2,558 research outputs found

    Effect of the Presence of a Heat Conducting Horizontal Square Block on Mixed Convection inside a Vented Square Cavity

    Get PDF
    Finite element method is used to solve two-dimensional governing mass, momentum and energy equations for steady state, mixed convection problem inside a vented square cavity. The cavity consists of adiabatic left, top and bottom walls and heated right vertical wall; but it also contains a heat conducting horizontal square block located somewhere inside the cavity. Forced flow conditions are imposed by providing an inlet at the bottom of the left wall and an exit at the top of the right wall, through which the working fluid escape out of the cavity. The aim of the study is to describe the effect of such block on the flow and thermal fields. The investigations are conducted for various values of geometric size, location and thermal conductivity of the block under constant Reynolds and Prandtl numbers. Various results such as the streamlines, isotherms, heat transfer rates in terms of the average Nusselt number, average fluid temperature in the cavity and the temperature at the center of solid block are presented for different parameters. It is observed that the block size and location have significant effect on both the flow and thermal fields but the solid-fluid thermal conductivity ratio has insignificant effect on the flow field. The results also indicate that the average Nusselt number at the heated surface, the average temperature of the fluid inside the cavity and the temperature at the center of solid block are strongly dependent on the configurations of the system studied under different geometrical and physical conditions

    Analysis of entropy generation in natural convection of nanofluid inside a square cavity having hot solid block: Tiwari and Das' model

    Get PDF
    A computational work has been performed in this study to investigate the effects of solid isothermal partition insertion in a nanofluid filled cavity that is cooled via corner isothermal cooler. Mathematical model formulated in dimensionless primitive variables has been solved by finite volume method. The study is performed for different geometrical ratio of solid inserted block and corner isothermal cooler, Rayleigh number and solid volume fraction parameter of nanoparticles. It is observed that an insertion of nanoparticles leads to enhancement of heat transfer and attenuation of convective flow inside the cavity

    Finite Element Analysis of Mixed Convection in a Rectangular Cavity with a Heat-Conducting Horizontal Circular Cylinder

    Get PDF
    . Combined free and forced convection in a two dimensional rectangular cavity with a uniform heat source applied on the right vertical wall is studied numerically. A circular heat conducting horizontal cylinder is placed somewhere within the cavity. The present study simulates a practical system, such as a conductive material in an inert atmosphere inside a furnace with a constant flow of gas from outside. Importance is placed on the influences of the configurations and physical properties of the cavity. The development mathematical model is governed by the coupled equations of continuity, momentum and energy and is solved by employing Galerkin weighted residual finite element method. In this paper, a finite element formulation for steadystate incompressible conjugate mixed convection and conduction flow is developed. The computations are carried out for wide ranges of the governing parameters, Reynolds number (Re), Richardson number (Ri), Prandtl number (Pr) and some physical parameters. The results indicate that both the heat transfer rate from the heated wall and the dimensionless temperature in the cavity strongly depend on the governing parameters and configurations of the system studied, such as size, location, thermal conductivity of the cylinder and the location of the inflow and outflow opening. Detailed results of the interaction between forced airstreams and the buoyancy-driven flow by the heat source are demonstrated by the distributions of streamlines, isotherms and heat transfer coefficient

    Mixed convection–radiation in lid‑driven cavities with nanofluids and time‑dependent heat‑generating body

    Get PDF
    The cooling process of electronic devices having heat-generating elements is a major challenge allowing to develop electronics industry. Therefore, a creation of novel cooling techniques is an important task that can be solved numerically taking into account the multiparametric character of this problem. The mixed convection heat transfer combined with thermal radiation in a lid-driven cavity filled with an alumina–water nanofluid under the effect of sinusoidal time-dependent heat-generating solid element is studied numerically. The partial differential equations formulated in stream function–vorticity variables are solved by the finite difference method. Effects of the Rayleigh number, Reynolds number, thermal radiation parameter, heater location, volumetric heat flux oscillation frequency and nanoparticles volume fraction on liquid flow and heat transfer are analyzed. It has been found that an addition of nanoparticles leads to reduction of the heater temperature, while convective flow rate decreases also

    Simulation of natural convection heat transfer in a 2-D trapezoidal enclosure

    Get PDF
    Natural convection within trapezoidal enclosures finds significant practical applications. The natural convection flows play a prominent role in the transport of energy in energy-related applications, in case of proper design enclosures to achieve higher heat transfer rates. In the present study, a two-dimensional cavity with adiabatic right side wall is studied. The left side vertical wall is maintained at the constant hot temperature and the top slat wall is maintained at cold temperature. The dimensionless governing partial differential equations for vorticity-stream function are solved using the finite difference method with incremental time steps. The parametric study involves a wide range of Rayleigh number, Ra, 10(3)<ra<10(5) and Prandtl number (Pr=0.025, 0.71 and 10). The fluid flow within the enclosure is formed with different shapes for different Pr values. The flow rate is increased by enhancing the Rayleigh number (Ra=10(4)). The numerical results are validated with previous results. The governing parameters in the present article, namely Rayleigh number and Prandtl number on flow patterns, isotherms as well as local Nusselt number are reported

    Conjugate natural convection heat transfer in a cavity with finite wall thickness

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2009Includes bibliographical references (leaves: 92-96)Text in English; Abstract: Turkish and Englishxvi, 96 leavesThe effects of a heat barrier, located in the thick ceiling wall of a square enclosure, on conjugate conduction and natural convection heat transfer are investigated numerically. The analysis is performed by numerical solution of the continuity, unsteady momentum conservation and energy equations with finite difference solution method based on the streamfunction-vorticity formulation. The vertical walls of the enclosure are differentially heated and horizontal walls are adiabatic. A thin heat barrier, having infinite thermal resistance, is located in the ceiling wall at different locations. The calculations are made for different Rayleigh numbers (103 Ra 106), thermal conductivity ratios (1 K 100), dimensionless locations of heat barrier (0<Xh<1) and two dimensionless ceiling wall thicknesses (D . 0.05 and D . 0.20). By using the results of the computer program, streamlines and isotherms are plotted. Heatline visualization technique is used to simulate heat transport and the effect of heat barrier is presented by comparing and plotting heatlines for the cavity and for the solid region with and without heat barrier. The study is performed for air with Prandtl number 0.71. It is found that the effect of heat barrier is more significant in the cavity with high thermal conductivity ratio but low Rayleigh number. There are certain reductions in the average Nusselt number at the vertical walls of the cavity and dimensionless heat transfer rate of the solid region walls for high conductivity ratios, but the reduction in dimensionless heat transfer rate is greater

    Natural convection in a square cavity with uniformly heated and/or insulated walls using marker-and-cell method

    Get PDF
    In this study, a numerical investigation has been performed using the computational Harlow-Welch MAC (Marker and Cell) finite difference method to analyse the unsteady state two-dimensional natural convection in lid-driven square cavity with left wall maintained at constant heat flux and remaining walls kept thermally insulated. The significant parameters in the present study are Reynolds number (Re), thermal Grashof number (Gr) and Prandtl number (Pr) and Peclét number (Pe =PrRe). The structure of thermal convection patterns is analysed via streamline, vorticity, pressure and temperature contour plots. The influence of the thermophysical parameters on these distributions is described in detail. Validation of solutions with earlier studies is included. Mesh independence is also conducted. It is observed that an increase in Prandtl number intensifies the primary circulation whereas it reduces the heat transfer rate. Increasing thermal Grashof number also decreases heat transfer rates. Furthermore the isotherms are significantly compressed towards the left (constant flux) wall with a variation in Grashof number while Peclét number is fixed. The study is relevant to solar collector heat transfer simulations and also crystal growth technologies

    Computational study of heat transfer in solar collectors with different radiative flux models

    Get PDF
    2D steady incompressible laminar Newtonian viscous convection-radiative heat transfer in a rectangular solar collector geometry is considered. The ANSYS FLUENT finite volume code (version 17.2) is employed to simulate the thermo-fluid characteristics. Extensive details of computational methodology are given to provide engineers with a framework for simulating radiative-convection in enclosures. Mesh-independence tests and validation are conducted. The influence of aspect ratio, Prandtl number (Pr), Rayleigh number (Ra) and radiative flux model on temperature, isotherms, velocity, pressure is evaluated and visualized in colour plots. Additionally, local convective heat flux is computed, and solutions are compared with the MAC solver for various buoyancy effects achieving excellent agreement. The P1 model is shown to better predict the actual influence of solar radiative flux on thermal fluid behaviour compared with the limited Rosseland model. With increasing Ra, the hot zone emanating from the base of the collector is found to penetrate deeper into the collector and rises symmetrically dividing into two vortex regions with very high buoyancy effect. With increasing Pr there is a progressive incursion of the hot zone at the solar collector base higher into the solar collector space and simultaneously a greater asymmetric behaviour of the dual isothermal zones
    corecore