
Management & Marketing (2009) Vol. 4, No. 4, pp. 15-26.

DESIGN PATTERNS FOR MULTI-AGENT SIMULATIONS

Ştefan Boronea,
Florin Leon,

Mihai Horia Zaharia

Gabriela M. Atanasiu

 „Gh. Asachi” Technical University of Iaşi

Abstract. The advent of mobile agent technology has brought along a few difficulties in
designing a stable, efficient and scalable system for a certain problem. Agent-based
simulations prove to be powerful tools for economic analyses. In this paper we aim at
describing a set of design patterns which were specifically built for agents and multi-agent
systems. The details of each design pattern discussed are presented and the possible
applications and known issues are noted. In order to aid the software designers, we provide
some examples of the basic implementation of these patterns using the JADE multi-agent
framework.

Keywords: intelligent agent, multi-agent design, multi-agent simulation.

1. Introduction

Agents are a fairly new programming paradigm that introduces a societal view
of computation. An agent can decide its next step without the interference of a human
user, or can serve as an intermediary between the user and another device or agent.
According to Wooldridge (2000), an agent is a computer system that is situated in its
environment and is capable of autonomous action in order to meet its design
objectives. Intelligent agents retain the properties of autonomous agents, and in
addition show a so-called “flexible” behavior (Wooldridge & Jennings, 1995):

 reactivity: the ability to perceive their environment, and respond in a
timely manner to changes that occur in it;

 pro-activeness: the ability to exhibit goal-directed behavior by taking the
initiative;

 social ability to interact with other agents and possibly humans.
Probably the most important difference between traditional object-oriented

programming and agent-based programming is the freedom of an agent to respond to a
request. When an object receives a message, i.e. one of its methods is called, the
control flow automatically moves to that method. When an agent receives a message,
it can decide whether it takes a corresponding course of action or not.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6312387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Management & Marketing

16

2. Agent-based economic simulations

Recently, multi-agent systems have begun to play an important role in the

development and analysis of theories in economic and social sciences. Agent-based
simulations are much closer to natural processes, and therefore they often ensure better
results than those provided by classical methods, such as systems of differential
equations. Agent-based modeling is fit to the analysis of complex dynamic processes
because it allows a rich representation of the characteristics and actions of the agents,
which could not be supported by the formalism of other computational algorithms.

The most studied systems of this kind belong to the economic, social and
ecological fields, where finding a mathematical model of evolution is very difficult.
However, the representation of system components by autonomous agents is more
natural, and the study of the group behavior can indicate important general properties.

In any modeling, the proper ratio between fidelity and abstractization must be
determined. Fidelity assumes the integration into the system of a number of realistic
details, and abstractization helps to generalize the experimental results from a system
to other systems as well.

Agent-based simulation is applicable to different economic activities.
Economic agents are suitable to the analytical study of electronic commerce because
they make possible the modeling of the complex interconnections that characterize
electronic markets. The most important structures in this field are the constraints
related to the technological standards, the legislation of electronic commerce and the
existing trading relations. The Internet markets differ from traditional markets.
Together with the development of the technology for electronic commerce, new
transaction models will appear that can lead to the decrease of costs by the
intermediation of the selling-buying process by the agents.

The main contribution of artificial intelligence in this field is related to a
fundamental theoretic problem – the link between micro and macro levels, concerning
the possibility that unconscious, unplanned forms of cooperation and organization
may appear, i.e. the emergence of spontaneous order (Leon, 2006).

The fundamental differences between agents and traditional objects, added to
the fact that agents can “physically” move within a local network or even the Internet,
have led to a new set of challenges in designing agents and multi-agent systems.
However, it seems like some experience has already been accumulated in the
development of multi-agent systems, and can now be formalized into patterns.

3. Multi-agent design patterns

Patterns were first introduced by Alexander (1979) in the context of civil

engineering, and have been adopted by the object-oriented software design community
since the „Gang of Four” book (Gamma, Helm et al., 1995). Agent-based systems
have become increasingly complex, posing new challenges when designing the

 Design patterns for multi-agent stimulations

17

architecture of an application. Agents are best characterized by their mobility and
ability to solve certain tasks by communicating and working together with other
specialized agents on smaller tasks. It is thus important that in order for an agent
system to become proficient, it should provide a large number of small agents that can
easily go about a network and maintain the inter-agent communications to a minimum.

The new problems that emerge and the existing problems in agent-based
systems will require more patterns to be discovered. In accordance to Schelfthout et al.
(2002), the development of agent software has been until now based primarily on a
more theoretical approach, with little or no implementation of the concepts presented.
Our paper is mostly directed towards the implementation of the existing patterns and
finding solutions to possible problems rather than finding new design patterns on a
higher abstraction level.

For our study, we have chosen some of the most important design patterns
used for mobile agents today. We have followed the pattern categories proposed by
Aridor and Lange (1998). The method of dividing the design patterns into these
categories leads to a better understanding of what it should do and how it reacts with
the environment in which it resides. It also allows the users to plan the agent
application as a component-based system, having the components interact to build the
application logic.

Traveling patterns are used to recreate a more natural agent movement
according to rules specific to each pattern and application. At a high abstraction level,
these patterns help to plan ahead routes through the nodes of a system that an agent
must follow in order to achieve its goals.

Task patterns are used to split down larger tasks into smaller ones and to
distribute them to the appropriate agents in order to provide a continuous system
workflow. In a multi-agent environment, a given task can be accomplished either by
a single agent or by multiple agents working in parallel and cooperating to
accomplish it.

As the system grows in complexity, the need for interaction patterns becomes
increasingly obvious in order to achieve a good communication between the agents.
These patterns describe ways in which agents can interact to solve the given tasks.

4. Traveling patterns

4.1. Itinerary

The itinerary design pattern is a very simple and useful pattern that is trying to

make use of an important property of an agent: mobility. An agent usually travels
through a network on a specific path in order to solve the task it was built for. Thus, a
mechanism to describe and validate this movement is needed. Itinerary ensures that an
agent travels according to a predefined (and possibly dynamic) path and that this path

Management & Marketing

18

is a safe one, verifying at every step the existence of its next location. How this
happens is described in figure 1.

Figure 1. Movement of the ItineraryAgent in a network

From a design point of view, its structure consists of a small number of

components: the ItineraryAgent and Itinerary classes, the ItineraryAgentJobBehaviour,
the GetNextNodeBehaviour and the ItineraryBehaviour behaviors. The Itinerary class
consists of a list of destinations in the previously specified manner. On initialization,
an agent receives an instance of this class and immediately launches the
ItineraryAgentJobBehaviour to do the work it was called for in the current node.
When this job is done, the next node present in the itinerary is verified. If it exists, the
ItineraryBehaviour is called and the agent migrates to the newly found location.
Otherwise, the node is removed from the itinerary and the next node is verified until
there are no more nodes available for the itinerary. This process is described for a
node in figure 2.

A version of this pattern is when the visited nodes are added in the itinerary,
determining a cyclic itinerary. Another variation also routes the agent in a distributed
environment according to a routing scheme, having to choose the next node from
various (and possibly structurally identical) nodes depending on their properties at
migration, thus allowing a load balancing between these nodes or any other
application logic of such type.

 Design patterns for multi-agent stimulations

19

The uses of this pattern can be multiple, starting with monitoring and logging
agents that repeatedly gather information from all (or some) nodes in the application
structure, maintenance agents, or simply all agents that are following a route.

Figure 2. Itinerary pattern sequence diagram

We can easily discover a useful collaboration between the Itinerary design

pattern and the Ticket pattern presented below. This would allow an agent to store
security credentials necessary for it when accessing secure nodes in the network.

4.2. Star-Shaped

The Star-Shaped pattern can be considered a particular case of the Itinerary

pattern, where after visiting each node in the given path, the agent returns to the
initial node. In figure 3, one can see how the StarShapedAgent travels back and forth
from the central node (consisting of Computer #1) to the other computers in the
specified path.

This pattern can be particularly useful for agents that have to gather
information from a large number of nodes, information that is very likely to be of a
substantial size. Using Itinerary in this case would become very inefficient as the
agent passes through more and more nodes, collecting information that would make

Management & Marketing

20

the migration difficult because of serialization, deserialization and network transfer
times. This comes into conflict with the requirement for an agent to be small in size,
therefore to be able to travel very fast. The previously mentioned collaboration from
the Itinerary pattern is also useful here in the context of security-enabled networks.

Figure 3. Movement of the StarShapedAgent in a network

4.3. Branching

For the Branching design pattern, the path defined for the Star-Shaped pattern

is followed using a different method: at creation, a BranchingAgent clones itself in the
central node and then transmits the clones at each location in the specified itinerary.
By doing this, we basically have the same functionality described in the previous
version, but at the same time we are allowed to execute each job at the remote
locations at the same time, without having to wait for the same instance to return to
the starting point and then be sent to the following node.

The implementation of this pattern is described in figure 4. Here we can
observe that the agent cloning is done in the central node (Computer #1). Afterwards,
all the clones are sent to resolve their tasks in a remote location at the same time. All
agents return to the central node with the results following their execution. The
synchronization of these agents depends on each application and should be taken into

 Design patterns for multi-agent stimulations

21

account when we specifically require that some jobs be fired at a later time or only
after running these tasks on just a part of the initial node list (when task order matters).

Figure 4. BranchingAgent self-cloning mechanism

This pattern can be successfully applied in applications consisting of tasks that

have to run on a series of nodes. The tasks have to be independent from each other and
therefore they can be parallelized in order to obtain an increase in speed and a lower
network traffic.

4.4. Forwarding

This simple pattern offers only one functionality to a node, that of forwarding

all the incoming agents to another location (or to a series of nodes, depending on the
initial call properties). Therefore, that node becomes a router for the agents and their
calls. This can be useful when assigning the task of external communication from a
local agent network to only one agent, who has the necessary credentials to do so. The
agent can act as a dispatcher for the external calls, deciding the priority and which
agents have the right to communicate with the zone with a higher security clearance.

 From all the other traveling patterns, this one is the most entitled to use the
Ticket pattern to allow messages to be sent to the upper level. It can also be used with
the Star-Shaped and Branching patterns to allow a custom forwarding of the agents.

Management & Marketing

22

4.5. Ticket

As mentioned by Aridor and Lange (1998), the Ticket is used to objectify the

address of a destination node and to encapsulate the quality of service (QoS) and
permissions needed to dispatch an agent to a host address and to execute it there.

The actual implementation for this pattern can be very different according to
the security needs and platforms for both the agents and the environment in which
they reside. In order to still remain platform independent, these credentials should be
accessible to all possible platforms or use Forwarding agents that act as authorities
and have been delegated control of a local node group.

5. Task Patterns

5.1. Master-Slave

This first task pattern presented helps an agent create other agents for certain

tasks that it may have, delegating parts of the work. This can greatly speed up the
execution and facilitates parallel execution of tasks. Aridor and Lange (1998) have
included an aglet implementation of this pattern in their work. The Master Agent is
usually a static agent that controls how the tasks are split, issued and resolved in the
remote nodes. The Slave Agents are agents with simple tasks that usually require a
short amount of processing and which after finishing their work at the remote location
turn back at the Master Agent and report back, changing the acquired information and
subtask result.

This pattern is similar in structure to Branching, but the differences are
obvious. The Master Agent does not clone itself to execute the same task in all the
nodes, but instead tasks are distributed to slave agents in the system and executed in
parallel, requiring that a logic for merging the results be implemented within the
Master.

5.2. Plan

This pattern is intended to resolve complex tasks by implementing specific

agent-controlled workflows. The uses of workflows in multi-agent systems are
numerous and the domains in which they can be applied vary from the improvement
of team cooperation and agent-based cognitive flow management (Zhuge, 2003) to
collaborative system-on-chip (SoC) design (Trappey, Trappey et al., 2009). Here, the
actual subtasks for the goal are distributed to a large number of agents, an approach
similar to the Master-Slave pattern, but the assignment is usually dynamic and the
system must include structures that synchronize the gathering of subtask results and
oversee the issuing of subtasks.

 Design patterns for multi-agent stimulations

23

Figure 5 displays a simple structure for the workflow consistency. First a
WorkflowStateManager agent has to be created and initialized with the required
phases for the problem to solve. The available tasks for the first phase are sent to a
TaskDispatcherAgent whose sole purpose is to distribute the available tasks received
corresponding to their priorities, order, potential for parallel execution for the subtasks
and the current state of the workflow. These subtasks are dynamically solved by
TaskSolverAgents. If the performance requirements demand it, a collection of
previously initialized solver agents for each subtask can be specified to the
TaskDispatcherAgent, so that subtasks can be passed without creating them each time.
After finishing a subtask, the TaskSolverAgent sends the results of its execution back
to a ResultsManager agent that receives, merges and processes all results from the
solver agents. In order to maintain workflow integrity, it may decide when the
workflow should pass to the next phase and what course of action the
TaskDispatcherAgent should take corresponding to the events in the system (e.g a task
could not be resolved). Then, a new set of tasks can be transmitted to the dispatcher
and the cycle repeated until the results found in the ResultsManager can determine that
the problem has been solved.

Figure 5. The components of the Plan pattern and the interactions

required for maintaining workflow consistency

Management & Marketing

24

6. Interaction Patterns

6.1. Meeting

Agents can usually communicate without taking note of their location and the

location of a partner via a network communication protocol. The main problem occurs
when security restrictions or business logic requires that the agents communicate
within the same location. The Meeting pattern does this by first exchanging the
locations of the agents involved, after which they can set a safe location where to meet
(Lima, Machado et al., 2004).

6.2. Messenger

This pattern creates an agent that will be used as a messenger between two

agents, passing a message directly to the location of the receiver. This can be useful
when there is a need for communication between a stationary agent and another agent,
and the conditions previously specified for the Meeting pattern apply, or when the
number of messages sent would make a single-messenger approach inefficient.

6.3. Facilitator

The Facilitator acts as a discovery service, ensuring that other agents can

inquire about the location of a specific service or agent that can solve a given task.
This feature is present in the JADE multi-agent framework through the Directory
Facilitator (DF) agent. This agent acts like a yellow pages service in which possible
service provider agents can publish their services and where user agents search for a
specific type of service (Bellifemine, Caire & Greenwood, 2007).

6.4. Organized Group

This pattern allows the creation of groups of agents that work together and are

characterized by the ability to migrate together. This can be particularly useful when
creating a system of agents that work together to solve a complex task and the
performance and bandwidth costs of communicating over a network would be very
high. Thus, a local communication approach is needed and the Organized Group
solves this problem.

 Design patterns for multi-agent stimulations

25

7. Conclusions

In this paper we presented a series of design patterns and their respective

implementation in the JADE multi-agent framework. Because of the flexibility and
independence from a specific platform, these patterns can be easily implemented on
any other mobile agent platform. We have also discussed the difficulties that could
emerge when applying these patterns and how we can overcome them. We have also
mentioned how some of the patterns can work together and form a more complex
structure with more tasks to resolve. We can thus conclude that the design patterns
presented here can greatly ease the work of software designers and improve the
performance of the system as a whole by lowering the communication costs between
agents by providing direct, efficient solutions to some specific problems.

Acknowledgements

This work was supported in part by CNCSIS grant code 316/2008, Library of

Behavioural Patterns for Intelligent Agents Used in Engineering and Management.

References

Alexander, C. (1979), The Timeless Way of Building. Oxford University Press, New York:
University Press

Aridor, Y., Lange, D. B. (1998), Agent design patterns: elements of agent application design, in
AGENTS ’98: Proceedings of the second international conference on autonomous agents,
New York, NY, USA, ACM, pp. 108-115

Bellifemine, F. L., Caire, G., Greenwood, D. (2007), Developing multi-agent systems with
JADE, Wiley Series in Agent Technology, Wiley

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995), Design patterns: elements of reusable
object-oriented software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc, USA

Leon, F. (2006), Intelligent agents with cognitive capabilities, Tehnopress, Iaşi, România
Lima, E.F.A., Machado, P.D.L., Sampaio, F.R., Figueiredo, J. C. A. (2004), An approach to

modelling and applying mobile agent design patterns, SIGSOFT Softw. Eng. Notes 29(3),
pp. 1-8

Schelfthout, K., Coninx, T., Helleboogh, A., Holvoet, T., Steegmans, E., Weyns, D., Distrinet,
A., Agent implementation patterns, in Proc. Workshop on Agent-Oriented Methodologies,
17th Annual ACM Conference on Object-Oriented Programming, Systems, Languages and
Applications, OOPSLA02, 2002, pp. 119-130

Trappey, C.V., Trappey, A.J.C., Huang, C.J., Ku, C.C., The design of a jade-based autonomous
workflow management system for collaborative soc design. Expert System Applications
36(2), 2009, pp. 2659-2669

Management & Marketing

26

Wooldridge, M. (2000), Intelligent agents, in G. Weiss (ed.), Multi-agent systems – A modern
approach to distributed artificial intelligence. The MIT Press, Cambridge, Massachusetts

Wooldridge, M., Jennings, N.R. (1995), Intelligent agents: Theory and practice. The
Knowledge Engineering Review, Vol. 10(2), pp. 115-152

Zhuge, H. (2003), Workflow-and agent-based cognitive flow management for distributed team
cooperation. Information Management 40(5), pp. 419-429

