4 research outputs found

    The Morphometric Synthesis for landmarks and edge-elements in images

    Full text link
    Over the last decade, techniques from mathematical statistics, multivariate biometrics, non-Euclidean geometry, and computer graphics have been combined in a coherent new system of tools for the biometric analysis of landmarks , or labelled points, along with the biological images in which they are seen. Multivariate analyses of samples for all the usual scientific purposes - description of mean shapes, of shape variation, and of the covariation of shape with size, group, or other causes or effects - may be carried out very effectively in the tangent space to David Kendall's shape space at the Procrustes average shape. For biometric interpretation of such analyses, we need a basis for the tangent space that is Procrustes-orthonormal, and we need graphics for visualizing mean shape differences and other segments and vectors there; both of these needs are managed by the thin-plate spline. The spline also links the biometrics of landmarks to deformation analysis of curves in the images from which the landmarks originally arose. This article reviews the principal tools of this synthesis in a typical study design involving landmarks and edge information from a microfossil.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75091/1/j.1365-3121.1995.tb00535.x.pd

    A feature space for edgels in images with landmarks

    Full text link
    In many current medical applications of image analysis, objects are detected and delimited by boundary curves or surfaces. Yet the most effective multivariate statistics available pertain to labeled points (landmarks) only. In the finite-dimensional feature space that landmarks support, each case of a data set is equivalent to a deformation map deriving it from the average form. This paper introduces a new extension of the finite-dimensional spline-based approach for incorporating edge information. In this implementation edgels are restricted to landmark loci: they are interpreted as pairs of landmarks at infinitesimal separation in a specific direction. The effect of changing edge direction is a singular perturbation of the thin-plate spline for the landmarks alone. An appropriate normalization yields a basis for image deformations corresponding to changes of edge direction without landmark movement; this basis complements the basis of landmark deformations ignoring edge information. We derive explicit formulas for these edge warps, evaluate the quadratic form expressing bending energies of their formal combinations, and show the resulting spectrum of edge features in typical scenes. These expressions will aid all investigations into medical images that entail comparisons of anatomical scene analyses to a normative or typical form.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46635/1/10851_2005_Article_BF01248355.pd

    Statistical shape modelling: automatic shape model building

    Get PDF
    Statistical Shape Models (SSM) have wide applications in image segmentation, surface registration and morphometry. This thesis deals with an important issue in SSM, which is establishing correspondence between a set of shape surfaces on either 2D or 3D. Current methods involve either manual annotation of the data (current ‘gold standard’); or establishing correspondences by using segmentation or registration algorithms; or using an information technique, Minimum Description Length (MDL), as an objective function that measures the utility of a model (the state-of-the-art). This thesis presents in principle another framework for establishing correspondences completely automatically by treating it as a learning process. Shannon theory is used extensively to develop an objective function, which measures the performance of a model along each eigenvector direction, and a proper weighting is automatically calculated for each energy component. Correspondence finding can then be treated as optimizing the objective function. An efficient optimization method is also incorporated by deriving the gradient of the cost function. Experimental results on various data are presented on both 2D and 3D. In the end, a quantitative evaluation between the proposed algorithm and MDL shows that the proposed model has better Generalization Ability, Specificity and similar Compactness. It also shows a good potential ability to solve the so-called “Pile Up” problem that exists in MDL. In terms of application, I used the proposed algorithm to help build a facial contour classifier. First, correspondence points across facial contours are found automatically and classifiers are trained by using the correspondence points found by the MDL, proposed method and direct human observer. These classification schemes are then used to perform gender prediction on facial contours. The final conclusion for the experiments is that MEM found correspondence points built classification scheme conveys a relatively more accurate gender prediction result. Although, we have explored the potential of our proposed method to some extent, this is not the end of the research for this topic. The future work is also clearly stated which includes more validations on various 3D datasets; discrimination analysis between normal and abnormal subjects could be the direct application for the proposed algorithm, extension to model-building using appearance information, etc

    High-performance image registration algorithms for multi-core processors

    Get PDF
    Deformable registration consists of aligning two or more 3D images into a common coordinate frame. Fusing multiple images in this fashion quantifies changes in organ shape, size, and position as described by the image set, thus providing physicians with a more complete understanding of patient anatomy and function. In the field of image-guided surgery, for example, neurosurgeons can track localized deformations within the brain during surgical procedures, thereby reducing the amount of unresected tumor.Though deformable registration has the potential to improve the geometric precision for a variety of medical procedures, most modern algorithms are time consuming and, therefore, go unused for routine clinical procedures. This thesis develops highly data-parallel registration algorithms suitable for use on modern multi-core architectures, including graphics processing units (GPUs). Specific contributions include the following:Parallel versions of both unimodal and multi-modal B-spline registration algorithms where the deformation is described in terms of uniform cubic B-spline coefficients. The unimodal case involves aligning images obtained using the same imaging technique whereas multi-modal registration aligns images obtained via differing imaging techniques by employing the concept of statistical mutual information.Multi-core versions of an analytical regularization method that imposes smoothness constraints on the deformation derived by both unimodal and multi-modal registration.The proposed method operates entirely on the B-spline coefficients which parameterize the deformation and, therefore, exhibits superior performance, in terms of execution-time overhead, over numerical methods that use central differencing.The above contributions have been implemented as part of the high-performance medical image registration software package Plastimatch, which can be downloaded under an open source license from www.plastimatch.org. Plastimatch significantly reduces the execution time incurred by B-spline based registration algorithms: compared to highly optimized sequential implementations on the CPU, we achieve a speedup of approximately 21 times for GPU-based multi-modal deformable registration while maintaining near-identical registration quality and a speedup of approximately 600 times for multi-core CPU-based regularization. It is hoped that these improvements in processing speed will allow deformable registration to be routinely used in time-sensitive procedures such as image-guided surgery and image-guided radiotherapy which require low latency from imaging to analysis.Ph.D., Computer Engineering -- Drexel University, 201
    corecore