1,713 research outputs found

    XSleepNet: Multi-View Sequential Model for Automatic Sleep Staging

    Get PDF
    Automating sleep staging is vital to scale up sleep assessment and diagnosis to serve millions experiencing sleep deprivation and disorders and enable longitudinal sleep monitoring in home environments. This work proposes a sequence-to-sequence sleep staging model, XSleepNet, that is capable of learning a joint representation from both raw signals and time-frequency images. Since different views may generalize or overfit at different rates, the proposed network is trained such that the learning pace on each view is adapted based on their generalization/overfitting behavior. As a result, the network is able to retain the representation power of different views in the joint features which represent the underlying distribution better than those learned by each individual view alone. Furthermore, the XSleepNet architecture is principally designed to gain robustness to the amount of training data and to increase the complementarity between the input views. Experimental results on five databases of different sizes show that XSleepNet consistently outperforms the single-view baselines and the multi-view baseline with a simple fusion strategy. Finally, XSleepNet also outperforms prior sleep staging methods and improves previous state-of-the-art results on the experimental databases

    An improved EEG pattern classification system based on dimensionality reduction and classifier fusion

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.Analysis of brain electrical activities (Electroencephalography, EEG) presents a rich source of information that helps in the advancement of affordable and effective biomedical applications such as psychotropic drug research, sleep studies, seizure detection and brain computer interface (BCI). Interpretation and understanding of EEG signal will provide clinicians and physicians with useful information for disease diagnosis and monitoring biological activities. It will also help in creating a new way of communication through brain waves. This thesis aims to investigate new algorithms for improving pattern recognition systems in two main EEG-based applications. The first application represents a simple Brain Computer Interface (BCI) based on imagined motor tasks, whilst the second one represents an automatic sleep scoring system in intensive care unit. BCI system in general aims to create a lion-muscular link between brain and external devices, thus providing a new control scheme that can most benefit the extremely immobilised persons. This link is created by utilizing pattern recognition approach to interpret EEG into device commands. The commands can then be used to control wheelchairs, computers or any other equipment. The second application relates to creating an automatic scoring system through interpreting certain properties of several biomedical signals. Traditionally, sleep specialists record and analyse brain signal using electroencephalogram (EEG), muscle tone (EMG), eye movement (EOG), and other biomedical signals to detect five sleep stages: Rapid Eye Movement (REM), stage 1,... to stage 4. Acquired signals are then scored based on 30 seconds intervals that require manually inspecting one segment at a time for certain properties to interpret sleep stages. The process is time consuming and demands competence. It is thought that an automatic scoring system mimicking sleep expert rules will speed up the process and reduce the cost. Practicality of any EEG-based system depends upon accuracy and speed. The more accurate and faster classification systems are, the better will be the chance to integrate them in wider range of applications. Thus, the performance of the previous systems is further enhanced using improved feature selection, projection and classification algorithms. As processing EEG signals requires dealing with multi-dimensional data, there is a need to minimize the dimensionality in order to achieve acceptable performance with less computational cost. The first possible candidate for dimensionality reduction is employed using channel feature selection approach. Four novel feature selection methods are developed utilizing genetic algorithms, ant colony, particle swarm and differential evolution optimization. The methods provide fast and accurate implementation in selecting the most informative features/channels that best represent mental tasks. Thus, computational burden of the classifier is kept as light as possible by removing irrelevant and highly redundant features. As an alternative to dimensionality reduction approach, a novel feature projection method is also introduced. The method maps the original feature set into a small informative subset of features that can best discriminate between the different class. Unlike most existing methods based on discriminant analysis, the proposed method considers fuzzy nature of input measurements in discovering the local manifold structure. It is able to find a projection that can maximize the margin between data points from different classes at each local area while considering the fuzzy nature. In classification phase, a number of improvements to traditional nearest neighbour classifier (kNN) are introduced. The improvements address kNN weighting scheme limitations. The traditional kNN does not take into account class distribution, importance of each feature, contribution of each neighbour, and the number of instances for each class. The proposed kNN variants are based on improved distance measure and weight optimization using differential evolution. Differential evolution optimizer is utilized to enhance kNN performance through optimizing the metric weights of features, neighbours and classes. Additionally, a Fuzzy kNN variant has also been developed to favour classification of certain classes. This variant may find use in medical examination. An alternative classifier fusion method is introduced that aims to create a set of diverse neural network ensemble. The diversity is enhanced by altering the target output of each network to create a certain amount of bias towards each class. This enables the construction of a set of neural network classifiers that complement each other

    A review of automated sleep disorder detection

    Get PDF
    Automated sleep disorder detection is challenging because physiological symptoms can vary widely. These variations make it difficult to create effective sleep disorder detection models which support hu-man experts during diagnosis and treatment monitoring. From 2010 to 2021, authors of 95 scientific papers have taken up the challenge of automating sleep disorder detection. This paper provides an expert review of this work. We investigated whether digital technology and Artificial Intelligence (AI) can provide automated diagnosis support for sleep disorders. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines during the content discovery phase. We compared the performance of proposed sleep disorder detection methods, involving differ-ent datasets or signals. During the review, we found eight sleep disorders, of which sleep apnea and insomnia were the most studied. These disorders can be diagnosed using several kinds of biomedical signals, such as Electrocardiogram (ECG), Polysomnography (PSG), Electroencephalogram (EEG), Electromyogram (EMG), and snore sound. Subsequently, we established areas of commonality and distinctiveness. Common to all reviewed papers was that AI models were trained and tested with labelled physiological signals. Looking deeper, we discovered that 24 distinct algorithms were used for the detection task. The nature of these algorithms evolved, before 2017 only traditional Machine Learning (ML) was used. From 2018 onward, both ML and Deep Learning (DL) methods were used for sleep disorder detection. The strong emergence of DL algorithms has considerable implications for future detection systems because these algorithms demand significantly more data for training and testing when compared with ML. Based on our review results, we suggest that both type and amount of labelled data is crucial for the design of future sleep disorder detection systems because this will steer the choice of AI algorithm which establishes the desired decision support. As a guiding principle, more labelled data will help to represent the variations in symptoms. DL algorithms can extract information from these larger data quantities more effectively, therefore; we predict that the role of these algorithms will continue to expand

    Advanced Signal Processing in Wearable Sensors for Health Monitoring

    Get PDF
    Smart, wearables devices on a miniature scale are becoming increasingly widely available, typically in the form of smart watches and other connected devices. Consequently, devices to assist in measurements such as electroencephalography (EEG), electrocardiogram (ECG), electromyography (EMG), blood pressure (BP), photoplethysmography (PPG), heart rhythm, respiration rate, apnoea, and motion detection are becoming more available, and play a significant role in healthcare monitoring. The industry is placing great emphasis on making these devices and technologies available on smart devices such as phones and watches. Such measurements are clinically and scientifically useful for real-time monitoring, long-term care, and diagnosis and therapeutic techniques. However, a pertaining issue is that recorded data are usually noisy, contain many artefacts, and are affected by external factors such as movements and physical conditions. In order to obtain accurate and meaningful indicators, the signal has to be processed and conditioned such that the measurements are accurate and free from noise and disturbances. In this context, many researchers have utilized recent technological advances in wearable sensors and signal processing to develop smart and accurate wearable devices for clinical applications. The processing and analysis of physiological signals is a key issue for these smart wearable devices. Consequently, ongoing work in this field of study includes research on filtration, quality checking, signal transformation and decomposition, feature extraction and, most recently, machine learning-based methods

    MetaSleepLearner: A Pilot Study on Fast Adaptation of Bio-signals-Based Sleep Stage Classifier to New Individual Subject Using Meta-Learning.

    Get PDF
    Identifying bio-signals based-sleep stages requires time-consuming and tedious labor of skilled clinicians. Deep learning approaches have been introduced in order to challenge the automatic sleep stage classification conundrum. However, the difficulties can be posed in replacing the clinicians with the automatic system due to the differences in many aspects found in individual bio-signals, causing the inconsistency in the performance of the model on every incoming individual. Thus, we aim to explore the feasibility of using a novel approach, capable of assisting the clinicians and lessening the workload. We propose the transfer learning framework, entitled MetaSleepLearner, based on Model Agnostic Meta-Learning (MAML), in order to transfer the acquired sleep staging knowledge from a large dataset to new individual subjects. The framework was demonstrated to require the labelling of only a few sleep epochs by the clinicians and allow the remainder to be handled by the system. Layer-wise Relevance Propagation (LRP) was also applied to understand the learning course of our approach. In all acquired datasets, in comparison to the conventional approach, MetaSleepLearner achieved a range of 5.4% to 17.7% improvement with statistical difference in the mean of both approaches. The illustration of the model interpretation after the adaptation to each subject also confirmed that the performance was directed towards reasonable learning. MetaSleepLearner outperformed the conventional approaches as a result from the fine-tuning using the recordings of both healthy subjects and patients. This is the first work that investigated a non-conventional pre-training method, MAML, resulting in a possibility for human-machine collaboration in sleep stage classification and easing the burden of the clinicians in labelling the sleep stages through only several epochs rather than an entire recording
    • …
    corecore