2,578 research outputs found

    Modulography: elasticy imaging of artherosclerotic plaques

    Get PDF

    Modulography: elasticy imaging of artherosclerotic plaques

    Get PDF

    Application of NASTRAN for stress analysis of left ventricle of the heart

    Get PDF
    Knowing the stress and strain distributions in the left ventricular wall of the heart is a prerequisite for the determination of the muscle elasticity and contractility in the process of assessing the functional status of the heart. NASTRAN was applied for the calculation of these stresses and strains and to help in verifying the results obtained by the computer program FEAMPS which was specifically designed for the plane-strain finite-element analysis of the left ventricular cross sections. Adopted for the analysis are the true shape and dimensions of the cross sections reconstructed from multiplanar X-ray views of a left ventricle which was surgically isolated from a dog's heart but metabolically supported to sustain its beating. A preprocessor was prepared to accommodate both FEAMPS and NASTRAN, and it has also facilitated the application of both the triangular element and isoparameteric quadrilateral element versions of NASTRAN. The stresses in several crucial regions of the left ventricular wall calculated by these two independently developed computer programs are found to be in good agreement. Such confirmation of the results is essential in the development of a method which assesses the heart performance

    Mechanical analysis of a hydroxyl-apatite coated knee prosthesis

    Get PDF

    Finite element model creation and stability considerations of complex biological articulation : the human wrist joint

    Get PDF
    The finite element method has been used with considerable success to simulate the behaviour of various joints such as the hip, knee and shoulder. It has had less impact on more complicated joints such as the wrist and the ankle. Previously published finite element studies on these multi bone joints have needed to introduce un-physiological boundary conditions in order to establish numerical convergence of the model simulation. That is necessary since the stabilising soft tissue mechanism of these joints is usually too elaborate in order to be fully included both anatomically and with regards to material properties. This paper looks at the methodology of creating a finite element model of such a joint focussing on the wrist and the effects additional constraining has on the solution of the model. The study shows that by investigating the effects each of the constraints, a better understanding on the nature of the stabilizing mechanisms of these joints can be achieved

    3D stochastic bicontinuous microstructures: Generation, topology and elasticity

    Get PDF
    Motivated by recent experimental investigations of the mechanical behavior of nanoporous metal we explore an efficient and robust method for generating 3D representative volume elements (RVEs) with strikingly similar behavior. Our approach adopts Cahn's method of generating a Gaussian random field by taking a superposition of standing sinusoidal waves of fixed wavelength but random in direction and phase. In its theory part, our study describes closed-form expressions for how the solid volume fraction affects the binarization level, mean structure size, specific surface area, averages of mean and Gaussian curvature, and the scaled topological genus. Based on numerical studies we report on criteria for achieving representative realizations of the structure by proper choice of the number of waves and element size. We also show that periodic structures are readily created. We analyze the mechanical properties considering linear and infinitesimal elasticity and evaluate the residual anisotropy (which can be made small) and the effective values of the Young's modulus and Poisson's ratio. The numerical results are in excellent agreement with experimental findings for the variation of stiffness with solid fraction of nanoporous gold made by dealloying. We propose scaling relations that achieve naturally a perfect agreement with the numerical and experimental data. The scaling relation for the stiffness accounts for a percolation-to-cluster transition in the random field microstructure at a finite solid fraction. We propose that this transition is the origin of the previously reported anomalous compliance of nanoporous gold

    Computational foot modeling for clinical assessment

    Get PDF
    Esta Tesis desarrolla un modelo de elementos finitos del pie humano completo y detallado en tres dimensiones para avanzar hacia una simulación computacional más precisa que proporcione información realista y relevante para la práctica clínica. Desde el punto de vista ingenieril, el pie humano es una compleja estructura de pequeños huesos, soportados por fuertes ligamentos y controlada por una red de músculos y tendones con una capacidad de respuesta mecánica excepcional. La barrera actual en la simulación computacional del pie es la inclusión de estas estructuras musculotendinosas en los modelos. Para avanzar en esta dirección, se crea un modelo de elementos finitos del pie completo y detallado con geometría real de la estructura interna diferenciando hueso cortical y esponjoso, tendón, músculo, cartílago y grasa. Se realizan ensayos experimentales de los tendones del pie y la suela plantar para determinar sus propiedades materiales y estructurales y caracterizar computacionalmente su comportamiento mecánico no lineal. Estos avances están orientados hacia la mejora de la representación geométrica y caracterización del tejido de los componentes internos del pie. El modelo desarrollado en esta Tesis puede usarse en el campo de la biomecánica en áreas de ortopedia, lesiones, tratamiento, cirugía y deporte. La investigación está estructurada por capítulos en los cuales se desarrollan pequeños avances hacia el objetivo principal de la Tesis al mismo tiempo que se aplica el potencial de estos avances a casos particulares. Estas contribuciones parciales en el área de los ensayos experimentales son: la determinación de un completo conjunto de datos de las propiedades mecánicas de los tendones del pie, la definición de un criterio para cuantificar las regiones de la curva de tensión-deformación del tendón y el análisis de la respuesta a compresión de la suela plantar en función de la posición. Y, en el área de la biomecánica clínica las contribuciones son: la investigación de un parámetro del esqueleto como factor etiológico del hallux valgus, el estudio de sensibilidad de la fuerza de los cinco mayores tendones estabilizadores, el análisis cuasi-estático de la fase de apoyo de la marcha y el estudio del mecanismo de absorción de la fuerza de impacto del pie durante la carrera descalzo a diferentes ángulos de impacto.In this Thesis, a complete detailed three-dimensional finite element model of the human foot is described to advance towards a more refined computational simulation which provides realistic and meaningful information for clinical practice. From an engineering perspective, the human foot is a complex structure of small bones supported by strong ligaments and controlled by a network of tendons and muscles that achieves a superb mechanical responsiveness. The current barrier in foot computational simulation is the inclusion of these musculotendinous structures in the models. To advance in this direction, a complete detailed three-dimensional foot finite element model with actual geometry of the inner structure is created differentiating cortical and trabecular bone, tendon, muscle, cartilage and fat tissues. Experimental tests of foot tendons and plantar soles are performed to determine their structural and material properties and to characterize computationally their non-linear mechanical behavior. Those advances are oriented to refine the geometry and the tissue characterization of the internal foot components. The model developed in this Thesis can be used in the field of biomechanics, in the areas of orthopedics, injury, treatment, surgery and sports biomechanics. The research is structured by chapters where small steps towards the main objective are developed and the potential of these advances are applied to particular cases. These partial contributions in the area of the experimental testing are: the determination of a complete dataset of the mechanical properties of the balance foot tendons, the definition of a criteria to quantify the regions of the tendon stress-strain curve and the analysis of the compressive response of plantar soft tissue as function of the location. And, in the area of clinical biomechanics the contributions are: the investigation of a skeletal parameter as etiology factor of the hallux valgus, the tendon force sensitivity study of the five major stabilizer tendons, the quasi-static analysis of the midstance phase of walking and the study of the impact absorption mechanism of the foot during barefoot running at different strike patterns

    Influence of Microstructure on Mechanical Properties of Snow

    Get PDF
    Snow, being composed of ice grains of varying shapes, sizes, orientations, etc., has been treated as a particulate material. The mechanical properties of snow have been described in terms of microstructural parameters. A set of variables, which characterise the microstructure of snow at the granular level, has been chosen and quantified following the techniques of quantitative stereology for section plane. The data of quasi-static tests, e.g. constant strain-rate creep tests, have been analysed to determine the Young's modulus and compactive viscosity and the same have been correlated with the microstructural parameters. Inspite of scatter, definite trends are discernible. Considering the fact that deformation of snow is associated with translation and rotation of constituent grains in such a way as to attain the most stable configuration, the concept of fabric reconstruction, which is characterised by the concentration of normals (to the tangent plane at the point of grain contact) in the direction of the applied load, has been examined. The results demonstrated the occurrence of fabric reconstruction during the process of deformation. Finally, a dimensionless quantity, called the microstructural index (I), has been proposed to adequately represent the influence of microstructure

    Interactions between remodeling. architecture and tissue properties in cancellous bone

    Get PDF
    • …
    corecore