8 research outputs found

    A novel multi-agent and multilayered game formulation for Intrusion Detection in Internet of Things (IoT)

    Get PDF
    The current era of smart computing and enabling technologies encompasses the Internet of Things (IoT) as a network of connected, intelligent objects where objects range from sensors to smartphones and wearables. Here, nodes or objects cooperate during communication scenarios to accomplish effective throughput performance. Despite the deployment of large-scale infrastructure-based communications with faster access technologies, IoT communication layers can still be affected with security vulnerabilities if nodes/objects do not cooperate and intend to take advantage of other nodes for fulfilling their malevolent interest. Therefore, it is essential to formulate an intrusion detection/prevention system that can effectively identify the malicious node and restrict it from further communication activities—thus, the throughput, and energy performance can be maximized to a significant extent. This study introduces a combined multi-agent and multilayered game formulation where it incorporates a trust model to assess each node/object, which is participating in IoT communications from a security perspective. The experimental test scenarios are numerically evaluated, where it is observed that the proposed approach attains significantly improves intrusion detection accuracy, delay, and throughput performance as compared to the existing baseline approaches

    Minimising delay and energy in online dynamic fog systems

    Get PDF

    A Review on Fog Computing Systems

    Get PDF
    The current decade has witnessed a wide deployment of Internet of Things (IoT) technology in various application domains, and its pervasive role will continue to strengthen in the future. For dealing with a vast number of connected devices and the big data generated by them, an efficient computing platform is required. Fog computing has been proposed as a solution. It is a paradigm extending cloud computing and services to the edge of the network, thus reducing the latency of dynamic decision making and improving real-time performance in general. This paper provides a view on the current state-of-the-art research in the area of fog computing and internet of things (IoT) technology. </p

    A comparative node evaluation model for highly heterogeneous massive‐scale Internet of Things‐Mist networks

    Get PDF
    Internet of Things (IoT) is a new technology that is driving the connection of billions of devices around the world. Because these devices are often resource‐constrained and very heterogeneous, this presents unique challenges. To address some of these challenges, new paradigms of Edge and Fog are emerging to bring computational resources of the IoT networks from remote devices like cloud closer to the end‐devices. Mist computing is a new paradigm that attempts to make use of the more resource‐rich nodes that are closer than Edge nodes to end‐users. Since these nodes might have enough resources to host services, execute tasks or even run containers, the utilization of network resources might be improved, and delay reduced by utilizing these nodes. The nodes must, therefore, be assessed to determine which nodes should offer resources to other nodes based on their situation. In this article, a new comparative assessment model for ranking Mist nodes in highly heterogeneous massive‐scale IoT networks in order to discover nodes that can offer their resources is proposed. The Mist nodes are evaluated based on parameters like resources, connections, applications, and environmental parameters to heuristically compare the neighbors with a novel learning‐to‐rank method to predict a suitability score for each node. The most suitable neighbor is then selected based on the score, with load balancing accomplished by a second chance method. When evaluating the performance, the results show that the proposed method succeeds in identifying resource‐rich nodes, while considering the selection of other nodes.publishedVersio

    Resource management in the cloud: An end-to-end Approach

    Get PDF
    Philosophiae Doctor - PhDCloud Computing enables users achieve ubiquitous on-demand , and convenient access to a variety of shared computing resources, such as serves network, storage ,applications and more. As a business model, Cloud Computing has been openly welcomed by users and has become one of the research hotspots in the field of information and communication technology. This is because it provides users with on-demand customization and pay-per-use resource acquisition methods
    corecore