17,512 research outputs found

    Reasoning about Knowledge and Strategies under Hierarchical Information

    Full text link
    Two distinct semantics have been considered for knowledge in the context of strategic reasoning, depending on whether players know each other's strategy or not. The problem of distributed synthesis for epistemic temporal specifications is known to be undecidable for the latter semantics, already on systems with hierarchical information. However, for the other, uninformed semantics, the problem is decidable on such systems. In this work we generalise this result by introducing an epistemic extension of Strategy Logic with imperfect information. The semantics of knowledge operators is uninformed, and captures agents that can change observation power when they change strategies. We solve the model-checking problem on a class of "hierarchical instances", which provides a solution to a vast class of strategic problems with epistemic temporal specifications on hierarchical systems, such as distributed synthesis or rational synthesis

    Complexity and Expressivity of Branching- and Alternating-Time Temporal Logics with Finitely Many Variables

    Full text link
    We show that Branching-time temporal logics CTL and CTL*, as well as Alternating-time temporal logics ATL and ATL*, are as semantically expressive in the language with a single propositional variable as they are in the full language, i.e., with an unlimited supply of propositional variables. It follows that satisfiability for CTL, as well as for ATL, with a single variable is EXPTIME-complete, while satisfiability for CTL*, as well as for ATL*, with a single variable is 2EXPTIME-complete,--i.e., for these logics, the satisfiability for formulas with only one variable is as hard as satisfiability for arbitrary formulas.Comment: Prefinal version of the published pape

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks

    From Agent Game Protocols to Implementable Roles

    Get PDF
    kostas.stathis-at-cs.rhul.ac.uk Abstract. We present a formal framework for decomposing agent interaction protocols to the roles their participants should play. The framework allows an Authority Agent that knows a protocol to compute the protocol’s roles so that it can allocate them to interested parties. We show how the Authority Agent can use the role descriptions to identify problems with the protocol and repair it on the fly, to ensure that participants will be able to implement their role requirements without compromising the protocol’s interactions. Our representation of agent interaction protocols is a game-based one and the decomposition of a game protocol into its constituent roles is based upon the branching bisimulation equivalence reduction of the game. The work extends our previous work on using games to admit agents in an artificial society by checking their competence according to the society rules. The applicability of the overall approach is illustrated by showing how to decompose the NetBill protocol into its roles. We also show how to automatically repair the interactions of a protocol that cannot be implemented in its original form.

    Cooperative Epistemic Multi-Agent Planning for Implicit Coordination

    Get PDF
    Epistemic planning can be used for decision making in multi-agent situations with distributed knowledge and capabilities. Recently, Dynamic Epistemic Logic (DEL) has been shown to provide a very natural and expressive framework for epistemic planning. We extend the DEL-based epistemic planning framework to include perspective shifts, allowing us to define new notions of sequential and conditional planning with implicit coordination. With these, it is possible to solve planning tasks with joint goals in a decentralized manner without the agents having to negotiate about and commit to a joint policy at plan time. First we define the central planning notions and sketch the implementation of a planning system built on those notions. Afterwards we provide some case studies in order to evaluate the planner empirically and to show that the concept is useful for multi-agent systems in practice.Comment: In Proceedings M4M9 2017, arXiv:1703.0173

    Design patterns for multi-agent simulations

    Get PDF
    The advent of mobile agent technology has brought along a few difficulties in designing a stable, efficient and scalable system for a certain problem. Agent-based simulations prove to be powerful tools for economic analyses. In this paper we aim at describing a set of design patterns which were specifically built for agents and multi-agent systems. The details of each design pattern discussed are presented and the possible applications and known issues are noted. In order to aid the software designers, we provide some examples of the basic implementation of these patterns using the JADE multi-agent framework.intelligent agent, multi-agent design, multi-agent simulation.

    MCMAS-SLK: A Model Checker for the Verification of Strategy Logic Specifications

    Get PDF
    We introduce MCMAS-SLK, a BDD-based model checker for the verification of systems against specifications expressed in a novel, epistemic variant of strategy logic. We give syntax and semantics of the specification language and introduce a labelling algorithm for epistemic and strategy logic modalities. We provide details of the checker which can also be used for synthesising agents' strategies so that a specification is satisfied by the system. We evaluate the efficiency of the implementation by discussing the results obtained for the dining cryptographers protocol and a variant of the cake-cutting problem
    • …
    corecore