7 research outputs found

    AN APPROACH TO MACHINE DEVELOPMENT OF MUSICAL ONTOGENY

    Get PDF
    This Thesis pursues three main objectives: (i) to use computational modelling to explore how music is perceived, cognitively processed and created by human beings; (ii) to explore interactive musical systems as a method to model and achieve the transmission of musical influence in artificial worlds and between humans and machines; and (iii) to experiment with artificial and alternative developmental musical routes in order to observe the evolution of musical styles. In order to achieve these objectives, this Thesis introduces a new paradigm for the design of computer interactive musical systems called the Ontomemetical Model of Music Evolution - OMME, which includes the fields of musical ontogenesis and memetlcs. OMME-based systems are designed to artificially explore the evolution of music centred on human perceptive and cognitive faculties. The potential of the OMME is illustrated with two interactive musical systems, the Rhythmic Meme Generator (RGeme) and the Interactive Musical Environments (iMe). which have been tested in a series of laboratory experiments and live performances. The introduction to the OMME is preceded by an extensive and critical overview of the state of the art computer models that explore musical creativity and interactivity, in addition to a systematic exposition of the major issues involved in the design and implementation of these systems. This Thesis also proposes innovative solutions for (i) the representation of musical streams based on perceptive features, (ii) music segmentation, (iii) a memory-based music model, (iv) the measure of distance between musical styles, and (v) an impi*ovisation-based creative model

    A computational framework for sound segregation in music signals

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    A Flexible Real-Time Software Synthesis System

    No full text
    Aura is a new sound synthesis system designed for portability and flexibility. Aura is designed to be used with W, a real-time object system. W provides asynchronous, priority-based scheduling, supporting a mix of control, signal, and user interface processing. Important features of Aura are its design for efficient synthesis, dynamic instantiation, and synthesis reconfiguration

    A Flexible Real-Time Software Synthesis System

    No full text
    : Aura is a new sound synthesis system designed for portability and flexibility. Aura is designed to be used with W, a real-time object system. W provides asynchronous, priority-based scheduling, supporting a mix of control, signal, and user interface processing. Important features of Aura are its design for efficient synthesis, dynamic instantiation, and synthesis reconfiguration. operating system) and systems that provide high 1. Introduction performance computer graphics rendering for Software sound synthesis offers many benefits, animation in multimedia performances. [Dannenberg including the flexibility to use a variety of 93] This requires hardware support and the algorithms, integration with control software and availability of device drivers. computer interfaces, and compact, portable hardware in the form of laptop computers. At present, software Flexibility is one of the main attractions of software synthesis is limited by processor speed (and in many synthesis, so our goal ..

    1 A Flexible Real-Time Software Synthesis System

    No full text
    ABSTRACT: Aura is a new sound synthesis system designed for portability and flexibility. Aura is designed to be used with W, a real-time object system. W provides asynchronous, priority-based scheduling, supporting a mix of control, signal, and user interface processing. Important features of Aura are its design for efficient synthesis, dynamic instantiation, and synthesis reconfiguration. 1
    corecore