2,957 research outputs found

    Obligations of trust for privacy and confidentiality in distributed transactions

    Get PDF
    Purpose – This paper aims to describe a bilateral symmetric approach to authorization, privacy protection and obligation enforcement in distributed transactions. The authors introduce the concept of the obligation of trust (OoT) protocol as a privacy assurance and authorization mechanism that is built upon the XACML standard. The OoT allows two communicating parties to dynamically exchange their privacy and authorization requirements and capabilities, which the authors term a notification of obligation (NoB), as well as their commitments to fulfilling each other's requirements, which the authors term signed acceptance of obligations (SAO). The authors seek to describe some applicability of these concepts and to show how they can be integrated into distributed authorization systems for stricter privacy and confidentiality control. Design/methodology/approach – Existing access control and privacy protection systems are typically unilateral and provider-centric, in that the enterprise service provider assigns the access rights, makes the access control decisions, and determines the privacy policy. There is no negotiation between the client and the service provider about which access control or privacy policy to use. The authors adopt a symmetric, more user-centric approach to privacy protection and authorization, which treats the client and service provider as peers, in which both can stipulate their requirements and capabilities, and hence negotiate terms which are equally acceptable to both parties. Findings – The authors demonstrate how the obligation of trust protocol can be used in a number of different scenarios to improve upon the mechanisms that are currently available today. Practical implications – This approach will serve to increase trust in distributed transactions since each communicating party receives a difficult to repudiate digitally signed acceptance of obligations, in a standard language (XACML), which can be automatically enforced by their respective computing machinery. Originality/value – The paper adds to current research in trust negotiation, privacy protection and authorization by combining all three together into one set of standardized protocols. Furthermore, by providing hard to repudiate signed acceptance of obligations messages, this strengthens the legal case of the injured party should a dispute arise

    Identity in research infrastructure and scientific communication: Report from the 1st IRISC workshop, Helsinki Sep 12-13, 2011

    Get PDF
    Motivation for the IRISC workshop came from the observation that identity and digital identification are increasingly important factors in modern scientific research, especially with the now near-ubiquitous use of the Internet as a global medium for dissemination and debate of scientific knowledge and data, and as a platform for scientific collaborations and large-scale e-science activities.

The 1 1/2 day IRISC2011 workshop sought to explore a series of interrelated topics under two main themes: i) unambiguously identifying authors/creators & attributing their scholarly works, and ii) individual identification and access management in the context of identity federations. Specific aims of the workshop included:

• Raising overall awareness of key technical and non-technical challenges, opportunities and developments.
• Facilitating a dialogue, cross-pollination of ideas, collaboration and coordination between diverse – and largely unconnected – communities.
• Identifying & discussing existing/emerging technologies, best practices and requirements for researcher identification.

This report provides background information on key identification-related concepts & projects, describes workshop proceedings and summarizes key workshop findings

    Federated Identity and Access Management for the Internet of Things

    Get PDF

    Secure, reliable and dynamic access to distributed clinical data

    Get PDF
    An abundance of statistical and scientific data exists in the area of clinical and epidemiological studies. Much of this data is distributed across regional, national and international boundaries with different policies on access and usage, and a multitude of different schemata for the data often complicated by the variety of supporting clinical coding schemes. This prevents the wide scale collation and analysis of such data as is often needed to infer clinical outcomes and to determine the often moderate effect of drugs. Through grid technologies it is possible to overcome the barriers introduced by distribution of heterogeneous data and services. However reliability, dynamicity and fine-grained security are essential in this domain, and are not typically offered by current grids. The MRC funded VOTES project (Virtual Organisations for Trials and Epidemiological Studies) has implemented a prototype infrastructure specifically designed to meet these challenges. This paper describes this on-going implementation effort and the lessons learned in building grid frameworks for and within a clinical environment

    SciTokens: Capability-Based Secure Access to Remote Scientific Data

    Full text link
    The management of security credentials (e.g., passwords, secret keys) for computational science workflows is a burden for scientists and information security officers. Problems with credentials (e.g., expiration, privilege mismatch) cause workflows to fail to fetch needed input data or store valuable scientific results, distracting scientists from their research by requiring them to diagnose the problems, re-run their computations, and wait longer for their results. In this paper, we introduce SciTokens, open source software to help scientists manage their security credentials more reliably and securely. We describe the SciTokens system architecture, design, and implementation addressing use cases from the Laser Interferometer Gravitational-Wave Observatory (LIGO) Scientific Collaboration and the Large Synoptic Survey Telescope (LSST) projects. We also present our integration with widely-used software that supports distributed scientific computing, including HTCondor, CVMFS, and XrootD. SciTokens uses IETF-standard OAuth tokens for capability-based secure access to remote scientific data. The access tokens convey the specific authorizations needed by the workflows, rather than general-purpose authentication impersonation credentials, to address the risks of scientific workflows running on distributed infrastructure including NSF resources (e.g., LIGO Data Grid, Open Science Grid, XSEDE) and public clouds (e.g., Amazon Web Services, Google Cloud, Microsoft Azure). By improving the interoperability and security of scientific workflows, SciTokens 1) enables use of distributed computing for scientific domains that require greater data protection and 2) enables use of more widely distributed computing resources by reducing the risk of credential abuse on remote systems.Comment: 8 pages, 6 figures, PEARC '18: Practice and Experience in Advanced Research Computing, July 22--26, 2018, Pittsburgh, PA, US

    The Development of a graduate course on identity management for the Department of Networking, Security, and Systems Administration

    Get PDF
    Digital identities are being utilized more than ever as a means to authenticate computer users in order to control access to systems, web services, and networks. To maintain these digital identities, administrators turn to Identity Management solutions to offer protection for users, business partners, and networks. This paper proposes an analysis of Identity Management to be accomplished in the form of a graduate level course of study for a ten-week period for the Networking, Security, and Systems Administration department at Rochester Institute of Technology. This course will be designed for this department because of its emphasis on securing, protecting, and managing the identities of users within and across networks. Much of the security-related courses offered by the department focus primarily on security within enterprises. Therefore, Identity Management, a topic that is becoming more popular within enterprises each day, would compliment these courses. Students that enroll in this course will be more equipped to satisfy the needs of modern enterprises when they graduate because they will have a better understanding of how to address security issues that involve managing user identities across networks, systems, and enterprises. This course will focus on several aspects of Identity Management and its use in enterprises today. Covered during the course will be the frameworks of Identity Management, for instance, Liberty Identity Federation Framework and OASIS SAML 2.0; the Identity Management models; and some of the major Identity Management solutions that are in use today such as Liberty Alliance, Microsoft Passport, and Shibboleth. This course will also provide the opportunity to gain hands on experience by facilitating exemplar technologies used in laboratory investigations
    corecore