider data
infrastructure and query management system for a personal
health sensor network environment.

Our study is a collaboration between sports scientists and
data engineers part of which involved three match officials
at a 2008 inter-county Gaelic Football Championship match
were equipped with a prototype wear and forget textile-
based physiological wireless sensor vest. The textile-based
wireless sensor records the physiological responses of the
wearer by integrating electrodes into the fabric using a liquid
crystal polymer film. The data recorded includes heart rate
and respiration rate, measured and broadcast to a base station
PC wirelessly in real-time. GPS coordinates of the wearer
were integrated with the device’s data at a later time. In
tandem with the wireless broadcasting of the sensor devices
(vest and GPS), three live video feeds monitoring each of
the match officials throughout the game was also captured,
which was subsequently manually annotated as to the activity
of each match official, which provided another data stream for
encoding in XML.

B. Motivation

The health and human performance specialist requires the
ability to query data in real time, during the sports event as it is
being played, in order to prescribe actions like rehydration, or
substitution. The wireless sensor vest prototype enables real-
time monitoring and facilitates automatic triggering of notifi-
cations when an athlete’s physiological readings are above or
below a predefined threshold. These triggers may be simple
(e.g. when heart rate reaches a certain value) or complex (two
or more biometric readings satisfying combined conditions).
The coach may view the video and data corresponding to the
triggered event in order to determine if the biometric reading

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DCU Online Research Access Service

https://core.ac.uk/display/11308942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. Real Time Analysis of an Athlete during a Football Game

was appropriate to the action being performed by the athlete
or wearer. This enables the coach to take corrective action
such as substituting the player during a game, or changing
the drill in the current training session. These triggers may be
implemented as queries on the streaming data. The coach can
effectively design individual training programs and tweak their
implementation through real-time analysis of their biometric
data so as to optimise the performance of each athlete. The
streaming biometric data and captured streaming video of the
football game are illustrated in Figure 1 along with sample
queries to isolate and highlight significant fluctuations in
average heart rate values.

This paper addresses the need for an efficient XML filtering
engine, analysing several approaches with a particular focus
on the capabilities and performance of such systems. Our
motivation is to evaluate existing tools and technologies so as
to be able to invoke the right query engine for a given arbitrary
query. The ability to provide a filtering agent at runtime to
dynamically select the most appropriate and efficient streaming
query engine to process any given query based on its properties
is the principle motivation of this work.

C. Contribution

In this paper, we provide a detailed analysis of five existing
streaming query engines. The engines evaluated are YFilter,
SPEX, XSQ, XMLTK and XPA. This analysis covers the
functionality of each engine including their support (or lack
thereof) for the XPath language, including wildcards, multiple
predicates and complex queries. A particular focus is placed on
YFilter and SPEX which are subject to extensive experimental

analysis. We analyse a number of different queries to find
out which query engine is best suited to process an arbitrary
query according to its properties. We identify the strengths and
weaknesses of each streaming query engine and present our
recommendations for which to use based on our analysis.

The structure of this paper is as follows. §II presents a de-
tailed overview of the five streaming query engines, outlining
their functionality and detailing how they are implemented.
§III presents a comprehensive comparison of their features,
capabilities and the respective advantages and limitations of
each approach. §IV provides a description of the experiments
performed using the SPEX and YFilter engines and detailed
analysis of the results. In §V we present our conclusions.

II. RELATED RESEARCH IN QUERY ENGINES

In this section we provide an overview of each of the five
XML filtering engines examined and outline their implemen-
tation details. Queries of XML data streams are specified in
the XPath [2] or XQuery language [3] (of which XPath is a
subset). An XPath expression is a sequence of location steps;
each comprising of an axis, a node-test and optional predicates,
that can traverse and extract data from the XML tree. XPath
can be expressed in its full, expanded syntax or in a more
compact abbreviated form. Each XML query engine supports
varying subsets of the XPath language and will be detailed
below. The XML data arrives to the system in stream form,
which may be readily processed by the Simple API for XML
(SAX) [4] parser. An overview of each of the five streaming
query engines now follows.



A. SPEX

The SPEX system [5] for evaluating XPath queries against
XML data streams is built upon frameworks for removing
reverse axes (such as ancestor and preceding) from XPath
queries and replacing them with the equivalent forward axes.
Evaluation is achieved using a network of pushdown trans-
ducers. A pushdown transducer is a linear bounded automaton
with outputs. The network consists of a tuple detailing the state
of the pushdown transducer(s), the input and output alphabet,
the stack alphabet and a transition function. The transducers
act as nodes on a directed acyclic graph known as a transducer
network. The pushdown transducers use their stacks to track
the depth of the tree being examined. The processing of an
XML stream is effectively a depth-first traversal of the tree in
order to evaluate queries [6].

The SPEX Query processor comprises four steps. The first
step requires rewriting the XPath query to an equivalent query
consisting of forward axes only, eliminating any reverse axes.
This is a necessary feature of processing streaming data due
to its dynamic nature: one cannot go back through data paths.
This step also includes optimisations focusing on pruning
redundant computations to improve the evaluation of forward
XPath queries. The second step compiles the forward axes-
based XPath query into a logical query plan. Compile-time
optimisations (where applicable) also occur at this stage. The
third step computes a physical query plan from the logical
plan. The fourth and final step processes the physical query
plan. This step essentially performs a depth-first traversal of
the XML tree representing the stream. The transducer stacks
are employed to track the depth of the processed nodes. This
allows the computation of forward XPath axes in a single pass.

Queries are received by SPEX in expanded XPath format
and the answers computed are buffered because predicate
evaluation may occur later downstream and prune the final
result set. Structural filters (another type of transducer) are
employed to minimise the stream traffic between transducers
in the network [5].

B. YFilter

YFilter is a non-deterministic finite-state automaton (NFA)
based approach to XML stream processing. The NFA consists
of an alphabet, a set of states including a start and final state
and transition relations. YFilter seeks to provide an efficient
filtering engine for thousands of query specifications [7] [8].
The NFA based representation of XPath expressions is the key
innovation and permits all queries to be combined into a single
machine, exploiting commonality among queries. Further ad-
vantages of this approach are a small number of machine states
and the support for incremental machine construction [7]. To
deal with nested paths (e.g. a predicate which includes other
paths) YFilter uses a query decomposition scheme which takes
advantage of the shared-path processing. The query evaluation
results are returned by a special post-processing technique. It
should be noted that all XPath expressions can be converted
into a regular expression and thus, there exists an NFA to
accept any XPath query.

Node 
labelled 
tree

XML 
messages

Filtered 
DataSAX XML 

Parser Shared path matching

Runtime
tree

Parser p g

XQuery CompilerQueries XQuery 
Parser

Compiler

Fig. 2. YFilter Processing Architecture

The YFilter processor proceeds as follows: The NFA’s are
combined to form a single NFA with one initial state. From
this state (and all subsequent states) transitions are made until
an accepting state is reached or a state is reached which does
not match the corresponding state in the query. YFilter uses
a separate selection operator for predicate evaluation. The
two approaches Selection Postponed and Inline, are defined as
follows: Inline evaluates predicates as soon as the addressed
elements are read from the stream; Selection Postponed delays
predicate evaluation until the corresponding XPath expression
has been entirely matched. The YFilter Processing Architec-
ture is illustrated in Figure 2.

YFilter performs an order of magnitude faster than its
predecessor XFilter which employed an Finite State Machine
(FSM) based approach. The NFA approach of YFilter is
efficient for the non-deterministic operators which form an
important part of XPath [7].

C. XSQ

XSQ presents an XML filtering engine based on the hierar-
chical arrangement of pushdown transducers augmented with
buffers [9]. It is memory efficient and provides high through-
put. XSQ implements all aspects of XPath 1.0, excluding the
reverse axes and the position() functions.

The pushdown transducers (PDT) are pushdown automata
with actions defined along the transition arcs of the automaton
[9]. At each step, the state transition is determined by the input
symbol and the symbols on the stack. Each SAX event makes
a state transition based on the transition table. The PDTs
do not have a buffer and thus cannot answer XPath queries
with predicates. To overcome this limitation, the Buffered
Pushdown Transducer (BPDT) extends the PDT with a buffer,
organised as a queue with several buffer operators. Each BPDT
may encode a single location step and thus all the BPDTs
are combined into one Hierarchical PDT (HPDT) in order to
process entire XPath queries. The position of the BPDT in
the HPDT encodes the results of all predicates. The streaming
input to the HPDT comes from the SAX parser [9].

On receipt of an XPath query, it is first parsed by the
XPath parser into a sequence of location steps, each step
consisting of an axis, a node-test and an optional predicate.
The object of a predicate falls into one of five categories or
templates defined by XSQ. These templates provide the basis



XPath 

Query
XPath 

Parser

BPDT 

Builder

HPDT 

Builder

BPDTs
Sequence of 

location steps

HPDT

Templates

XML 

Stream
SAX 

Parser

HPDT 

Engine

Event 

Handler

SAX Stream SAX Events

Query 

Result

HPDT

Fig. 3. XSQ Processing Architecture

for building a BPDT for each location step. The set of BPDTs
is stored indexed by their source states. The XSQ Processing
Architecture is illustrated in Figure 3.

The HPDT builder connects the BPDTs into one by assign-
ing a unique state ID to each state in all BPDTs, which is
maintained in the transition arcs of the HPDT. All states are
stored in a single set following the assignment. At runtime
the HPDT engine must execute the HPDT produced by the
builder. It must maintain the stacks, buffers and other runtime
objects. The SAX parser calls a user-defined event handler
to process events. The event handler records the depth of the
event and ensures the input is well formed XML [10].

D. XMLTK

The XML Toolkit (XMLTK) consists of two core com-
ponents. The first component consists of a collection of
standalone tools such as sorting and aggregation utilities which
can be combined to facilitate a more complex processing
architecture. The second component is an XML processor for
XML streams with an emphasis on scalability [11]. Together
these components make up a framework for lightweight and
high-performance XML stream data processing.

A core technology introduced by XMLTK is SIX, a Stream
IndeX designed for stream processing. The SIX of an XML
stream is a sequence of byte offsets in the stream that the
XPath processor recognises so as to skip sections of the data
stream. A SIX is computed once for each packet and must be
routed together with the packet. The size of the SIX is kept
small in order to have a nominal effect on throughput and
memory usage. The XMLTK toolkit provides functionality to
XML streams similar to that of UNIX commands on text files
such as grep. When used in conjunction with XPath these
tools can allow the user to perform complex operations on
XML streams and are designed to scale. In order to further
improve performance, the developers provided a binary format
for XML and SIX, replacing tags and attributes with integers
tokens and allowing recognition of some atomic data types.
They also defined their own tokenised SAX (TSAX) parser.
The TSAX parser provides a single interface to both standard
and binary XML.

The XMLTK processor consists of a stream API extending
the tokenised SAX parsing model and is illustrated in Figure 4.

SIX 

Manager

SIX 

Stream

Tree Pattern

Skip(k)

Skip(k)

XML 

Stream
SAX 

Parser

SAX Events Application Events

Application

Query Processor 

(Lazy DFA)

Fig. 4. XMLTK Processing Architecture

A query is presented as a tree. The tree nodes are labelled with
variables and the edges labelled with XPath expressions. The
XPath processor exploits these labels to detect when a match
with an input XML stream occurs. However, the modification
of the SAX parser comes with a performance penalty because
it necessitates an extra hash table lookup.

The processor converts the query tree into a non determinis-
tic finite-state automaton (NFA), from which the deterministic
finite automaton (DFA) is computed. The processor is guided
by the TSAX events. The stack may only grow to a height
equivalent to the maximum depth of the XML stream [11].
This application achieves constant throughput independent of
the number of XPath expressions. In order to prevent the
exponential increase in the number of states in the DFA
compared to the NFA, the DFA is constructed lazily.

E. XPA

XPA [12] presents a SAX based approach for XPath query
evaluation. The input query is translated into an automaton
consisting of four types of transitions. This number of au-
tomata requires a small memory footprint supporting the fast
evaluation of the input XML stream. XPA can support XPath
query evaluation on infinite XML data streams and each SAX
event is read once. However, this requires the stream be
parsed in a single pass and consequently all backward axes
are rewritten into equivalent forward axes. The advantages of
this design are tempered by the potential for very large queries
resulting from the rewrite.

The XPA processor proceeds as follows: The SAX input
stream is first converted into a binary SAX event stream,
supporting child, sibling and parent events and self node tests.
This is performed in two steps. Each SAX event character
and attribute value pair are transformed into binary SAX event
sequences. In the second step, the start and end elements are
replaced with events according to the set of rules defined in
[12]. The binary SAX events are used as input symbols for the
stack of XPath automaton, constructed for the XPath query.
The queries after decomposition and normalisation contain
only three types of axes. These are in turn converted into XPath
automata for which a stack of active states is maintained.
The input SAX event is converted to a binary SAX event
stream and acts as input for the XPath automata. Each XPath
query is decomposed into a set of filter-free path queries.



Xpath Query 

representation

Results 

representation Xpath Axes supported W
il

d
c

a
rd

s

F
il

te
r 

P
re

d
ic

a
te

s

T
e

x
t 

d
a

ta

A
tt

ri
b

u
te

s

P
o

s
it

io
n

 F
u

n
c

ti
o

n
s

M
u

lt
ip

le
 P

re
d

ic
a

te
s

C
o

m
p

a
ri

ti
v

e
 O

p
s

C
o

n
ju

n
c

ti
v

e
 (

a
n

d
)

R
a

n
g

e
s

Yfilter Abbreviated relevant results

child, descendant-or-self. 

No sibling axes support
� � � � � �

Only on 

position() NO NO

SPEX Expanded relevant results

child, descendant-or-self. 

No sibling axes support
� � � NO NO �

!=. = only
� NO

XSQ Abbreviated relevant results

child, descendant-or-self. 

No sibling, reverse axes 

support.
� � � NO �*

�

XMLTK Abbreviated relevant results

child, descendant-or-self. 

No sibling axes support
� � � � �

�* NO NO NO

XPA Expanded relevant results All Axes supported
� � � � �

*conditions apply

Fig. 5. Evaluation Metrics and Results for the Five Streaming Query Engines

The XPath query is then normalised by rewriting each path
expression such that they contain only the location steps
firstchild, nextsibling and self. The resulting filter-free XPath
query is used to create the XPath automaton. For each location
step in a query path, an atomic XPath automaton is computed.
Finally they are concatenated to form the complete XPath
automaton [12].

III. EVALUATING QUERY ENGINES FOR SENSOR STREAMS

The query engines described in §II will be used to query, in
real time, sensor data generated during experiments involving
physical exercise during championship football matches, as
well as laboratory-based training. Thus, it is necessary to
evaluate how powerful their query features are, and those
engines that are best suited to performing different types of
queries. This section provides an detailed analysis of the func-
tionality of each of the five stream query engines based on the
particular set of user requirements our application demands.
Each streaming query engine supports a subset of XPath to
various degrees. This section qualifies those differences and
summarises the benefits and limitations of each engine.

A. Evaluation Template

The metrics chosen as part of our evaluation of the XML
streaming engines are representative of the requirements of the
domain specialist, and the diversity and key properties of an
XPath query. The metrics by which the query engines were
evaluated and compared are as follows:

• The representation format in which the XPath query must
be received by the query engine.

• The relevance of the results returned to the query given.
• The XPath axes supported by the streaming query engine.
• Support for wildcards.
• Support for filter predicates (e.g. test a node for a

condition).
• Support for the XPath text() function.
• Support for attributes.

• Support for the XPath position() function.
• Support for multiple predicates.
• Support for the comparative operators.
• Support for the conjunctive and operator.
• Support for range queries.

B. Evaluation Overview

Figure 5 displays the results obtained from researching
the XML filtering engines. The greyed-out boxes represent
information that could not be determined. Both SPEX and
XPA require the XPath queries to be represented in expanded
form. The remaining three engines accept the abbreviated form
of XPath. All of the engines provide axis support for child and
descendant-or-self axes. XPA is unique in that it supports all
XPath axes. Sibling axes are not supported by YFilter, SPEX,
XSQ or XMLTK. Furthermore, XSQ lacks support for reverse
axes and position() functions.

C. Analysis

1) SPEX:: SPEX primary limitation is the lack of support
for attributes or the position() functions in XPath. SPEX does
have support for comparative operators on text data, however
this support is restricted to the equals and not equals operators.
The remaining operators, such as greater-than and less-than
cannot be applied to text data. Consequently, range queries
cannot be specified in SPEX. Nevertheless, the Boolean oper-
ators and and or are available to specify predicates in SPEX.

2) YFilter:: YFilter has limited support for XPath ex-
pressions, namely the child and descendant-or-self axes. In
addition to the details presented in Figure 5, YFilter can
also process queries with nested paths. All path queries are
combined to form the NFA where common prefixes are rep-
resented. The need to support multiple transitions could cause
performance problems which YFilter avoids by transforming
the NFA into a DFA. In prior evaluations of the system, it was
shown that these performance concerns are overstated, with
flexibility and ease of maintenance proving more advantageous



Query  Abbreviated Syntax               

1  //measurement/reading[state]/value           

2  //measurement[reading]/*/value             

3  /healthSense/sensorData/sections/section/measurement[reading]/reading/value   

4  //reading[.//key[text()="Respiration Rate"]]/value         

5  //reading[.//key[text()="Respiration Rate"]][.//state[text()="firsthalf"]]/value     

6  //measurement[@state="firsthalf"]//reading[.//key[text()="Respiration Rate"]]/value   

7  //measurement[reading]/reading[state]/value           

8  /healthSense/sensorData/sections/section/measurement/reading[state]/value     

9  /healthSense/sensorData/sections/section/measurement/reading[state]/averages/average/value 

10  //reading[.//key[text() ="Heart Rate"]]//average[time[text()=60000]]/value     

11  //reading[.//key[text() ="Respiration Rate"]]//average[time[text()=30000]]/value     

12  //measurement[position()=520]/ reading[.//key[text()="Respiration Rate"]]/value     

13  //measurement[position()=245]/*/value           

14  //measurement[position()=245]/reading[.//key[text()="Heart Rate"]]/value     

15  //reading[.//key[text() ="Respiration Rate"]]/averages/average/value       

16  //measurement[@time=1220836800000]/reading[./key[text()="Heart Rate"]]/value   

17  //measurement[position()<10]/reading[.//key[text()="Heart Rate"]]/value     

 

Fig. 6. List of Input Queries

Query  Expanded Syntax       

5A  /desc::reading[child::key/child::text() = 'Respiration Rate' ][child::state/child::text() ='firsthalf' 
]/child::value 

5B  /desc::reading[child::key/child::text() = 'Respiration Rate' and child::state/child::text() ='firsthalf' 
]/child::value 

10  /desc::reading[child::key/child::text() = 'Heart Rate']/desc::average[child::time/child::text() = 
'60000']/child::value 

 

Fig. 7. Sample Queries in Expanded Form

than faster path processing [7], [13]. Of the two approaches
available for predicate evaluation, Selection Postponed results
in better performance in comparison to Inline because of its
ability to prune the potential set of queries. Further advantages
of YFilter are its ability to support recursive documents,
support queries with multiple wildcards and the relatively
small number of machine states required to represent the large
numbers of XPath expressions.

3) XSQ:: Previous experimental evaluation of XSQ focused
on throughput, memory usage and features supported [10].
The experiments involved the use of non-streaming engines
such as Saxon, which consumed much more memory than
the streaming systems. For the engines which do not support
predicates the size of the input data has a nominal effect on
memory requirements. In order to support predicates, buffering
is required and thus XSQ may require a large amount of
memory depending on the size of the data stream and the
number of queries to be processed [9]. Although XSQ supports
multiple predicates, this support is subject to a number of
conditions, namely each node may have at most one predicate
and each predicate can contain path-to-value comparisons with
a path size of one (containing the axis: child, text or attribute)
[12] [10].

4) XMLTK:: XMLTK support for predicates is weak. There
are restrictive conditions governing the use of predicates,
such as disallowing the position() function to appear after
a descendant-or-self axis and position predicates may not
follow an other predicate. XMLTK offers additional UNIX-
like functionality such as simple tools for complex trans-

formations. XMLTK is designed to scale well and allow
transformations on very large XML streams. The tokenised
SAX (TSAX) events defined for the XML parser reduces the
size of the data by a factor of two, and the result is two
fold improvement in speed. The authors present a suite of
tests conducted on XMLTK and demonstrate that for large
numbers of expressions, throughput using this technique is
several thousand times faster than XFilter, the predecessor
to YFilter. Their evaluation does not include the techniques
discussed in this paper. The high throughput achieved comes
at the cost of greater memory requirements for storing the
DFA rather than NFA [11]. Nevertheless, the lack of support
for predicates is a considerable limitation which in a real-world
scenario effectively outweighs XMLTK benefits.

5) XPA:: XPA provides for an XML Filtering Engine which
theoretically appears superior to the other engines presented
here. XPA fully supports XPath 1.0 including sibling axes,
and is the only streaming query engine to do so. The imple-
mentation has not yet been released so further analysis of the
system performance is not possible. Previous evaluation anal-
ysis suggest XPA is an efficient system offering the greatest
range of functionality [12]. Query test suites were performed
by the developers on both XPA and YFilter. The results show
a substantial performance improvement for XPA over YFilter,
with XPA requiring far less memory. YFilter consumed double
the memory for document storage compared to XPA, and
was prone to out of memory exceptions when dealing with
very large XML documents. The throughput rate for XPA was
measured as 40MB/s, an exceptionally high result. XPA had a



better evaluation time with respect to the size, especially when
dealing with documents larger than 50MBs. The exponentially
larger queries resulting from rewriting backward axes results
in a slight decrease in speed [12]. XPA is an efficient filtering
engine, particularly suited to very large XML documents and
streams. However, as the implementation is not yet available,
it has been excluded from the experiments presented in this
paper.

IV. EXPERIMENTAL EVALUATION

In this section we examine the performance of two stream-
ing query engines SPEX and YFilter. Recall that our primary
motivation is to examine the performance of each of these
engines using a comprehensive set of queries in order to
identify the suitability of each engine to process a given query
according to its properties or classification. A query may be
classified according to its diversity and combined usage of
axes, syntactic constructs, operators, functions and various
other features as illustrated in Figure 5.

A. Experimental Setup

The experimental setup consisted of a prototype vest worn
by three match officials while participating in a GAA Champi-
onship football match. The prototype wear and forget textile-
based physiological wireless sensor vest, manufactured by
Foster-Miller, records the physiological condition of the of-
ficials by integrating electrodes to monitor Heart Rate with
a breathing sensor. The electrics and sensors are combined
with a liquid crystal polymer (LCP) film. The data recorded
includes heart rate and respiration rate measured and broadcast
wirelessly in real-time. The data was collected in real time,
and the resulting XML files make up our dataset and were
used as the input files to the Query Engines we examined.

All of the experiments reported here were performed on
an Intel Celeron 1.4GHz laptop with 512MB RAM running
Windows XP Pro with Java JVM 1.6.0 06. The Java max-
imum heap size was set to 128MB. Both Spex and YFilter
streaming query engines provide a Java implementation and
we augmented our experimental setup with our own simple
Java application to invoke our experiments and record the
results. Each query was run four times and the times recorded.
The first run was treated as a cold run and thus ignored. The
remaining three times were averaged and this average is the
time recorded against each query.

B. Dataset and Query Descriptions

The dataset consists of the live streaming data recorded
during a GAA Championship match. Our three datasets are
of size 7MB, 14MB and 21MB respectively. The maximum
depth of the XML data is eight levels. In order to evaluate
the performance of the XML streaming engines SPEX and
YFilter, the queries were designed to test each feature of the
XPath language supported by the respective engines. The list
of queries performed are displayed in Figure 6.

0

3000

6000

9000

12000

15000

Q.1 Q.2 Q.3 Q.4 Q.5 Q.6 Q.7 Q.8 Q.9 Q.10 Q.11 Q.12 Q.13 Q.14 Q.15 Q.16 Q.17

Yfilter

SPEX

(a) Queries Performed on the 7MB Dataset

40000

50000

0

10000

20000

30000

0000

Q.1 Q.2 Q.3 Q.4 Q.5 Q.6 Q.7 Q.8 Q.9 Q.10 Q.11 Q.12 Q.13 Q.14 Q.15 Q.16 Q.17

Yfilter
SPEX

(b) Queries Performed on the 14MB Dataset

200000

300000

400000

500000

Yfilter

SPEX

0

100000

Q.1 Q.2 Q.3 Q.4 Q.5 Q.6 Q.7 Q.8 Q.9 Q.10 Q.11 Q.12 Q.13 Q.14 Q.15 Q.16 Q.17

(c) Queries Performed on the 21MB dataset

Fig. 8. Query Performance over Three Datasets

1) Query Descriptions: Among the query set are queries
containing nested paths, value predicates, attributes, the text()
and position() functions and wildcards. The usage of the
aforementioned features in these experiments was driven by
user needs as determined by domain specialists. The axes
examined were descendant-or-self and child. SPEX does not
support attributes or the position() function, thus the queries
numbered 6, 12-14 and 16-17 exploiting these features were
run through the YFilter engine only. The grammar for each
of the engines necessarily define the subset of the XPath
language supported by that engine. We found the documented
YFilter grammar to be accurate. The grammar defined for
SPEX indicates support for the comparative operators when
employing the text() function, however in our experiments we
could not successfully replicate the > or < operators using
text(), only the = and != operators were functional.

2) Expanded Example:: SPEX accepts query input in the
expanded XPath format only. Therefore we re-expressed the
queries listed in Figure 6 in expanded form. Figure 7 displays
queries numbered 5 and 10 expressed in expanded form.

0
100000
200000
300000
400000
500000

DS.1 DS.2 DS.3

Query 1: Time against Dataset

Yfilter

SPEX

Fig. 9. Query 1 Performed over the Three Datasets



C. Performance Analysis

Figure 8 illustrates the performance of our query set over
each of the three datasets. The X-axis indicates the query and
the Y-axis identifies the time taken in milliseconds by the
XML streaming engine to return the results of the query. It
is evident from the graphs that SPEX outperforms YFilter in
all cases. It is also evident that the factor by which SPEX is
faster increases as the dataset gets larger. Figure 9 illustrates
the increase in time taken to evaluate query number 1 over
the three datasets. The time taken by SPEX to perform the
query follows an approximately linear growth pattern, but the
growth pattern for YFilter is approximately exponential. This
correlation is typical for all queries over each of the datasets.

We observed that YFilter’s support for the position() func-
tion is somewhat restricted. There may only be one instance
of the position() function employed for any one element.
For example, it is possible to return the first ten elements
(position()<=10) but not the elements between position ten
and twenty. Thus, range queries on a specific element with
a user-defined lower and upper boundary are not possible. In
addition the comparative operators in YFilter are restricted to
the position() function, and cannot be used with text() values.
Only equality can be performed on text() values. The boolean
operators and and or are available in SPEX, but not in YFilter.
The SPEX operator and when applied to predicates (illustrated
as example 5B in Figure 7) has the same performance in terms
of speed when rewriting the query with two predicates side by
side (illustrated as example 5A in Figure 7).

D. Limitations

Although our query test suite listed in Figure 6 exploits a
rich subset of the XPath query language, nevertheless they lack
the full expressive syntax available in XPath that would per-
mit information-oriented queries as opposed to data-oriented
queries. The following query is a valid XPath expression for
the data stream generated by our prototype wireless sensor
device but is not supported by SPEX or YFilter.

Display all 60-second periodic average heart rate
readings above 120bpm that occur throughout the
entire game where the actual heart rate reading is
above 140bpm. This query will discard any sensor
reading blips (or false readings) of heart values
above 140bpm and only return real periods of stren-
uous activity.

//reading[key=’Heart Rate’][value[.>140]]//average
[period[.=60000]]/value[.>120]

V. CONCLUSION

In this paper, motivated by the real-world deployment of
a prototype wireless sensor vest in the sport science context,
we addressed the requirements for a real-time streaming query
engine capable of processing live data streams. We began by
providing a thorough analysis and detailed evaluation of the
existing state-of-the-art streaming query engines. We selected
two of the most promising candidates with an implementation
readily available and subjected them to a comprehensive suite

of test queries designed to evaluate and benchmark both their
capability as a streaming query engine and their suitability
to process a given query according to its properties. Our
results and subsequent analysis identified different scenarios
and processing requirements whereby each of the engines pro-
vide a unique contribution. Thus, our conclusions motivate as
future work the development of a filtering agent which, upon
receiving a query and according to its properties, dynamically
selects at runtime the appropriate streaming query engine to
process the query. Indeed the filtering agent could occupy a
key position as part of a more general query optimiser for
XML streaming query engines over wireless sensor networks.

However, our experiments also highlighted the current im-
maturity of streaming query engines. In particular, the current
implementations lack an expressive query syntax to fully ex-
ploit the sensors they query. The functionality and complexity
available with the new and prototype wireless sensor devices
and the data streams they generate are outpacing the streaming
query engines’ ability to exploit that functionality to the full.
As such, there are key areas to be addressed in future work.
These include the development of a richer query syntax and
the faithful and more complete support for existing query
languages such as XPath.

Acknowledgement

This work is partly supported by Science Foundation Ireland
under grant 07/CE/I1147.

REFERENCES

[1] M. Roantree, D. McCann, and N. Moyna, “Integrating Sensor Streams
in pHealth Networks,” in ICPADS, 2008, pp. 320–327.

[2] XML Path Language (XPath) 2.0, W3C Recommendation ed.,
World Wide Web Consortium, January 2007. [Online]. Available:
http://www.w3.org/TR/xpath20/

[3] XQuery 1.0: An XML Query Language, W3C Recommendation ed.,
World Wide Web Consortium, January 2007. [Online]. Available:
http://www.w3.org/TR/xquery/

[4] Simple API for XML (SAX 2.0). [Online]. Available: http://www.
saxproject.org/

[5] F. Bry, F. Coskun, S. Durmaz, T. Furche, D. Olteanu, and M. Spannagel,
“The XML Stream Query Processor SPEX,” in ICDE, 2005, pp. 1120–
1121.

[6] D. Olteanu, T. Furche, and F. Bry, “Evaluating Complex Queries Against
XML Streams with Polynomial Combined Complexity,” in BNCOD,
2004, pp. 31–44.

[7] Y. Diao and M. J. Franklin, “High-Performance XML Filtering: An
Overview of YFilter,” IEEE Data Eng. Bull., vol. 26, no. 1, pp. 41–
48, 2003.

[8] YFilter User’s Manual. [Online]. Available: http://yfilter.cs.umass.edu/
html/manual/YFilter User Manual.html

[9] F. Peng and S. S. Chawathe, “XPath Queries on Streaming Data,” in
SIGMOD Conference, 2003, pp. 431–442.

[10] F. Peng and S. S. Chawathe, “XSQ: A Streaming XPath Engine,” ACM
Trans. Database Syst., vol. 30, no. 2, pp. 577–623, 2005.

[11] I. Avila-Campillo, T. J. Greeny, A. Gupta, M. Onizukaz, D. Raven,
and D. Suciu, “XMLTK: An XML Toolkit for Scalable XML Stream
Processing,” Proceedings of Programming Languages Technologies for
XML, 2002.

[12] S. Böttcher and R. Steinmetz, “Evaluating XPath Queries on XML Data
Streams,” in BNCOD, 2007, pp. 101–113.

[13] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. M. Fischer, “Path
Sharing and Predicate Evaluation for High-Performance XML Filtering,”
ACM Trans. Database Syst., vol. 28, no. 4, pp. 467–516, 2003.


