8,285 research outputs found

    Narrowband delay tolerant protocols for WSN applications. Characterization and selection guide

    Get PDF
    This article focuses on delay tolerant protocols for Wireless Sensor Network (WSN) applications, considering both established and new protocols. We obtained a comparison of their characteristics by implementing all of them on an original platform for network simulation, and by testing their behavior on a common test-bench. Thereafter, matching the requirements linked to each application with the performances achieved in the test-bench, allowed us to define an application oriented protocol selection guide

    On the tradeoff between privacy and energy in wireless sensor networks

    Get PDF
    Source location privacy is becoming an increasingly important property of some wireless sensor network applica- tions. The fake source technique has been proposed as an approach for handling the source location privacy problem in these situations. However, whilst the efficiency of the fake source techniques is well documented, there are several factors that limit the usefulness of current results: (i) the assumption that fake sources are known a priori, (ii) the selection of fake sources based on an prohibitively expensive pre-configuration phase and (iii) the lack of a commonly adopted attacker model. In this paper we address these limitations by investigating the efficiency of the fake source technique with respect to possible implementations, configurations and extensions that do not require a pre-configuration phase or a priori knowledge of fake sources. The results presented demonstrate that one possible implementation, in presence of a single attacker, can lead to a decrease in capture ratio of up to 60% when compared with a flooding baseline. In the presence of multiple attackers, the same implementation yields only a 30% decrease in capture ratio with respect to the same baseline. To address this problem we investigate a hybrid technique, known as phantom routing with fake sources, which achieves a corresponding 50% reduction in capture ratio

    On Mobility Management in Multi-Sink Sensor Networks for Geocasting of Queries

    Get PDF
    In order to efficiently deal with location dependent messages in multi-sink wireless sensor networks (WSNs), it is key that the network informs sinks what geographical area is covered by which sink. The sinks are then able to efficiently route messages which are only valid in particular regions of the deployment. In our previous work (see the 5th and 6th cited documents), we proposed a combined coverage area reporting and geographical routing protocol for location dependent messages, for example, queries that are injected by sinks. In this paper, we study the case where we have static sinks and mobile sensor nodes in the network. To provide up-to-date coverage areas to sinks, we focus on handling node mobility in the network. We discuss what is a better method for updating the routing structure (i.e., routing trees and coverage areas) to handle mobility efficiently: periodic global updates initiated from sinks or local updates triggered by mobile sensors. Simulation results show that local updating perform very well in terms of query delivery ratio. Local updating has a better scalability to increasing network size. It is also more energy efficient than ourpreviously proposed approach, where global updating in networks have medium mobility rate and speed

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)
    corecore