599,204 research outputs found

    Safe Neighborhood Computation for Hybrid System Verification

    Full text link
    For the design and implementation of engineering systems, performing model-based analysis can disclose potential safety issues at an early stage. The analysis of hybrid system models is in general difficult due to the intrinsic complexity of hybrid dynamics. In this paper, a simulation-based approach to formal verification of hybrid systems is presented.Comment: In Proceedings HAS 2014, arXiv:1501.0540

    A Formal Architecture-Centric Model-Driven Approach for the Automatic Generation of Grid Applications

    Full text link
    This paper discusses the concept of model-driven software engineering applied to the Grid application domain. As an extension to this concept, the approach described here, attempts to combine both formal architecture-centric and model-driven paradigms. It is a commonly recognized statement that Grid systems have seldom been designed using formal techniques although from past experience such techniques have shown advantages. This paper advocates a formal engineering approach to Grid system developments in an effort to contribute to the rigorous development of Grids software architectures. This approach addresses quality of service and cross-platform developments by applying the model-driven paradigm to a formal architecture-centric engineering method. This combination benefits from a formal semantic description power in addition to model-based transformations. The result of such a novel combined concept promotes the re-use of design models and facilitates developments in Grid computing.Comment: 11 pages, 9 figures. Proc of the 8th International Conference on Enterprise Information Systems (ICEIS06) Paphos, Cyprus. May 200

    A Formal Approach based on Fuzzy Logic for the Specification of Component-Based Interactive Systems

    Full text link
    Formal methods are widely recognized as a powerful engineering method for the specification, simulation, development, and verification of distributed interactive systems. However, most formal methods rely on a two-valued logic, and are therefore limited to the axioms of that logic: a specification is valid or invalid, component behavior is realizable or not, safety properties hold or are violated, systems are available or unavailable. Especially when the problem domain entails uncertainty, impreciseness, and vagueness, the appliance of such methods becomes a challenging task. In order to overcome the limitations resulting from the strict modus operandi of formal methods, the main objective of this work is to relax the boolean notion of formal specifications by using fuzzy logic. The present approach is based on Focus theory, a model-based and strictly formal method for componentbased interactive systems. The contribution of this work is twofold: i) we introduce a specification technique based on fuzzy logic which can be used on top of Focus to develop formal specifications in a qualitative fashion; ii) we partially extend Focus theory to a fuzzy one which allows the specification of fuzzy components and fuzzy interactions. While the former provides a methodology for approximating I/O behaviors under imprecision, the latter enables to capture a more quantitative view of specification properties such as realizability.Comment: In Proceedings FESCA 2015, arXiv:1503.0437

    Prototyping Formal System Models with Active Objects

    Full text link
    We propose active object languages as a development tool for formal system models of distributed systems. Additionally to a formalization based on a term rewriting system, we use established Software Engineering concepts, including software product lines and object orientation that come with extensive tool support. We illustrate our modeling approach by prototyping a weak memory model. The resulting executable model is modular and has clear interfaces between communicating participants through object-oriented modeling. Relaxations of the basic memory model are expressed as self-contained variants of a software product line. As a modeling language we use the formal active object language ABS which comes with an extensive tool set. This permits rapid formalization of core ideas, early validity checks in terms of formal invariant proofs, and debugging support by executing test runs. Hence, our approach supports the prototyping of formal system models with early feedback.Comment: In Proceedings ICE 2018, arXiv:1810.0205

    FROM SERVICE SYSTEMS ENGINEERING TO SERVICE INNOVATION – A MODELING APPROACH

    Get PDF
    Due to the advent of digitization, service innovation has become even more important for both business and service research alike. Current service systems engineering approaches have employed a recombinant perspective that follows innovation mechanisms to leverage existing company resources for new service innovations. Employing these innovation mechanisms is still challenging, since there is little support on how to structure and identify these mechanisms. We propose a model-based service system engineering approach to structure existing resources into one formal model, enabling the formalization of service innovation mechanisms. The formalized service innovation mechanisms allow for a graphical illustration and enable future research to apply functions to analyze how innovation impacts entire or specific parts of service systems. Furthermore, the mathematical model enables an object-oriented value-driven perspective on service systems and is basis for graphical software tools. We contribute to literature by formalizing service innovations and its mechanisms in the context of service systems and by combining concepts of service innovation and service systems engineering. We do so by a) formalizing service innovation mechanisms and b) demonstrating the application of formal service innovations along one specific software implementation case. For practice, the service system model can with simulating the effects of service innovations

    Software process modelling as relationships between tasks

    Get PDF
    Systematic formulation of software process models is currently a challenging problem in software engineering. We present an approach to define models covering the phases of specification, design, implementation and testing of software systems in the component programming framework, taking into account non-functional aspects of software (efficiency, etc.), automatic reusability of implementations in systems and also prototyping techniques involving both specifications and implementations. Our proposal relies on the identification of a catalogue of tasks that appear during these phases which satisfy some relationships concerning their order of execution. A software process model can be defined as the addition of more relationships over these tasks using a simple, modular process language. We have developed also a formal definition of correctness of a software development with respect to a software process model, based on the formulation of models as graphs.Peer ReviewedPostprint (published version

    Model Based Synthesis of Control Software from System Level Formal Specifications

    Full text link
    Many Embedded Systems are indeed Software Based Control Systems, that is control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for automatic synthesis of embedded systems control software. We present an algorithm, along with a tool QKS implementing it, that from a formal model (as a Discrete Time Linear Hybrid System) of the controlled system (plant), implementation specifications (that is, number of bits in the Analog-to-Digital, AD, conversion) and System Level Formal Specifications (that is, safety and liveness requirements for the closed loop system) returns correct-by-construction control software that has a Worst Case Execution Time (WCET) linear in the number of AD bits and meets the given specifications. We show feasibility of our approach by presenting experimental results on using it to synthesize control software for a buck DC-DC converter, a widely used mixed-mode analog circuit, and for the inverted pendulum.Comment: Accepted for publication by ACM Transactions on Software Engineering and Methodology (TOSEM

    The Validation of Computer-based Models in Engineering: Some Lessons from Computing Science

    Get PDF
    Questions of the quality of computer-based models and the formal processes of model testing, involving internal verification and external validation, are usually given only passing attention in engineering reports and in technical publications. However, such models frequently provide a basis for analysis methods, design calculations or real-time decision-making in complex engineering systems. This paper reviews techniques used for external validation of computer-based models and contrasts the somewhat casual approach which is usually adopted in this field with the more formal approaches to software testing and documentation recommended for large software projects. Both activities require intimate knowledge of the intended application, a systematic approach and considerable expertise and ingenuity in the design of tests. It is concluded that engineering degree courses dealing with modelling techniques and computer simulation should put more emphasis on model limitations, testing and validation

    Controlling Concurrent Change - A Multiview Approach Toward Updatable Vehicle Automation Systems

    Get PDF
    The development of SAE Level 3+ vehicles [{SAE}, 2014] poses new challenges not only for the functional development, but also for design and development processes. Such systems consist of a growing number of interconnected functional, as well as hardware and software components, making safety design increasingly difficult. In order to cope with emergent behavior at the vehicle level, thorough systems engineering becomes a key requirement, which enables traceability between different design viewpoints. Ensuring traceability is a key factor towards an efficient validation and verification of such systems. Formal models can in turn assist in keeping track of how the different viewpoints relate to each other and how the interplay of components affects the overall system behavior. Based on experience from the project Controlling Concurrent Change, this paper presents an approach towards model-based integration and verification of a cause effect chain for a component-based vehicle automation system. It reasons on a cross-layer model of the resulting system, which covers necessary aspects of a design in individual architectural views, e.g. safety and timing. In the synthesis stage of integration, our approach is capable of inserting enforcement mechanisms into the design to ensure adherence to the model. We present a use case description for an environment perception system, starting with a functional architecture, which is the basis for componentization of the cause effect chain. By tying the vehicle architecture to the cross-layer integration model, we are able to map the reasoning done during verification to vehicle behavior
    • …
    corecore