
High-Performance Image Registration Algorithms for Multi-Core

Processors

A Thesis

Submitted to the Faculty

of

Drexel University

by

James Anthony Shackleford

in partial fulfillment of the

requirements for the degree

of

Doctor of Philosophy

December 2011

http://www.drexel.edu
mailto:tshack@drexel.edu


c© Copyright 2011

James Anthony Shackleford. All Rights Reserved.



TABLE OF CONTENTS

List of Figures v

Abstract viii

1 Introduction 1

1.1 Applications of Deformable Image Registration . . . . . . . . . . . . . . . . 1

1.2 Algorithmic Approaches to Deformable Registration . . . . . . . . . . . . . 4

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Unimodal B-spline Registration 11

2.1 Overview of B-spline Registration . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 B-spline Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Gradient Computation and Optimization . . . . . . . . . . . . . . . 17

2.2 Fast B-spline Registration for the GPU . . . . . . . . . . . . . . . . . . . . 19

2.2.1 The SIMD Programming Model . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Software Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 The Naive GPU Implementation . . . . . . . . . . . . . . . . . . . . 24

2.2.4 The Optimized GPU Implementation . . . . . . . . . . . . . . . . . 27

2.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



TABLE OF CONTENTS iii

2.3.1 Registration Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.2 Sensitivity to Volume Size . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.3 Sensitivity to Control-Point Spacing . . . . . . . . . . . . . . . . . . 37

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Multi-Modal B-spline Registration 40

3.1 Overview of Multi-Modal B-spline Registration . . . . . . . . . . . . . . . . 40

3.1.1 Using B-splines to Represent the Deformation Field . . . . . . . . . 44

3.1.2 Mutual Information as a Cost Function . . . . . . . . . . . . . . . . 48

3.2 Efficient Computation of Mutual Information . . . . . . . . . . . . . . . . . 52

3.2.1 Constructing Histograms for the Static and Moving Images . . . . . 55

3.2.2 Constructing the Joint Histogram . . . . . . . . . . . . . . . . . . . 58

3.2.3 Evaluating the Cost Function . . . . . . . . . . . . . . . . . . . . . . 61

3.2.4 Optimizing the B-spline Coefficients . . . . . . . . . . . . . . . . . . 62

3.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3.1 Registration Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.2 Sensitivity to Volume Size . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.3 Sensitivity to Control-Point Spacing . . . . . . . . . . . . . . . . . . 74

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Improving MI with Variance Optimal Histograms 76

4.1 Overview of Variance Optimal Histograms . . . . . . . . . . . . . . . . . . . 77

4.2 Theory of Operation and Implementation . . . . . . . . . . . . . . . . . . . 79

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



TABLE OF CONTENTS iv

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Analytic Vector Field Regularization 87

5.1 Theory and Mathematical Formalism . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Algorithmic Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.1 Registration Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.2 Sensitivity to Volume Size . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3.3 Sensitivity to Control-Point Spacing . . . . . . . . . . . . . . . . . . 111

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Conclusions 115

List of References 119

Vita 124



LIST OF FIGURES

1.1 Computing organ motion via deformable registration . . . . . . . . . . . . . 2

2.1 Difference with and without registration . . . . . . . . . . . . . . . . . . . . 12

2.2 Design structure of grid aligned scheme . . . . . . . . . . . . . . . . . . . . 13

2.3 Comparison of sequential and SIMD . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Software organization of GPU implementations . . . . . . . . . . . . . . . . 23

2.5 Visualization of tile influence on B-spline control points . . . . . . . . . . . 28

2.6 Highly parallel method of gradient computation . . . . . . . . . . . . . . . . 29

2.7 Unimodal inhaled to exhaled lung registration . . . . . . . . . . . . . . . . . 35

2.8 Unimodal inhaled to exhaled lung registration (Zoom View) . . . . . . . . . 35

2.9 Unimodal algorithm execution times vs image volume size . . . . . . . . . . 37

2.10 Unimodal algorithm execution times vs B-spline grid resolution . . . . . . . 38

3.1 Flowdiagram of mutual information based registration . . . . . . . . . . . . 42

3.2 Superimposition of control-point and voxel grids . . . . . . . . . . . . . . . 45

3.3 Obtaining a deformation vector at a given voxel . . . . . . . . . . . . . . . . 47

3.4 Organization and memory layout of the coefficient look-up table . . . . . . 47

3.5 Partial volume interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



LIST OF FIGURES vi

3.6 Computation of partial volumes and nearest neighbors . . . . . . . . . . . . 51

3.7 Serial method of histogram construction . . . . . . . . . . . . . . . . . . . . 53

3.8 Parallel histogram construction using sub-histograms . . . . . . . . . . . . . 56

3.9 Memory organization of sub-histogram method . . . . . . . . . . . . . . . . 57

3.10 Parallel histogram construction using atomic exchange . . . . . . . . . . . . 59

3.11 Computation of cost derivative with respect to vector field . . . . . . . . . . 65

3.12 2D example of cost function gradient computation . . . . . . . . . . . . . . 66

3.13 Parallel gradient computation workflow . . . . . . . . . . . . . . . . . . . . 68

3.14 Thoracic MRI to CT registration using mutual information . . . . . . . . . 72

3.15 Mutual information registration performance . . . . . . . . . . . . . . . . . 73

4.1 The V-opt histogram generation technique. . . . . . . . . . . . . . . . . . . 80

4.2 Computation of V-opt lookup tables . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Computation of the bin error. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Example of variance optimal tissue division by bin . . . . . . . . . . . . . . 84

4.5 PET to CT registration using variance optimal histograms . . . . . . . . . . 85

5.1 Initialization of the regularizer . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Generation of integrated sub-matrices Γ̄ . . . . . . . . . . . . . . . . . . . . 102

5.3 The update stage of the regularizer . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 Application of the regularization operators to the B-spline coefficients . . . 104

5.5 Warped thoracic images with and without regularization . . . . . . . . . . . 107

5.6 Fusion of MRI and CT thoracic images with and without regularization . . 108

5.7 Multi-modal vector fields with and without regularization . . . . . . . . . . 109



LIST OF FIGURES vii

5.8 Performance of the regularizer with respect to volume size . . . . . . . . . . 110

5.9 Regularization performance with respet to control grid spacing . . . . . . . 111

5.10 Regularization performance with respet to tile size . . . . . . . . . . . . . . 112



ABSTRACT
High-Performance Image Registration Algorithms for Multi-Core Processors

James Anthony Shackleford

Deformable registration consists of aligning two or more 3D images into a common coordi-

nate frame. Fusing multiple images in this fashion quantifies changes in organ shape, size,

and position as described by the image set, thus providing physicians with a more complete

understanding of patient anatomy and function. In the field of image-guided surgery, for

example, neurosurgeons can track localized deformations within the brain during surgical

procedures, thereby reducing the amount of unresected tumor.

Though deformable registration has the potential to improve the geometric precision for

a variety of medical procedures, most modern algorithms are time consuming and, therefore,

go unused for routine clinical procedures. This thesis develops highly data-parallel regis-

tration algorithms suitable for use on modern multi-core architectures, including graphics

processing units (GPUs). Specific contributions include the following:

Parallel versions of both unimodal and multi-modal B-spline registration algorithms

where the deformation is described in terms of uniform cubic B-spline coefficients. The

unimodal case involves aligning images obtained using the same imaging technique whereas

multi-modal registration aligns images obtained via differing imaging techniques by employ-

ing the concept of statistical mutual information.

Multi-core versions of an analytical regularization method that imposes smoothness

constraints on the deformation derived by both unimodal and multi-modal registration.



ABSTRACT ix

The proposed method operates entirely on the B-spline coefficients which parameterize

the deformation and, therefore, exhibits superior performance, in terms of execution-time

overhead, over numerical methods that use central differencing.

The above contributions have been implemented as part of the high-performance medical

image registration software package Plastimatch, which can be downloaded under an open

source license from www.plastimatch.org. Plastimatch significantly reduces the execution

time incurred by B-spline based registration algorithms: compared to highly optimized se-

quential implementations on the CPU, we achieve a speedup of approximately 21 times

for GPU-based multi-modal deformable registration while maintaining near-identical regis-

tration quality and a speedup of approximately 600 times for multi-core CPU-based regu-

larization. It is hoped that these improvements in processing speed will allow deformable

registration to be routinely used in time-sensitive procedures such as image-guided surgery

and image-guided radiotherapy which require low latency from imaging to analysis.

www.plastimatch.org




CHAPTER 1: INTRODUCTION

Modern imaging techniques such as computed tomography (CT), positron emission tomog-

raphy (PET), and magnetic resonance imaging (MRI) provide physicians with 3D image

volumes of patient anatomy which convey information instrumental in treating a wide range

of afflictions. It is often useful to register one image volume to another to understand how

patient anatomy has changed over time or to relate image volumes obtained via differ-

ent imaging techniques. For example, MRI provides a means of distinguishing soft tissues

that are otherwise indiscernible in a transmission-based CT scan. The recent availability of

portable CT scanners inside the operating room has led to the development of new methods

of localizing cancerous soft tissue by registering intra-operative CT scans to a pre-operative

MRI as shown in Fig. 1.1, thus allowing for precise tumor localization during the resection

procedure.

1.1 Applications of Deformable Image Registration

The volumetric registration process consists of aligning two or more 3D images into a com-

mon coordinate frame via a deformation vector field. Fusing multiple images in this fashion

provides physicians with a more complete understanding of patient anatomy and function.

A registration is called rigid if the motion or change is limited to global rotations and trans-

lations, and is called deformable when the registration includes complex local variations.



1. INTRODUCTION 2

(a) (b) (c)

Figure 1.1: Computing organ motion via deformable registration. (a) A pre-
operative MRI image (in red) superimposed on an intra-operative CT image (in blue) before
deformable registration; (b) the pre-operative MRI superimposed on the intra-operative
CT after deformable registration; (c) the deformation vector field (in blue) derived by
the registration process superimposed on the intra-operative CT scan wherein the vector field
quantitatively describes the organ motion between the CT and MRI scans.

Rigid matching is adequate for serial imaging of the skull, brain, or other rigidly immo-

bilized sites. Deformable registration is appropriate for almost all other scenarios and is

useful for many applications within medical research, medical diagnosis, and interventional

treatments.

The use of deformable registration has already begun to change medical research prac-

tices, especially in the fields of neuroanatomy and brain science. Deformable registra-

tion plays an important role in studying a variety of diseases including Alzheimer’s dis-

ease [1, 2, 3], schizophrenia [4, 5], and generalized brain development [6]. Many of these

studies make use of a powerful concept known as brain functional localization [7], which

provides a method of mapping functional information to corresponding anatomic locations

within the brain. This allows researchers to correlate patient MRI scans with a brain atlas

to improve our understanding of how the brain is damaged by disease.

Deformable registration is also beginning to impact the field of image-guided surgery.



1. INTRODUCTION 3

For example, neurosurgeons can now track localized deformations within the brain during

surgical procedures, thus reducing the amount of unresected tumor [8, 9]. Similar benefits

may be observed in surgical operations involving the prostate [10, 11], heart [12], and the

liver [13, 14] where local complex organ deformation are a common impediment to proce-

dural success. The application of deformable registration to such interventional surgical

procedures does, however, carry with it unique challenges. Often multi-modal imaging

is required, such as matching an intra-operative ultrasound with pre-operative MRI or a

pre-operative MRI with an intra-operative CT scan. Since such registrations must be per-

formed during active surgical procedures, the time to acquire an accurate solution must

be reasonably fast. Additionally, surgical incisions and resections performed prior to intra-

operative imaging analysis result in additional deformations that may be difficult to recover

algorithmically.

In image-guided radiotherapy, deformable registration is used to improve the geomet-

ric and dosimetric accuracy of radiation treatments. Motion due to respiration has a

“dose-blurring” effect, which is important for treatments in the lung [15, 16, 17] and

liver [18, 19, 20]. Day-to-day changes in organ position and shape also affect radiological

treatments to the prostate [21] and head and neck regions [22]. In addition to improv-

ing treatment delivery, deformable registration is also used in treatment verification and

treatment response assessment [23]. Furthermore, deformable registration can be used to

construct time-continuous 4D fields that provide a basis for motion estimation [24, 25] and

time-evolution visualization [26], which aids in improving the dosimetric accuracy to tumors

within the lung.



1. INTRODUCTION 4

1.2 Algorithmic Approaches to Deformable Registration

The choice of an image registration method for a particular application is still largely un-

settled. There are a variety of deformable image registration algorithms, distinguished by

choice of similarity measure, transformation model, and optimization process [27, 28, 29, 30].

The most popular and successful methods seem to be based on surface matching [31], optical

flow equations [32], fluid registration [33], thin-plate splines [34, 35], finite-element models

(FEMs) [36], and B-splines [37]. The involvement of academic researchers in the develop-

ment of deformable registration methods has resulted in several high-quality open source

software packages. Notable examples include the Statistical Parametric Mapping soft-

ware (SPM) [38], the Insight Segmentation and Registration Toolkit (ITK) [39], AIR [40],

Freesurfer [41], and vtkCISG [42].

Though deformable registration has the potential to greatly improve the geometric pre-

cision for a variety of medical procedures, modern algorithms are computationally intensive.

Consequently, deformable registration algorithms are not commonly accepted into general

clinical practice due to their excessive processing time requirements. The fastest family of

deformable registration algorithms are based on optical flow methods typically requiring sev-

eral minutes to compute [16], and it is not unusual to hear of B-spline registration algorithms

requiring hours to compute [43, 44] depending on the specific algorithm implementation,

image resolution, and clinical application requirements. However, despite its computational

complexity, B-spline based registration remains popular due to its flexibility and robust-

ness in providing the ability to perform both uni-modal and multi-modal registrations. In

other words, B-spline based registration is capable of registering two images obtained via



1. INTRODUCTION 5

the same imaging method (unimodal registration) as well as images obtained via differing

imaging methods (multi-modal registration). Consequently, surgical operations benefiting

from CT to MRI registration may be routinely performed once multi-modal B-spline based

registration can be performed with adequate speed.

A key element in accelerating medical imaging algorithms, including deformable regis-

tration, is the use of parallel processing. In many cases, images may be partitioned into

computationally independent sub-regions and subsequently farmed out to be processed in

parallel. The most prominent example of this approach is the use of a parallel solver such as

PETSc [45]. The PETsc library is a suite of solvers for partial differential equations (PDEs)

that employs the Message Passing Interface (MPI) standard to communicate data between

multiple computers. Parallel MPI-based implementations of the FEM-based registration

method using PETsc have been demonstrated and benchmarked by Warfield et al. [46, 47]

and Semresant et al. [48]. The overall approach is to first parallelize the appropriate algo-

rithmic steps (e.g., the displacement field estimation), partition the image data into small

sets, and then process each set independently on a computer within the cluster.

1.3 Thesis Contributions

While cluster computing is a well-established technique for accelerating image fusion al-

gorithms, recent advances in multi-core processor design offer new opportunities for truly

large-scale and cost-effective parallel computing on a single chip. The Cell processor [49]

and recent series of Nvidia graphics processing units (GPUs) are two examples of commod-

ity stream processors designed specifically to support the single chip parallel computing

paradigm. These processors have a large number of arithmetic units on chip, far more than



1. INTRODUCTION 6

any general-purpose microprocessor, making them well suited for high-performance parallel-

processing tasks. For example, the NVidia GTX 285 GPU has 240 processing cores with

dynamic branching support. The architecture provides 32-bit floating-point arithmetic and

offers 1063 GLOPs of computing power whereas, by comparison, a modern 3 GHz quad-core

Pentium i7 processor may provide up to roughly 50 GFLOPs.

This thesis focuses on B-spline deformable registration algorithms and the development

of multi-core accelerated methods for performing both unimodal and multi-modal registra-

tion with high precision and low latency. Specific contributions include:

• A highly parallel and thread-safe method of parameterizing the densely-defined defor-

mation vector field in terms of a sparsely-defined set of uniform cubic B-spline basis

function coefficients. This algorithmic building block forms the basis that enables

B-spline based algorithms to be effectively implemented in a data-parallel fashion.

• Development of a highly data-parallel unimodal B-spline registration algorithm based

on the mean squared error (MSE) similarity metric with implementations for both

multi-core CPUs and many-core GPUs.

• Development of a data parallel multi-modal B-spline registration algorithm based on

the statistical mutual information (MI) similarity metric with implementations for

both multi-core CPUs and many-core GPUs.

• Parallel methods of constructing both marginal and joint histograms for floating-point

quantities. This is a necessary algorithmic building block for data-parallel MI-based

registration implementations.



1. INTRODUCTION 7

• A method for quickly computing so-called “variance-optimal” or V-opt histograms.

We show that employing such histograms increases the accuracy of MI-based regis-

tration while also serving to decrease the number of necessary histogram bins.

• Development of an analytic regularization method that imposes smoothness con-

straints on the deformation vector fields derived by both the unimodal and multi-

modal B-spline implementations. This method operates entirely on the B-spline coef-

ficients that parameterize the deformation field and exhibits superior performance, in

terms of execution-time overhead, over traditional central differencing methods. Both

single core and multi-core accelerated implementations are developed.

The above-described contributions have been implemented for both multi-core CPUs

as well as GPUs, and comprise the B-spline registration algorithms used by the high-

performance medical image registration software package Plastimatch [50], which can be

freely download under a BSD-style license from www.plastimatch.org.

1.4 Thesis Organization

The thesis is organized as follows. Chapter 2 provides an overview of the unimodal B-spline

registration algorithm and subsequently introduces a grid-alignment scheme for improving

the algorithm’s computation speed for both single and multi-core architectures. Using the

grid-alignment scheme as a foundation, a high-performance multi-core algorithm is devel-

oped and described in detail. The fundamental concepts of image-similarity scoring, vector

field evolution, and B-spline parameterization are covered in depth. Additionally, aspects

of the CUDA programming model relevant to implementing the B-spline deformable reg-

www.plastimatch.org


1. INTRODUCTION 8

istration algorithm on modern GPU hardware are introduced and discussed, and a highly

parallel GPU implementation is developed. Finally, the single-core CPU, multi-core CPU,

and many-core GPU based implementations are benchmarked for performance and regis-

tration quality using synthetic CT images as well as thoracic CT image volumes.

Chapter 3 describes how the B-spline registration algorithm may be extended to perform

multi-modal image registration by utilizing the mutual information (MI) similarity metric.

Modifications to the algorithm structure and the data flow presented in Chapter 2 are

discussed in detail, and strategies for accelerating these new algorithmic additions are ex-

plored. Specific attention is directed towards developing memory-efficient and data-parallel

methods of constructing the marginal and joint image-intensity histograms, since these data

structures are key to successfully performing the MI-based registration. The impact of the

MI similarity metric on the analytic formalism driving the vector field evolution is cov-

ered in depth and the partial-volume interpolation method is introduced that dictate how

the intensity histograms evolve as the vector field evolves. Multi-core implementations are

benchmarked for performance using synthetic image volumes. Finally, registration quality

is assessed using examples of multi-modal thoracic MRI to CT deformable registration.

Chapter 4 focuses on improving the performance of the MI-based registration proce-

dure presented in Chapter 3 by optimizing the estimation of information content within

the marginal and joint intensity histograms. The statistical approach of MI scores poten-

tial registration solutions based on the amount of information mutually contained within

both images—a metric derived directly from entropy measures of the marginal and joint

histograms. Consequently, sub-optimal histogram binning schemes result in the misrepre-

sentation of image entropy, introducing error into the assessment of the registration quality.



1. INTRODUCTION 9

This chapter introduces the application of variance-optimal (or V-opt) histograms to MI-

based registration. The technique computes non-uniform bin boundaries such that the sum

of the variance within all the individual bins is minimal. The desirability of such a bin-

ning scheme is discussed in terms of tissue density separation within the histogram space.

Furthermore, a method of approximating the V-opt histogram configuration is introduced

that greatly reduces the associated computational complexity, thereby enabling routine use

within the clinical environment. Improvements to MI-based registration using this binning

technique are investigated via full-body PET to CT and thoracic MRI to CT cases.

Chapter 5 develops an analytic method for constraining the evolution of the deformation

vector field that seamlessly integrates into both unimodal and multi-modal B-spline based

registration algorithms. Although the registration methods presented in Chapters 2 and

3 generate vector fields describing how best to transform one image to match the other,

there is no guarantee that these transformations will be physically valid. Image registra-

tion is an ill-posed problem in that it lacks a unique solution to the vector deformation

field and consequently, the solution may describe a physical deformation that did not or

could not have occurred. However, by imposing constraints on the character of the vector

field, it is possible to guide its evolution towards physically meaningful solutions; in other

words, the ill-posed problem is regularized. This chapter provides the analytic mathemat-

ical formalism required to impose second-order smoothness upon the deformation vector

field in a faster and more efficient fashion than numerically-based central differencing meth-

ods. Furthermore, we show that such analytically-derived matrix operators may be applied

directly to the B-spline parameterization of the vector field to achieve the desired physi-

cally meaningful solutions. Single and multi-core CPU implementations are developed and



1. INTRODUCTION 10

discussed and the performance for both implementations is investigated with respect to

the numerical method in terms of execution-time overhead, and the quality of the analytic

implementations is investigated via a thoracic MRI to CT case study.

Finally, Chapter 6 concludes the thesis. Overarching concepts presented within the

preceding chapters are concisely reviewed with a focus placed on key ideas and contributions

to the field of high-performance image processing.



CHAPTER 2: UNIMODAL B-SPLINE REGISTRATION

This chapter provides an overview of the B-spline registration algorithm and subsequently

introduces a grid-alignment scheme for improving the algorithm’s computation speed for

both single and multi-core computing architectures. Using this grid-alignment scheme as a

foundation, an optimal multi-core algorithm is then derived and subsequently described in

detail. Finally, single-core CPU, multi-core CPU, and many-core GPU based implementa-

tions are benchmarked for performance and quality comparison. The work presented in this

chapter has been previously published as a chapter in the book GPU Computing Gems [51]

and as a featured article in Physics in Medicine and Biology [52].

2.1 Overview of B-spline Registration

B-spline registration is a method of deformable registration that uses B-spline curves to

define a continuous displacement field that maps the voxels in one image to those in another

image. Fig. 2.1 shows an example of deformable registration of 3D CT images using B-

splines, where registration is performed between an inhaled-lung image taken at time t1

and an exhale image taken at t2. Prior to registration, the image difference shown is quite

large, highlighting the motion of the diaphragm and pulmonary vessels during breathing.

Registration is performed to generate the vector or displacement field. After registration,

the image difference is much smaller, demonstrating that the registration has successfully



2. UNIMODAL B-SPLINE REGISTRATION 12

B-Spline registration Deformation 

Exhaled lung

Inhaled lung

Difference without registration

Difference with registration

Applied deformation field

Figure 2.1: Difference with and without registration. Deformable registration of two
3D CT volumes. Images of an inhaled lung taken at time t1 and an exhaled lung taken at time
t2 serve as the static and moving images, respectively. The registration algorithm iteratively
deforms the moving image in an attempt to minimize the intensity difference between the static
and moving images. The final result is a vector field describing how voxels in the moving image
should be shifted in order to make it match the static image. The difference between the static
and moving images with and without registration is also shown.

matched tissues of similar density.

Since we can define the vector field in a parametric fashion (i.e., in terms of coefficients

provided by a finite number of control points), a cost function that quantifies the similarity

between the static and moving images can be specified and registration can be posed as an

optimization problem. This requires that we evaluate: (1) C, the cost function correspond-

ing to a given set of spline coefficients, and (2) ∂C/∂P , the change in the cost function with

respect to the coefficient values P at each individual control point. We will refer to ∂C/∂P

as the cost function gradient throughout the paper. The registration process then becomes

one of iteratively defining coefficients P , performing B-spline interpolation, evaluating the

cost function C, calculating the cost function gradient ∂C/∂P for each control point, and

performing gradient-descent optimization to generate the next set of coefficients.

B-spline interpolation and gradient computation are the two most time-consuming stages



2. UNIMODAL B-SPLINE REGISTRATION 13

voxel (2,7) at offset (2,2) of tile (0,1)

voxel grid

B-spline grid

voxel (8,7) at offset (2,2) of tile (1,1)

Legend

control point

x

y

(a)

Voxel 

index

Tile

Offset

Multiplier LUT

Index LUT Coefficents

Gradient

Grad

Interpolant

(b)

Figure 2.2: Design structure of grid aligned scheme. (a) A portion of a 2D image
showing a B-spline control-point grid superimposed upon an aligned voxel grid. Since both the
marked voxel and the grayed voxel are located at the same relative offset within their respective
tiles, both voxels will use the same βl(u)βm(v) value. (b) For aligned grids, lookup tables can
accelerate deformable registration computations by eliminating redundant computations.

within the overall registration process, and so we focus on accelerating these stages using a

grid-alignment scheme and accompanying data structures.

2.1.1 B-spline Interpolation

By aligning the voxel grid with a uniformly-spaced control grid, as shown in Fig. 2.2, the

image volume becomes partitioned into many equally sized tiles. In the shown 2D example,

the control grid partitions the voxel grid into 6 × 5 tiles. The vector field at any given voxel

within a tile is influenced by the 16 control points in the tile’s immediate vicinity and the

value of the B-spline basis function product evaluated at the voxel, which is dependant only

on the voxel’s local coordinates (i.e. offset) within the tile. Notice that the two marked

voxels in Fig. 2.2, while residing at different locations within the image, both possess the

same offsets within their respective tiles. This results in the B-spline basis function product

yielding identical values when evaluated at these two voxels. This property allows us to



2. UNIMODAL B-SPLINE REGISTRATION 14

pre-compute all relevant B-spline basis function products once instead of recomputing the

evaluation for each individual tile.

In the 3D case, the vector field at any given voxel is determined by the 64 control

points in the immediate vicinity of the voxel’s housing tile. This configuration forms the

basis of an analytic expression for the continuous vector field ~ν. B-spline interpolation is

performed for each voxel within a tile with respect to the 64 control point coefficients that

form the local support for the operation. For example, the B-spline interpolation yielding

the x-component of the displacement vector for a voxel located at coordinate (x, y, z) is

νx(x, y, z) =
3∑
l=0

3∑
m=0

3∑
n=0

βl(u)βm(v)βn(w)Px,l,m,n, (2.1)

where Px is the spline coefficient defining the x component of the displacement vector for

one of the 64 control points that influence the voxel. We obtain the spline basis functions

β as follows. Let Nx, Ny, and Nz denote the distance between control points, in terms of

voxels, in the x, y, and z directions, respectively. The volume is therefore segmented by the

B-spline control point grid into many equal-sized tiles of dimensions Nx × Ny × Nz. The

three dimensional indices xt, yt, and zt of the tile within which the voxel at (x, y, z) falls is

given by

xt =

⌊
x

Nx

⌋
− 1, yt =

⌊
y

Ny

⌋
− 1, zt =

⌊
z

Nz

⌋
− 1. (2.2)

The local coordinates of the voxel within its tile, normalized between [0, 1], are

u =
x

Nx
−
⌊
x

Nx

⌋
, v =

y

Ny
−
⌊
y

Ny

⌋
, w =

z

Nz
−
⌊
z

Nz

⌋
. (2.3)



2. UNIMODAL B-SPLINE REGISTRATION 15

Finally, the uniform cubic B-spline basis function βl along the x direction is given by

βl(u) =


(1−u)3

6 : l = 0
3u3−6u2+4

6 : l = 1
−3u3+3u2+3u+1

6 : l = 2
u3

6 : l = 3,

(2.4)

and similarly for βm and βn along the y and z directions, respectively.

A straightforward implementation of (2.1) to compute the displacement vector ~ν for a

single voxel requires 192 computations of the cubic polynomial B-spline basis function β as

well as 192 multiplications and 63 additions. However, many of these calculations are re-

dundant and can be eliminated by implementing a data structure that exploits symmetrical

features that emerge as a result of the grid alignment, making the implementation of (2.1)

much faster.

• All voxels residing within a single tile use the same set of 64 control points to compute

their respective displacement vectors. So, for each tile in the volume, the correspond-

ing set of control point indices can be pre-computed and stored in a lookup table

(LUT), called the Index LUT. These indices serve as pointers to a coefficient table.

• Eq. (2.3) indicates that for a tile of dimension Nw = Nx × Ny × Nz, the number of

β(u)β(v)β(w) combinations is limited to Nw values. Furthermore, as Fig. 2.2 shows,

two voxels belonging to different tiles but possessing the same normalized coordinates

(u, v, w) within their respective tiles will be subject to identical β(u)β(v)β(w) prod-

ucts. Therefore, we pre-compute the βl(u)βm(v)βn(w) product for all valid normalized

coordinate combinations (u, v, and w) and store the results into a LUT called the

Multiplier LUT.



2. UNIMODAL B-SPLINE REGISTRATION 16

Fig. 2.2 shows the complete data structure required to support the above-described

optimizations. For each voxel, its absolute coordinate (x, y, z) within the volume is used to

calculate the tile number that the voxel falls within as well as the voxel’s relative coordinates

within that tile using (2.2) and (2.3), respectively. The tile number is used to query the Index

LUT, which provides the coefficient values associated with the 64 control points influencing

the voxel’s interpolation calculation. The voxel’s relative coordinates (u, v, w) within the tile

determine its index within [0, Nw], which is used to retrieve the appropriate pre-computed

β(u)β(v)β(w) product from the Multiplier LUT. Computing νx, the x component of the

displacement vector for the voxel, therefore, requires looping through the 64 entries of each

LUT, fetching the associated values, multiplying, and accumulating. Similar computations

are required to obtain νy and νz. The LUTs are stored in CPU cache, thereby achieving

extremely fast lookup times.

Once the displacement vector field is generated, it is used to deform each voxel in the

moving image. Tri-linear interpolation is used to determine the value of voxels mapping to

non-integer grid coordinates. Once deformed, the moving image is compared to the static

image in terms of a similarity metric or cost function. This paper focuses on matching

images using the mean squared error (MSE) cost function. The MSE is computed once per

iteration by accumulating the square of the intensity difference between the static image S

and the deformed moving image M as

C =
1

N

∑
z

∑
y

∑
x

(S(x, y, z)−M(x+ νx, y + νy, z + νz))
2, (2.5)

where C is the cost function and N is the total number of voxels in the volume.



2. UNIMODAL B-SPLINE REGISTRATION 17

2.1.2 Gradient Computation and Optimization

Gradient descent optimization requires computing the partial derivatives of the cost function

with respect to each control-point coefficient value. In addition to accelerating B-spline

interpolation, the grid-alignment scheme also accelerates cost function gradient computation

using the same data structure shown in Fig. 2.2. Recall that the cost function gradient

∂C/∂P quantifies the change in the cost function with respect to the coefficient values P

at each individual control point. So, we decompose the cost function gradient for a given

control point at control grid coordinates (κ, λ, µ) as

∂C

∂P κ,λ,µ
=

1

N

64 tiles∑
(x,y,z)

∂C

∂~ν(x, y, z)

∂~ν(x, y, z)

∂P
. (2.6)

where the summation is performed for all voxels (x, y, z) contained within the 64 tiles found

in the control point’s local support region [53]. This decomposition allows us to evaluate

the cost function gradient’s dependencies on the cost function and spline coefficients inde-

pendently. The first term, ∂C/∂~ν, depends only on the cost function and is independent

of the type of spline parameterization employed. The second term describes how the de-

formation field changes with respect to the control-point coefficients and can be found by

simply taking the derivative of (2.1) with respect to P . This term is dependent only on the

B-spline parameterization and is computed as

∂~ν(x, y, z)

∂P
=

3∑
l=0

3∑
m=0

3∑
n=0

βl(u)βm(v)βn(w). (2.7)

Here, (2.7) depends only on a voxel’s location and the B-spline parameterization. So, it will

remain constant over all optimization iterations. This allows us to pre-compute and store



2. UNIMODAL B-SPLINE REGISTRATION 18

(2.7) for each voxel coordinate prior to the optimization process. Note also, that the values

generated by (2.7) are already available via the Multiplier LUT.

If MSE is used as the cost function, the first term in (2.6) can be re-written in terms of

the moving image’s spatial gradient ∇M(x, y, z) as

∂C

∂~ν(x, y, z)
= 2× [S(x, y, z)−M(x+ νx, y + νy, z + νz)]∇M(x, y, z). (2.8)

The above expression depends on the intensity values of the static and moving images, S

and M , respectively, as well as the current value of the vector field ~ν. During each iteration,

the vector field will change, modifying the correspondences between the static and moving

images. Therefore, unlike ∂~ν/∂P , ∂C/∂~ν must be recomputed during each iteration of

the optimization problem. Once both terms are computed, they are combined using the

chain rule in (2.6). The resulting expression can be rewritten in terms of the control point

coordinates (κ, λ, µ) and the summantion indicies thusly:

∂C

∂P κ,λ,µ
=

1

N

Nz∑
c

Ny∑
b

Nx∑
a

∂C

∂~v(x, y, z)
(2.9)

×
3∑
n

3∑
m

3∑
l

βl

(
a

Nx

)
βm

(
b

Ny

)
βn

(
c

Nz

)
where (a, b, c) are the un-normalized local coordinates of a voxel within its housing tile.

Here (x, y, z) still represent the absolute coordinates of a voxel within the entire volume,

which can now be defined in terms of the control point coordinates and summation indicies

as:

x = Nx(κ− l) + a, y = Ny(λ−m) + b, z = Nz(µ− n) + c (2.10)



2. UNIMODAL B-SPLINE REGISTRATION 19

The coefficient values P that minimize the registration cost function are found using L-

BFGS-B, a quasi-Newton optimizer suitable for either bounded or unbounded problems [54].

During each iteration, the optimizer chooses a set of coefficient values; for these coefficient

values (2.1)-(2.5) and (2.6)-(2.8) are used to compute the cost and gradient, respectively.

The cost and gradient values are transmitted back to the optimizer and the process is

repeated for a set number of iterations or until the cost function converges to a local (or

global) minimum.

2.2 Fast B-spline Registration for the GPU

The GPU is an attractive platform to accelerate compute-intensive algorithms (such as

image registration) due to its ability to perform many arithmetic operations in parallel.

Our GPU implementations use NVidia’s Compute Unified Device Architecture (CUDA), a

parallel computing interface accessible to software developers via a set of C programming

language extensions. Algorithms written using CUDA can be executed on GPUs such as

the Tesla C1060, which consists of 30 Streaming Multiprocessors (SMs) each containing 8

cores clocked at 1.5 GHz for a total of 240 cores. The CUDA architecture simplifies thread

management by logically partitioning threads into equally sized groups called thread blocks.

Up to eight thread blocks can be scheduled for execution on a single SM. In the context

of image registration, a single thread is responsible for processing one voxel, and thus, a

thread block is responsible for processing a group of voxels.

This section first briefly discusses the SIMD programming model using a simple example

and then develops two GPU-based designs for B-spline registration.



2. UNIMODAL B-SPLINE REGISTRATION 20

i = 7i = 6

__global__ void

kernel(float* a, float* b, float* c)

{

   int i = threadIdx.x;

   a[i] = b[i] + c[i];

}

SIMD Example:

i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

ADD INSTRUCTION

STORE INSTRUCTION

LOAD INSTRUCTION

b:

c:

a:

Sequential Example:

void

func(float* a, float* b, float* c)

{

 int i;

 for(i=0; i<8; i++) {

  a[i] = b[i] + c[i];

 }

}

LOAD

b:

c:

a:

ADD

STORE

i = 7i = 6i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

LOAD

ADD

STORE

LOAD

ADD

STORE

LOAD

ADD

STORE

LOAD

ADD

STORE

LOAD

ADD

STORE

LOAD

ADD

STORE

LOAD

ADD

STORE

Figure 2.3: Comparison of sequential and SIMD. A simple example showing the differ-
ences between the sequential and SIMD programming models.

2.2.1 The SIMD Programming Model

The SIMD (single instruction multiple data) model structures programs for highly efficient

computation on GPU cores. Here, all data is represented as an ordered set of the same type;

for example, integers or floating-point numbers. Given an input data set we can develop

a kernel that evaluates a function on each element of the input set so as to generate a

corresponding output set. In the SIMD model all GPU cores execute the same instructions

in lock-step, but they do so using different pieces of data.

Fig. 2.3 uses a simple example to show how SIMD differs from the sequential program-

ming model used by the CPU. Both examples perform the same set of operations: they

load elements from two input arrays, add them, and store the results into an output array.

To generate elements of the output array, the sequential code in Fig. 2.3 steps through the

input arrays, performing the same three operations for each set of elements, one set at a



2. UNIMODAL B-SPLINE REGISTRATION 21

time. The SIMD code in Fig. 2.3, however, operates on all array elements in parallel. A

thread block with eight threads is dispatched to a core on the GPU. Though all of these

threads execute the same kernel shown in Fig. 2.3, each thread obtains a unique identifer

using threadIdx.x, an implicit or built-in variable provided by the CUDA run-time envi-

ronment. Once the thread index is obtained, the operation is quite straightforward: thread

i loads the ith elements from arrays b and c, and generates the ith element for the output

array a.

Understanding the GPU memory model is crucial to developing high-performance SIMD

programs. Modern GPUs provide three different memory types: global memory, texture

memory, and shared memory. Communication between the GPU and the host CPU as

well as communication between threads belonging to different thread blocks is done via

the GPU’s global memory. Though abundant—the Tesla C1060 has up to 4 GB of on-

board RAM—global-memory accesses are quite slow compared to a core’s clock speed.

Loads/stores between GPU cores and global memory can be accelerated significantly if

memory accesses are coalesced, meaning that sequentially numbered threads access sequen-

tial locations in global memory starting at an eight byte boundary (such as in the SIMD

example in Fig. 2.3). If memory accesses are coalesced, the hardware can transfer data items

requested by multiple threads in a single load/store operation. If threads access global mem-

ory in non-coalesced fashion, however, multiple load/store operations are needed to service

these threads. In instances where coalesced operations are not possible, heavily referenced

areas of global memory can be cached as read-only memory within the GPU’s texture unit.

However, due to the texture unit’s 27-bit addressing scheme, arrays utilizing the texture

until are limited to 134,217,728 elements, which is roughly equivalent to a 5123 volume



2. UNIMODAL B-SPLINE REGISTRATION 22

containing intensity values or a 3503 volume containing cost function gradient values.

Finally, for some problems, it may be necessary for threads within the same thread block

to share intermediate results. Since individual threads with a thread block are assigned to

and processed by a single SM, inter-thread communication within a block can be facilitated

via a very fast memory channel known as shared memory, which is provided by the SM.

However, shared memory must be used judiciously since only a modest amount is typically

available; for example, even a high-end model such as the Tesla C1060 possesses only 16

KB of shared memory per SM. If, for example, each thread block requires more than 2KB

of shared memory, then an SM will be unable to support its maximum of eight thread

blocks due to insufficient shared memory resources. In this case, the number of thread

bocks scheduled to an SM will be the maximum number allowed given the available shared

memory resources.

2.2.2 Software Organization

Sections 2.2.3 and 2.2.4 develop two GPU implementations of B-spline registration using

the software organization shown in Fig. 2.4. The spline interpolation as well as the cost

function and gradient computations are performed on the GPU, while the optimization

is performed on the CPU. During each iteration the optimizer, executing on the CPU,

chooses a set of coefficient values to evaluate and transmits these to the GPU. The GPU

then computes both the cost function and the cost function gradient, which are returned

these to the optimizer. When a minima has been reached in the cost function gradient,

the optimizer halts and invokes the interpolation routine on the GPU to compute the final

deformation field.



2. UNIMODAL B-SPLINE REGISTRATION 23

CPU GPU 

Kernel 

Evaluates cost function and 

computes the change in the 

cost function with respect 

to the vector field        . 

Kernel 

Computes the cost

function gradient        .

L-BFGS-B Optimizer 

Generates new B-Spline 

coefficients based on 

the current value of the 

cost function and its 

gradient. 

B-Spline 

Coefficients 

(P) 

Cost 

(C) 

∂C 

∂ν 

Gradient 

 ∂C 

∂P 
( ( 

∂C 

∂ν ( ( 

∂C

∂P( (

Figure 2.4: Software organization of GPU implementations. The software organiza-
tion for B-spline registration in which the optimizer alone is executed on the CPU for greater
flexibility.

Returning to Fig. 2.4, the value of the evaluated cost function C as well as its gradient

∂C/∂P must be transferred from the CPU to the GPU for every iteration of the registration

process. Transfers between the CPU and GPU memories are the most costly in terms of

time, and we have taken special care to minimize these types of transactions. The cost

function is a single floating-point value and transferring it to the CPU incurs negligible

overhead. The gradient, however, consists of three floating-point coefficient values for each

control point in the grid. For example, registering two 256×256×256 images with a control-

grid spacing of 10 × 10 × 10 voxels requires 73, 167 B-spline coefficients to be transferred

between the GPU and the CPU per iteration, incurring about 0.35 ms over a PCIe 2.0 x16



2. UNIMODAL B-SPLINE REGISTRATION 24

bus1. Registering the same two volumes with a control-grid spacing of 30× 30× 30 incurs

0.30 ms to transfer 5184 coefficients between the GPU and the CPU. Comparable transfer

times are incurred in transferring the coefficients generated by the optimizer back to the

GPU. Based on detailed profiling experiments, the CPU-GPU communication overhead

demands roughly 0.14% of the total algorithm execution time. We therefore conclude these

PCIe transfers deliver an insignificant impact on the overall algorithm performance even for

high-resolution images with fine control grids.

Due to varying algorithmic requirements and the numerous hardware constraints in-

volved in GPU programming, each algorithm must be re-targeted to the GPU manually,

sometimes requiring multiple designs before an optimal design is obtained. We now discuss

two specific implementations of the B-spline registration algorithm on the GPU. First, we

detail a “naive” implementation, thus named due to its redundant operations and poor

memory-access patterns when calculating the cost function gradient ∂C/∂P . Then, we

discuss in depth a highly optimized kernel to compute ∂C/∂P .

2.2.3 The Naive GPU Implementation

The “naive” version performs straightforward parallelization with little regard for avoiding

redundant computations and achieving coalesced memory-access patterns. The kernels

comprising this implementation are very direct in their methodology, closely following the

logic underlying the sequential algorithms. Loads from global memory are performed using

the GPU’s texture unit to reduce access latency. However, due to the somewhat random

memory-access patterns exhibited by this “naive” implementation’s cost function gradient

1The PCIe 2.0 x16 bus provides a maximum bandwidth of 8 gigabytes per second.



2. UNIMODAL B-SPLINE REGISTRATION 25

Kernel 1 Compute C and ∂C/∂ν for a voxel.

1: /* Get TG, the 1D index of the thread, and use it to obtain (x, y, z) for the voxel. */
2:

3: /* Normalized voxel coordinates (x, y, z) to within the range [0, 1] */
4: u = x/Nx − bx/Nxc; v = y/Ny − by/Nyc; w = z/Nz − bz/Nzc;
5:

6: /* Use (2.1) to obtain the displacement vectors for the voxel */
7: νx = νy = νz = 0;
8: for n = 0 to 3 step 1 do
9: for m = 0 to 3 step 1 do

10: for l = 0 to 3 step 1 do
11: U = βl(u)βm(v)βn(w);
12: νx = νx + U × Px(i+ l);
13: νy = νy + U × Py(j +m);
14: νz = νz + U × Pz(k + n);
15: end for
16: end for
17: end for
18:

19: /* Apply the deformation vector and compute the MSE score for the voxel */
20: D = S(x, y, z)−M(x+ νx, y + νy, z + νz);
21: C(x, y, z) = D2;
22:

23: /* Compute ∂C/∂~ν for the voxel and store to GPU global memory */
24: ∂C/∂ν[3× TG + 0] = 2×D ×∇Mx(x, y, z);
25: ∂C/∂ν[3× TG + 1] = 2×D ×∇My(x, y, z);
26: ∂C/∂ν[3× TG + 2] = 2×D ×∇Mz(x, y, z);

kernel, the speedup obtained by caching memory regions within the texture unit may vary

widely and unpredictably for different volume sizes and control-grid resolutions. The GPU

implementation follows the architecture described in Fig. 2.4: Kernel 1 calculates the cost

function C and the ∂C/∂~ν values, and Kernel 2 uses the ∂C/∂~ν values to calculate the cost

function gradient ∂C/∂P .

Kernel 1 is launched with one thread per voxel in the static image S, and the variables

(x, y, z) defining the coordinates of a voxel within the volume are derived from each thread’s

index TG. As shown in the pseudo-code, the normalized coordinates (u, v, w) of the voxel

within a tile are calculated using (2.3). Lines 7-17 of the kernel calculate the displacement

vectors for the voxel using (2.1). Lines 20-21 apply the deformation vector ~ν to the moving



2. UNIMODAL B-SPLINE REGISTRATION 26

image to calculate the intensity difference D between the static image S and moving image

M for the voxel in question as well as the cost function C. Finally, lines 24-26 compute

∂C/∂~ν using (2.8) and store the result to GPU global memory in an interleaved fashion.

Calculating C and ∂C/∂~ν exemplifies an algorithm that is easily parallelized on the GPU,

and the strategy used by Kernel 1 performs very well. In fact, we reuse Kernel 1 in a slightly

modified form for our optimized GPU implementation. The individual cost-function values

computed for each voxel by Kernel 1 are accumulated using a sum reduction kernel to obtain

the overall similarity metric C shown in (2.5).

Kernel 2 calculates the ∂C/∂P value for a control point as defined by (2.10) using the

∂C/∂~ν values computed previously by Kernel 1. It is launched with as many threads as

there are control points, where each thread computes ∂C/∂P for its assigned control point.

Thus, the operations performed by a single thread to obtain ∂C/∂P for its control point

are done serially, but ∂C/∂P is calculated in parallel for all control points in the grid. As

shown in the pseudo-code, the variables (x, y, z) define the coordinates of a control-point

within the volume and are derived from each thread’s index TG. We identify the 64 tiles

influenced by the control point, and then for each tile perform the operations detailed in

lines 4-26: (1) load the ∂C/∂~ν value for each voxel from GPU memory and calculate the

corresponding B-spline basis-function product, (2) compute ∂C/∂~ν×βl(u)βm(v)βn(w), and

accumulate the results for each spatial dimension as per the chain rule in (2.6). Once a

thread has accumulated the results for all 64 tiles into registers Ax, Ay, and Az, lines 29-31

interleave and insert these values into the ∂C/∂P array residing in GPU global memory.



2. UNIMODAL B-SPLINE REGISTRATION 27

Kernel 2 Compute the gradient ∂C/∂P for a control knot.

1: /* Use TG, the 1D thread index, to obtain the (κ, λ, µ) coords of the control point */
2:

3: /* Iterate through the 64 tiles affecting this control point to calculate ∂C/∂P . */
4: Ax = Ay = Az = 0;
5: for l = 0 to 3 step 1 do
6: for m = 0 to 3 step 1 do
7: for n = 0 to 3 step 1 do
8: xt = κ− n; yt = λ−m; zt = µ− l;
9:

10: /* For each voxel in tile (xt, yt, zt), compute ∂C/∂P using (2.6) and (2.7) */
11: for k = 0 to Nz step 1 do
12: for j = 0 to Ny step 1 do
13: for i = 0 to Nx step 1 do
14: /* Get normalized local voxel coordinates (u, v, w) */
15: /* and compute B-spline basis function product */
16: U = βl(u)βm(v)βn(w);
17:

18: /* Accumulate ∂C/∂P values. */
19: Ax = Ax + U × ∂C/∂νxt

(i);
20: Ay = Ay + U × ∂C/∂νyt(j);
21: Az = Az + U × ∂C/∂νzt(k);
22: end for
23: end for
24: end for
25:

26: end for
27: end for
28: end for
29:

30: /* Store the ∂C/∂P solution for the control knot to GPU global memory. */
31: ∂C/∂P [3 ∗ TG + 0] = Ax;
32: ∂C/∂P [3 ∗ TG + 1] = Ay;
33: ∂C/∂P [3 ∗ TG + 2] = Az;

2.2.4 The Optimized GPU Implementation

Though Kernel 2 details perhaps the most straightforward way of parallelizing ∂C/∂P cal-

culations on the GPU, it has a serious performance deficiency in that the threads executing

Kernel 2 perform a large number of redundant load operations from GPU global memory.

We illustrate this problem using an example from Fig. 2.5. Consider the shaded tile shown

in the top-left corner of the volume. The set of voxels within this tile are influenced by

a set of 64 control points (of which eight are shown as black spheres). Conversely, voxels



2. UNIMODAL B-SPLINE REGISTRATION 28

(a) (b) (c) (d)

(e) (f) (g) (h)

l = 0

m = 1

n = 3

l = 1

m = 3

n = 1

l = 0

m = 1

n = 2

l = 2

m = 3

n = 1

l = 0

m = 1

n = 1

l = 2

m = 3

n = 2

l = 0

m = 2

n = 1

l = 2

m = 3

n = 3

x

y

z

Figure 2.5: Visualization of tile influence on B-spline control points. Voxels within
the shaded tile (in the top-left corner of the volume) are influenced by a set of 64 control points,
of which eight are shown as black spheres. This tile partially contributes to the gradient values
∂C/∂P at each of these points. Figs. (a)–(h) show that the same tile is utilized in different
relative positions with respect to each of the control points influencing it. So, each tile in the
volume will be viewed in 64 unique ways by the corresponding 64 control points influencing it,
which results in 64 unique (l,m, n) combinations being applied to each tile.

within this tile contribute a
∑
∂C/∂~ν × ∂~ν/∂P value to the gradient calculations of the

respective 64 control points as per the chain rule in (2.6). Now, considering the control

points shown in Fig. 2.5(b) and (c), the position of the tile relative to these two points is

(l = 0,m = 1, n = 2) and (l = 0,m = 1, n = 1), respectively. This implies that though the

two GPU threads computing the gradient for these control points use the same ∂C/∂ν val-

ues from the tile, they must use different basis-function products when computing ∂~ν/∂P to

obtain their respective contributions to ∂C/∂P for the control points they are each workin

on; the thread responsible for the control point in Fig. 2.5(b) will calculate the contribution

of the highlighted tile to ∂C/∂P as

∑
Nw

∂C

∂~ν(x, y, z)
β0(u)β1(v)β2(w), (2.11)

whereas the thread processing the control point in Fig. 2.5(c) will compute the contribution



2. UNIMODAL B-SPLINE REGISTRATION 29

Produce 64 Z vectors.
One for each of the 64 relative control knot orientations.

∂C
∂P

Using LUT to place each value into corresponding bin.

. . . . . . . . .

Load
∂C
∂v

values for a single tile.

Finished with tile.  Move on to next.

. . . . . . . . .
+ + + + +

∂C
∂P

∂C
∂P

∂C
∂P

∂C
∂P

∂C
∂P

Stage 1
(Kernel 3)

Stage 2
(Kernel 4)

bin( κ , λ  , μ )
0 0 0

bin( κ , λ  , μ )
1 1 1

bin( κ , λ  , μ )
n n n

bin( κ , λ  , μ )
n n n bin(κ  , λ   , μ   )N N N

bin( κ , λ  , μ )
0 0 0

bin( κ , λ  , μ )
1 1 1

bin( κ , λ  , μ )
n n n bin( κ , λ  , μ )

n n n

κ , λ  , μ 
0 0 0

κ , λ  , μ 
1 1 1

κ , λ  , μ 
n n n

κ , λ  , μ 
n n n

κ  , λ   , μ  N N N

bin(κ  , λ   , μ   )N N N

Figure 2.6: Highly parallel method of gradient computation. The flow corresponding
to the “condense” process performed by the optimized GPU implementation. For each tile,
we compute all 64 of its ∂C/∂P contributions to its surrounding control points. These partial
contributions are then binned appropriately according to which control points are affected by
the tile. We use (xc, yc, zc) to denote the three dimensional coordinates of a control point within

the volume. Notice how each control point is shown as having its own bin that stores all ~Z
vectors that contribute to its cost function gradient.

of the highlighted tile to ∂C/∂P for its control point as

∑
Nw

∂C

∂~ν(x, y, z)
β0(u)β1(v)β1(w). (2.12)

Here, u, v, w represent the normalized position of a voxel within the tile. Since the two

threads execute independently of each other and in parallel, each thread will end up loading

∂C/∂v values from the shaded tile separately. In general, given Kernel 2’s design, every tile

in the volume will be loaded 64 times by different threads during the process of computing

∂C/∂P values for the control points. Our goal, therefore, is to develop kernels that eliminate

these redundant load operations.



2. UNIMODAL B-SPLINE REGISTRATION 30

The first step in developing kernels that compute ∂C/∂P efficiently is to reduce the

large amount of ∂C/∂~ν data generated by Kernel 1 residing in GPU global memory into

smaller, more manageable units. Fig. 2.6 shows the overall flow comprising of two major

stages. During the first stage, the ∂C/∂~ν values corresponding to a tile are read from global

memory in coalesced fashion. Since any given voxel tile is influenced by (and influences) 64

control points, it is subject to each of the 64 possible (l,m, n) configurations exactly once.

This allows us to form intermediate solutions to (2.10) as follows, where for each tile, we

obtain

~Ztile,l,m,n =

Nz∑
z=0

Ny∑
y=0

Nx∑
x=0

∂C

∂~ν(x, y, z)
βl(u)βm(v)βn(w). (2.13)

The above operation is performed for the 64 possible (l,m, n) configurations, resulting in

64 ~Z values per tile where each ~Z is a partial solution to the gradient computation at a

particular control point within the grid. Equation (2.13) can be implemented as a GPU

kernel since multiple ∂C/∂~ν tiles may be “condensed” in parallel due to the absence of any

data dependencies between tiles. Moreover, once a ∂C/∂~ν tile is read and condensed, it may

be discarded since all relevant information required to compute ∂C/∂P is now represented

by the ~Z values. Therefore, the optimized flow shown in Fig. 2.6 loads each ∂C/∂~ν value

from GPU global memory only once, unlike Kernel 2’s design where each tile is loaded 64

times by different GPU threads.

Equation (2.13) is applied to each tile in the volume. Once the ∂C/∂~v values for a tile

are condensed into 64 ~Z values, we consult a LUT that maps each ~Z value to one of the

64 control points influenced by the tile. Specifically, the output of this first stage is an



2. UNIMODAL B-SPLINE REGISTRATION 31

array of bins with each bin possessing 64 slots. Each control point in the grid has exactly

one bin. For each of the 64 ~Z values computed by (2.13), the LUT provides not only the

mapping to the appropriate control-point bin, but also the slot within that bin into which

the ~Z value should be stored. Note that each of the 64 ~Z values generated from a single

tile will not only be written to different control point bins, but to different slots within

those bins as well – this property, in combination with each bin of 64 slots starting on an

8 byte boundary, allows us to adhere to the memory coalescence requirements imposed by

the CUDA architecture. The second stage of the gradient computation simply sums the 64

~Z values within each bin to calculate ∂C/∂P at each control point.

We now discuss the GPU kernels that implement the design flow shown in Fig. 2.6. As

a first step, Kernel 1 is modified to store ∂C/∂~ν values as three separate non-interleaved

arrays whose values can be read in coalesced fashion. Kernel 3 is designed to be launched

with 64 threads operating on a single tile. The outer-most loop iterates through the entire

set of voxels within the tile in chunks of 64, and during each iteration of this loop, lines

5–6 load ∂C/∂~ν for the current chunk of voxels into GPU shared memory. Each thread

executes lines 14–16 to compute the ∂C/∂P value contributed by its voxel for the currently

chosen basis-function product. These values are then accumulated into an array Q, indexed

by the (l,m, n) combination, via a tree-style reduction in which all 64 threads contribute

(lines 18–25). The inner-loops compute the next set of ∂C/∂P values corresponding to a

different combination on the same batch of voxels.

The ∂C/∂P values, once computed, are placed into bins corresponding to the control points

that influence the tile (lines 31–33). When executed on the NVidia Tesla C1060, approxi-

mately 15 tiles are processed in parallel at any given time.



2. UNIMODAL B-SPLINE REGISTRATION 32

Kernel 3 Optimized kernel design for computing the gradient ∂C/∂P . Stage 1.

1: /* Get thread-block index B and the local thead index T . */
2:

3: /* Threads process a ∂C/∂~v tile in groups of 64. All threads belonging to a thread block B
work on the same tile whose index is denoted by O. This mapping is maintained in a lookup
table LUTOffset. */

4: for G = 0 to Nw/64 step 64 do
5: O = LUTOffset[B];
6: αx[T ] = ∂C/∂νx[O +G+ T ]; αy[T ] = ∂C/∂~νy[O +G+ T ]; αz[T ] = ∂C/∂~νz[O +G+ T ];
7:

8: /* Obtain the normalized coordinates (u, v, w) for the voxel within the tile. Code is omitted.
*/

9:

10: P = 0; // The (l,m, n) combination number, ranging from 0 to 63
11: for n = 0 to 3 step 1 do
12: for m = 0 to 3 step 1 do
13: for l = 0 to 3 step 1 do
14: U = βl(u)βm(v)βn(w); // Evaluate the basis function product

15: /* Store the ∂ ~C/∂P value contributed by this voxel. */
16: Rx[T ] = ~αx[T ]× U ; Ry[T ] = ~αy[T ]× U ; Rz[T ] = ~αz[T ]× U ;
17:

18: /* Since there are 64 threads operating on different voxels, each thread will generate
a ∂C/∂P value per voxel corresponding to the (l,m, n) combination. Reduce these
values to a single value and store in Rx[0], Ry[0], and Rz[0]. Code is omitted. */

19:

20: syncthreads(); // Threads wait here until the reduction is complete
21: /* Thread 0 accumulates the ∂C/∂P values corresponding to this (l,m, n) combina-

tion. */
22: if T = 0 then
23: Qx[P ] = Qx[P ] +Rx[0]; Qy[P ] = Qy[P ] +Ry[0]; Qz[P ] = Qz[P ] +Rz[0];
24: end if
25: syncthreads();
26: P = P + 1; // Move on to the next combination
27: end for
28: end for
29: end for
30: end for
31: /* Identify the 64 control points affecting the tile using LUTCP and store ∂C/∂P values to the

appropriate bins. */
32: K = LUTCP[64 ∗B + T ];
33: Vx[64×K + T ] = Qx[T ]; Vy[64×K + T ] = Qy[T ]; Vz[64×K + T ] = Qz[T ];

Kernel 4 implements the second stage of the flow in Fig. 2.6. It reduces the 64 ∂C/∂P

values into a final gradient value for each control point. Lines 8–16 use shared memory to

interleave the (x, y, z) components of the ∂C/∂P stream to improve the coalescence of write

to GPU global memory in line 18. Kernel 4 is launched with as many threads as there are



2. UNIMODAL B-SPLINE REGISTRATION 33

Kernel 4 Optimized kernel design for computing the gradient ∂C/∂P . Stage 2.

1: /* Get the thread index T and the thread-block index B for this thread. */
2: ξx[T ] = Vx[64×B + T ]; ξy[T ] = Vy[64×B + T ]; ξz[T ] = Vz[64×B + T ];
3: syncthreads();
4:

5: /* Reduce ~ξ and store results in ~ξ[0]. Code is omitted. */
6:

7: /* Interleave gradient values in shared memory and store to GPU global memory. */
8: if T == 0 then
9: ψ[0] = ξx[0];

10: end if
11: if T == 1 then
12: ψ[1] = ξy[0];
13: end if
14: if T == 2 then
15: ψ[2] = ξz[0];
16: end if
17: if T ≤ 2 then
18: ∂C/∂P [3×B + T ] = ψ[T ];
19: end if

control points.

To summarize, the optimized GPU implementation focuses primarily on restructuring

the B-spline algorithm to use available GPU memory and processing resources as effectively

as possible. We restructure the data flow of the algorithm so that loads from global memory

are performed only once and in a coalesced fashion for optimal bus bandwidth utilization.

Data fetched from global memory is placed into shared memory where threads within a

thread block may quickly and effectively work together. Furthermore, for efficient parallel

processing, we recognize the smallest independent unit of work is a tile. This leads to an

interesting situation in which high-resolution control grids provide many smaller work units

while lower-resolution ones provide fewer, but larger work units. So, high-resolution grids

yield a greater amount of data parallelism than lower-resolution ones, leading to better

performance on the GPU.



2. UNIMODAL B-SPLINE REGISTRATION 34

2.3 Performance Evaluation

We present experimental results obtained for the CPU and GPU implementations in terms

of both execution speed and registration quality. We compare the performance achieved by

six separate implementations: the single-threaded reference code, the multi-core OpenMP

implementation on the CPU, and four GPU-based implementations. The GPU implemen-

tations are: the naive method comprising of Kernels 1 and 2, and three versions of the

optimized implementation comprising of Kernels 1, 3 and 4—the first version uses a LUT

of pre-computed basis-function products whereas the second version computes these values

on the fly. The third version simply implements the standard code optimization technique

of loop unrolling in an effort to maximize performance—the innermost loop (lines 13-27)

of Kernel 3 is fully unrolled and the tree style sum reduction portrayed in line 18 is also

fully unrolled. The reason for comparing the first two versions of the optimized GPU-based

design is to experimentally determine if the GPU can evaluate the B-spline basis functions

faster than the time taken to retrieve pre-computed values from the relatively slow global

memory. We also quantify each implementation’s sensitivity to both volume size as well as

control-point spacing (i.e., the tile size). The tests reported in this section were performed

on a machine with two Intel Xeon E5540 processors (a total of eight CPU cores), each

clocked at 2.5GHz, 24 GB of RAM, and an NVidia Tesla C1060 GPU card. The Tesla GPU

contains 240 cores, each clocked at 1.5 GHz, and 4 GB of onboard memory.

2.3.1 Registration Quality

Fig. 2.7 shows the registration of two 512 × 512 × 128 CT images of a patient’s thorax on

the GPU. The image on the left is the reference image, captured as the patient was fully



2. UNIMODAL B-SPLINE REGISTRATION 35

Exhaled Image Inhaled Image

Figure 2.7: Unimodal inhaled to exhaled lung registration. Deformable registration
result for two 3D CT images. Deformation vector field is shown superimpoed upon inhaled
image. Performed using optimized GPU implementation.

Exhaled Lung Inhaled Lung

Figure 2.8: Unimodal inhaled to exhaled lung registration (Zoom View). An
expanded view of the deformable registration result. The superimposed deformation field shows
how the inhaled lung has been warped to register to the exhaled lung.

exhaled, and the image on the right is the moving image, captured after the patient had

fully inhaled. The resulting vector field after registration is overlaid on the inhale image.

Fig. 2.8 is a zoomed-in view of Fig. 2.7, focusing on just the left lung. To determine the



2. UNIMODAL B-SPLINE REGISTRATION 36

registration quality, we generate the deformation field by running the registration process

for 50 iterations and then compare the results against the reference implementation. The

multi-core versions generate near-identical vector fields with an RMS error of less than 0.014

with respect to the reference.

2.3.2 Sensitivity to Volume Size

We test each algorithm’s sensitivity to increasing volume size by holding the control-point

spacing constant at 10 voxels in each physical dimension while increasing the size of syn-

thetically generated input volumes in steps of 10 × 10 × 10 voxels. For each volume size,

we record the execution time taken for a single registration iteration to complete. Fig. 2.9

shows the results for each of the five implementations. The plot on the left compares all

five implementations, where we see that the execution time increases linearly with the num-

ber of voxels in a volume. The multi-core implementations provide an order of magnitude

improvement in execution speed over the reference implementation. For large volume sizes

around 3503, the most highly optimized GPU implementation achieves a speedup of 15x

compared to the reference code, whereas the muli-core CPU implementation achieves a

speedup proportional to the number of CPU cores (8x when executed on our dual Xeon

E5540 4-core processors). Furthermore, note that the naive GPU implementation cannot

handle volumes having more than 4.3 × 107 voxels. Recall that Kernel 2 suffers from a

serious performance flaw: redundant and coalesced loads of ∂C/∂~ν values from GPU global

memory. Using the texture unit as a cache provides a method of mitigation, but the re-

sulting speedup varies unpredictably with control-grid resolution (see Fig. 2.10). Moreover,

the texture unit cannot cache very large volumes, limiting the maximum size that the naive



2. UNIMODAL B-SPLINE REGISTRATION 37

0

150 x 150 x 150

200 x 200 x 200

250 x 250 x 250

300 x 300 x 300

350 x 350 x 350
0

5

10

15

20

25

Volume Size (voxels)

E
xe

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)

 

 

Single Core CPU

Multi−Core CPU

"Naive" GPU

Optimized GPU (On−The−Fly)

Optimized GPU (LUT)

0
0

0.5

1

1.5

2

2.5

3

3.5

4

 

 

200 x 200 x 200

250 x 250 x 250

300 x 300 x 300

350 x 350 x 350

Volume Size (voxels)

400 x 400 x 400

440 x 440 x 440

E
xe

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)

Multi−Core CPU

Optimized GPU (On−The−Fly)

Optimized GPU (LUT)

Optimized GPU (LUT, Unrolled)

Figure 2.9: Unimodal algorithm execution times vs image volume size. (Left) The
execution time for a single registration iteration is shown as a function of volume size. The
control-point spacing is fixed at 10× 10× 10 voxels. (Right) Execution time versus volume size
for the various multi-core implementations.

implementation can correctly process to about 3503 voxels.

The plot on the right focuses in on just the multi-core CPU and GPU designs. The opti-

mized GPU implementation that uses a LUT to evaluate the B-spline basis-function product

outperforms the version that computes these values on the fly by nearly 8% for large input

volumes. Further optimization by unrolling the main gradient computation loop in Kernel

3 results in an additional 14% increase in speed. This unrolled LUT-based implementation

achieves a speedup of approximately 1.5 times over the multi-core CPU implementation for

large volumes, making it about 15 times faster than the reference implementation.

2.3.3 Sensitivity to Control-Point Spacing

The optimized GPU design achieves short iteration times by assigning individual volume

tiles to processing cores as the basic work unit. Since tile size is determined by the spac-

ing between control points, we investigated whether the execution time is sensitive to the



2. UNIMODAL B-SPLINE REGISTRATION 38

0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

Grid Spacing (voxels)

E
xe

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s
)

 

 

Single Core CPU

Multi−Core CPU

"Naive" GPU

Optimized GPU (On−The−Fly)

Optimized GPU (LUT)

C
P

U
 o

v
e

rt
a

k
e

s
 G

P
U

0 10 20 30 40 50
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Grid Spacing (voxels)

E
xe

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s
)

 

 

Multi−Core CPU

Optimized GPU (On−The−Fly)

Optimized GPU (LUT)

Figure 2.10: Unimodal algorithm execution times vs B-spline grid resolution. (Left)
The execution time for a single registration iteration is shown as a function of the control-point
spacing (same in all three dimensions). The volume size is held constant at 256×256×256 voxels.
(Right) The execution time versus control-point spacing for the multi-core implementations.

control-point spacing. The left plot in Fig. 2.10 shows the impact of different grid spacings

on our B-spline implementations when the volume size is fixed at 256 × 256 × 256 voxels.

Notice that all implementations, except for the naive GPU version, are agnostic to spacing.

The right plot in Fig. 2.10 focuses just on the multi-core designs. Interestingly, the multi-

core CPU implementation outperforms the optimized GPU implementations for coarse con-

trol grids, starting at a spacing of about 40 voxels. The higher-clocked CPU cores process

these significantly larger tiles more rapidly than the lower-clocked GPU cores. So, for prac-

titioners doing multi-resolution registration, the coarser control grids can be handled by the

CPU whereas the GPU-based design can be invoked as the control-point spacing becomes

finer.

2.4 Conclusions

We have developed a grid-alignment technique and associated data structures that greatly

reduce the complexity of B-spline based registration. We have then used the main ideas



2. UNIMODAL B-SPLINE REGISTRATION 39

underlying the aligned-grid method to develop highly-parallel and scalable designs for com-

puting the score and cost-function gradient on multi-core processors. We have demonstrated

the speed and robustness of our parallelization strategy via experiments using both clini-

cal and synthetic data. When compared to a highly optimized sequential implementation,

the multi-core CPU version achieves a linear speedup when executed on eight cores. The

GPU version, when executed on the Tesla 1060 GPU with 240 SIMD cores, achieves a

speedup of 15 times over the sequential code. Our experiments also demonstrate a fairly

strong independence between the B-spline grid resolution and execution time for our parallel

algorithms.

The presented method for accelerating the cost function gradient computation on multi-

core processors provides a solid foundation for developing fast parallel registration using

mutual information as a similarity metric. Due to the cost function independent nature

of Kernels 3 and 4, these highly efficient data parallel algorithms may easily be applied to

any similarity for which the change in the cost function can be analytically expressed with

respect to the vector field. Consequently, we are currently in the process of developing such

a GPU-accelerated mutual information deformable registration technique. Additionally,

the performance results obtained for the OpenMP based multi-core CPU implementation

are nearly comparable to those provided by the Telsa C1060. We are currently in the

processes of extending this multi-core implementation to use vectorized extensions such as

SSE in order to provide an even more complete comparison with respect to state-of-the-art

graphics processing units.



CHAPTER 3: MULTI-MODAL B-SPLINE REGISTRATION

This chapter describes how the B-spline registration algorithm may be extended to perform

multi-modal image registration by utilizing the statistically based mutual information sim-

ilarity metric. Modifications to the algorithm structure and data flow presented in Chapter

2 are discussed in detail, and strategies for accelerating these new algorithmic additions are

explored. Specific attention is directed towards developing fast and memory efficient data

parallel methods of constructing marginal and joint image intensity histograms, since these

data structures are key to successfully performing this statistically based image registration

method. The impact of the mutual information similarity metric on the analytic formalism

driving the vector field evolution is covered in depth. Consequently, the partial volume

interpolation method is also introduced; dictating how the image intensity histogram data

structures evolve with the vector field evolution. Single-core CPU, multi-core CPU and

many-core GPU based implementations are benchmarked for performance using synthetic

image volumes. Finally, quality is assessed by example through a multi-modal thoracic MRI

to CT deformable registration.

3.1 Overview of Multi-Modal B-spline Registration

The B-spline deformable registration algorithm maps each and every voxel in a static image

S to a corresponding voxel in a moving image M as described by a deformation field ~ν which



3. MULTI-MODAL B-SPLINE REGISTRATION 41

is defined at each and every voxel within the static image. An optimal deformation field

accurately describes how the voxels in M have been displaced with respect to their original

positions in S. The existence of such an optimal and physically meaningful deformation

field assumes that the two images represent the same underlying physiology. If the images

are obtained using the same imaging method, the registration is said to be uni-modal

and the quality of the deformation field is assessed using the sum of squared differences

between the intensity values of voxels in the static image and the corresponding voxels in

the warped moving image. Alternatively, images obtained using differing imaging methods

must be matched using multi-modal registration. The registration modality is important

since assessing the quality of the deformation field for multi-modal registrations requires

more complex methods than those required by uni-modal registration. This is due to the

involved images having different color spaces which are not guaranteed to possess any type of

linear or one-to-one mapping. Mutual information and normalized mutual information are

widely-used similarity metrics when registering multi-modality images in which the mutual

information quantifies the amount of information content common to the two images [55].

The images will be optimally aligned when the shared information content is maximized

Fig. 3.1 shows the overall process used for registering multi-modality images in this

paper, comprising of the following major steps: 1) generating a deformation field using the

B-spline coefficients, 2) applying the deformation field to the moving image, 3) generating

voxel-intensity histograms for both the static and deformed moving images as well as their

joint histogram, 4) computing the mutual information using the histograms to assess the

registration quality, 5) computing the change in the mutual information with respect to the

B-spline coefficients, and 6) generating a new set of B-spline coefficients. The above process



3. MULTI-MODAL B-SPLINE REGISTRATION 42

Static

Image (S)

Moving

Image (M)

Per Voxel

Correspondence

Deformation

Field (v)

B-spline

Coe!cients (P)

Moving Image

Histogram

(h    )

Static Image

Histogram

(h  )

Joint

Histogram

(h )

Mutual Information

(C)

Compute

Partial Volumes (w)

Partial Volume

Spatial Derivatives

Gradient

Descent

∂C

∂hj

∂C

∂v

jS

M

∂C

∂P

∂v

∂P

INPUTS ITERATIVE REGISTRATION PROCESS

Figure 3.1: Flowdiagram of mutual information based registration. The overall
process used to register multi-modality images using mutual information as the similarity met-
ric. All major steps in this process (except for the gradient descent optimization) have been
parallelized on multi-core processors including the GPU.

is repeated until an optimal deformation field is obtained that warps the moving image such

that it is most similar to the static image. The number of iterations required depends on

factors such as the severity of the initial misalignment, the complexity of local deformations

in the patient’s anatomy, and the level of accuracy the end-user deems necessary.

Each iteration of the process shown in Fig. 3.1 optimizes the deformation field ~ν, re-

sulting in a more accurate mapping or correspondence of voxels in the static image to

coordinates within the moving image. Any given voxel in the static image can map to



3. MULTI-MODAL B-SPLINE REGISTRATION 43

a point lying between multiple voxels in the moving image; in 3D images for example, a

voxel in the static image can map to eight neighboring voxels in the moving image. The

case of “one-to-many” correspondence is handled via a technique called partial volume

interpolation, originally proposed by Maes et al. [56], and discussed in greater detail in Sec-

tion 3.1.2. Once the correspondence has been performed for a voxel and the partial volumes

have been computed, the intensity histograms for the static and moving images, as well

as the joint histogram, are updated appropriately. These histograms capture the entropy

in the individual images as well as the joint entropy describing the amount of uncertainty

when considering both images as a joint system. For 3D images, this means updating one

static-image histogram bin, eight moving-image histogram bins, and eight joint-histogram

bins. The completed histograms are then used to compute the mutual information, which

measures how similar the static image is to the moving image (after the moving image is

subjected to ~ν).

The best registration is obtained by modifying the deformation field ~ν so as to maximize

the mutual information. This process can be posed as an optimization problem. However,

since medical-image volumes can be quite large1 and since the deformation field is defined at

every voxel, operating on the vector field directly is a problem too large to handle even for

modern computers. For faster computation, the deformation field ~ν can be parameterized

using a sparse number of B-spline coefficients which results in a compressed representation of

the deformation field. The problem then becomes one of optimizing the B-spline coefficients

~P to maximize the mutual information cost function C. Performing this optimization via

gradient descent (or quasi-Newtonian) methods requires that we know how the cost function

1A typical image volume has a resolution of 512 × 512 × 128 voxels, or about 33 million voxels.



3. MULTI-MODAL B-SPLINE REGISTRATION 44

C changes with respect to the B-spline coefficients ~P . The steps needed to obtain this

derivative ∂C
∂P are also outlined in Fig. 3.1 and are described in greater detail in Section 3.2.4.

3.1.1 Using B-splines to Represent the Deformation Field

Given a number of uniformly-spaced discrete control points, a second-order continuous func-

tion involving these points can be described using uniform cubic B-spline basis functions.

Describing a function in this fashion is advantageous when the desired function is unknown

but we are required to maximize an optimization condition while maintaining second-order

continuity. In deformable image registration, the deformation field ~ν that maps voxels in

the static image to voxels in the moving image must maintain this level of smoothness; yet

the form of ~ν is not known when starting the registration process since ~ν depends on the

geometry of the anatomy being registered. It is therefore advantageous to parameterize

the dense deformation field ~ν using a sparse set of control points, which are uniformly dis-

tributed throughout the fixed image’s voxel grid. The placement of control points forms

two grids that are aligned to one another: a dense voxel grid and a sparse control-point

grid. As shown in Fig. 3.2, the control-point grid partitions the voxel grid into equally

sized regions called tiles. The deformation field ~ν can be found at any given voxel within

a tile by performing B-spline interpolation using control points with local support regions

that include the tile. Since the local support region for a cubic spline curve involves four

control points in each of the three dimensions, computing a single point in the displacement

field involves the 64 control points found in the immediate vicinity of a voxel’s housing tile.

Also, since three coefficients, px, py, and pz, are associated with each control point, the

interpolation uses 192 coefficients.



3. MULTI-MODAL B-SPLINE REGISTRATION 45

B-spline

control point

3x3 Tile of

Voxels

Voxel (2,1)

in Tile (5,1)

Figure 3.2: Superimposition of control-point and voxel grids. The grid of uniformly
spaced B-spline control points partitions the voxel grid into equally sized tiles. In this example,
each tile is three voxels wide and three voxels tall. The number of control points in the x -
dimension is three greater than the number of tiles in the x -dimension. Although not shown,
this is true for all dimensions.

Mathematically, the x-component of the deformation field for a voxel located at coordi-

nates ~x = (x, y, z) in the fixed image can be described as

νx(~x) =
3∑
i=0

3∑
j=0

3∑
k=0

βi(u)βj(v)βk(w)px(l,m, n). (3.1)

The components in the y and z directions are defined similarly. The symbols l,m, and n

are indices for control points in the neighborhood of the tile of interest, and in the 3D case

there are 64 combinations for l, m, and n. If (Nx, Ny, Nz) are the dimensions, in voxels, of a

tile, then
⌊
x
Nx

⌋
−1,

⌊
y
Ny

⌋
−1, and

⌊
z
Nz

⌋
−1 denote the x, y, and z coordinates, respectively,

of the tile in the volume within which a voxel ~x falls, and the set of control points indexed

by l, m, and n is

l =

⌊
x

Nx

⌋
− 1 + i, m =

⌊
y

Ny

⌋
− 1 + j, n =

⌊
z

Nz

⌋
− 1 + k. (3.2)

In (3.1), βi is the B-spline basis function along the x-direction given as



3. MULTI-MODAL B-SPLINE REGISTRATION 46

βi(u) =


(1−u)3

6 : i = 0
3u3−6u2+4

6 : i = 1
−3u3+3u2+3u+1

6 : i = 2
u3

6 : i = 3,

(3.3)

with βj and βk defined similarly in the y and z directions, respectively. Finally, ~q = (u, v, w)

denotes the local coordinates of voxel ~x within its housing tile where

u =
x

Nx
−
⌊
x

Nx

⌋
, v =

y

Ny
−
⌊
y

Ny

⌋
, w =

z

Nz
−
⌊
z

Nz

⌋
. (3.4)

Since the basis function is only defined within the range between 0 and 1, the local coordi-

nates are appropriately normalized to fall within this range.

Representing the dense deformation field as a sparse set of B-spline coefficients is akin

to information compression and the deformation field is optimized by modifying only its

compressed form. In other words, the deformation field is never directly modified but

is always tuned via the B-spline coefficient values. Obtaining the deformation field from

B-spline coefficients is akin to a decompression operation, which is needed to check the

registration quality. Fig. 3.3 shows the process of obtaining a deformation vector at a single

voxel. The vector’s coordinate, ~x, is specified in terms of the coordinate pair (~p, ~q). The

tile ~p within which the deformation vector is computed determines the set of 64 B-spline

control points involved in the decompression operation. The local coordinate ~q is used to

retrieve the pre-computed evaluation of the B-spline basis function stored within the lookup

tables LUT Bspline x, LUT Bspline y, and LUT Bspline z. Line 20 uses the control-point

indices (l,m, n) and the dimensions of the control-point grid to compute a one-dimensional

index into the data structure used to store the B-spline coefficients (shown in Fig. 3.4).



3. MULTI-MODAL B-SPLINE REGISTRATION 47

1: function decompress vector (~c, ~N , ~p, ~q)
2: /* vector ~c contains the control-point grid dimensions */

3: /* vector ~N contains the tile dimensions */

4: /* vector ~p contains the voxel’s tile coordinates */

5: /* vector ~q contains the voxel’s local coordinates within the tile */

6: /* Returns ~ν, the displacement vector at voxel */

7:

8: ~ν = 0.0
9: for k = 0 to 3 step 1 do

10: n = pz + k
11: βn = LUT Bspline z[k × Nz + qz]
12: for j = 0 to 3 step 1 do
13: m = py + j
14: βm = LUT Bspline y[j × Ny + qy]
15: for i = 0 to 3 step 1 do
16: l = px + i
17: βl = LUT Bspline x[i × Nx + qx]
18:

19: /* Get index into coefficient look up table clut, given l,m, n */

20: cidx = 3× ((n× cx × cy) + (m× cx) + l)
21:

22: /* Add the control point’s contribution to displacement vector */

23: Q = βl × βm × βn
24: νx = νx +Q× clut[cidx + 0]
25: νy = νy +Q× clut[cidx + 1]
26: νz = νz +Q× clut[cidx + 2]
27: end for
28: end for
29: end for
30: return ~ν
31: end function

Figure 3.3: Obtaining a deformation vector at a given voxel

Px,0,0,0 Py,0,0,0 Pz,0,0,0 Px,0,0,1 Py,0,0,1 Pz,0,0,1 Px,0,0,1 Py,0,0,1 Pz,0,0,1 Px, N +3, N +3, N +3x y z
Py, N +3, N +3, N +3x y z

Pz, N +3, N +3, N +3x y z

Organization of coefficient look-up table:

Figure 3.4: Organization and memory layout of the coefficient look-up table. The
number of control points in the control grid is greater than the number of tiles by three in each
dimension as shown in Fig. 3.2.

Finally, lines 23 through 26 accumulate the contribution of control point (l,m, n) to the

three components of ~ν(~x).

Obtaining the entire deformation field is a simple matter of applying the technique



3. MULTI-MODAL B-SPLINE REGISTRATION 48

shown in Fig. 3.3 for every voxel ~x in the static image S. The most effective SIMD-style

threading model on the GPU to obtain the correspondence between the static and moving

images is to assign one thread per voxel in S. Given an execution grid of threads, each

thread uses its unique identifier within the grid to locate the voxel and compute the voxel’s

tile and local coordinates, ~p and ~q, respectively. Once these coordinates are obtained,

each thread can decompress the vector at its voxel location in parallel using the operations

listed in Fig. 3.3. Once a thread has obtained the deformation vector ~ν, it continues to

work independently to find the correspondence in the moving image, which will consist of

a group of eight voxels. The thread then computes the partial volumes associated with

this neighborhood of voxels and accumulates them into the image histograms. The lookup

tables LUT Bspline x, LUT Bspline y, LUT Bspline z, and clut are stored as textures to

accelerate memory reads through the caching provided by the GPU’s texture unit.

3.1.2 Mutual Information as a Cost Function

A cost function is used to determine the quality of the deformation field ~ν, which is equiv-

alent to assessing the registration quality since ~ν directly determines the voxel correspon-

dence between the static and moving images. Since higher-quality deformation fields result

in greater similarity between the static and moving images, the cost function is also referred

to in the literature as the similarity metric. The cost function for assessing the quality of

a unimodal registration simply accumulates the square of the intensity difference between

the static image S and the moving image M subject to the deformation field ~ν as

1

N

∑
z

∑
y

∑
x

(S(x, y, z)−M(x+ νx, y + νy, z + νz))
2, (3.5)



3. MULTI-MODAL B-SPLINE REGISTRATION 49

where N is the total number of voxels mapping from S to M . However, this cost function

cannot be used to access the quality of a deformation field that is attempting to register

images acquired using different imaging modalities since these images may have differing

voxel intensity maps for identical anatomy. For such multi-modality registrations, the more

sophisticated cost function of mutual information (MI) may be used which quantifies the

amount of information content the two images share in common; the images will be optimally

aligned when the shared information content is maximum [55]. To understand MI as a cost

function, consider the intensity a of a voxel located at coordinates ~x within the static image,

a = S(~x), and the intensity b of a voxel at coordinates ~y within the moving image, b = M(~y).

The goal is to apply a coordinate transform T(~y) to the moving image such that it registers

best with the static image. The statistical MI is obtained as

I =
∑
a,b

pj(a,T(b)) ln
pj(a,T(b))

pS(a)pM (T(b))
, (3.6)

which depends on the probability distributions of the voxel intensities in the static and

moving images. So, we can view a and b as random variables with associated probability

distribution functions pS(a) and pM (b), respectively, and joint probability pj(a, b). Applying

the spatial transformation T(~y) to M modifies pj(a, b) and this effect is implied using the

notation pj(a,T(b)). Furthermore, if T results in voxels being displaced outside the moving

image, pM (T(b)) will change, and if T results in a voxel being remapped to a location that

falls between points on the voxel grid, some form of interpolation must be employed to

obtain b, which will modify pM (b) as well. These effects are implied using the notation

pM (T(b)).



3. MULTI-MODAL B-SPLINE REGISTRATION 50

Δ

Static Image Moving Image

Δ

Nearest Neighbors Partial Volumes

1

23

4

1

2 3

4

(a)

1 2 3 4

added amounts are equal to

corresponding partial volumes

(b)

4
1

32

intensity

#
 o

f 
v
o

x
e

ls
Figure 3.5: Partial volume interpolation. (a) Partial volume interpolation for 2D images
using a neighborhood of four voxels. Notice that the first partial volume is the smallest since
the first neighbor is the furthest away from the interpolation point ∆. (b) The nearest-neighbor
voxels are binned according to their intensity values. The amount added to each bin is deter-
mined by each voxel’s corresponding partial volume which is equivalent to adding fractional
voxels to each involved histogram bin.

The interpolation method used to obtain b, given T(y), is important both in terms of

execution speed and solution convergence. Our implementation uses the partial volume

interpolation (PVI) method proposed by Maes et al. [56]. Fig. 3.5 shows an example of

computing partial volumes for 2D images in which the deformation vector has mapped a

pixel in the static image to a point falling within a neighborhood of four pixels in the moving

image. The pixel centers are shown as black circles and the interpolation point is denoted

by ∆. The interpolation method divides the volume defined by the four neighboring voxels

into corresponding partial volumes that share the interpolation point as a common point.

Once the partial volumes are computed, they are placed into the histogram bins of the

corresponding voxels as shown in Fig. 3.5(b).

For 3D images, PVI is performed using a neighborhood of eight voxels where the partial



3. MULTI-MODAL B-SPLINE REGISTRATION 51

1: /* Compute partial volumes */

2: function compute pv (~∆)
3: /* Here { } is the sawtooth function (i.e. {x} = x− bxc) */

4: w0 = (1− {∆x})× (1− {∆y})× (1− {∆z})
5: w1 = (0 + {∆x})× (1− {∆y})× (1− {∆z})
6: w2 = (1− {∆x})× (0 + {∆y})× (1− {∆z})
7: w3 = (0 + {∆x})× (0 + {∆y})× (1− {∆z})
8: w4 = (1− {∆x})× (1− {∆y})× (0 + {∆z})
9: w5 = (0 + {∆x})× (1− {∆y})× (0 + {∆z})

10: w6 = (1− {∆x})× (0 + {∆y})× (0 + {∆z})
11: w7 = (0 + {∆x})× (0 + {∆y})× (0 + {∆z})
12: return ~w
13: end function

14:

15: /* Computes indices of the eight nearest neighbors */

16: function find nearest neighbors (~∆,MX ,MY )
17: /* MX and MY are the dimensions of the moving image in the x and y

directions, respectively */

18: n0 = (b∆zc ×MX ×MY ) + (b∆xc ×MX) + b∆xc
19: n1 = n0 + 1
20: n2 = n0 +MX

21: n3 = n2 + 1
22: n4 = n0 +MX ×MY

23: n5 = n4 + 1
24: n6 = n4 +MX

25: n7 = n6 + 1
26: return ~n
27: end function

Figure 3.6: Computation of partial volumes and nearest neighbors

volumes, w0 through w7, are defined in terms of the interpolation point ∆ as shown by the

compute pv function in Fig. 3.6. Note that
∑7

i=0wi = 1. Once the partial volumes have

been computed, they are placed into the histogram bins of the corresponding voxels: partial

volume w0 is placed into the histogram bin associated with neighboring voxel n0, w1 with

n1, and so on. The indices of the bins are computed using the find nearest neighbors

function, also listed in Fig. 3.6. The PVI technique is used to compute both pM (T(b)) and

pj(a,T(b)). Since the static image is not subject to the coordinate transform T, PVI does

not apply when generating pS(a). However, if T results in a voxel ~x within S mapping

outside of M , then that voxel is not included in the distribution pS(a). Such voxels cannot



3. MULTI-MODAL B-SPLINE REGISTRATION 52

be registered, and so are excluded when computing the cost function and related items such

as intensity distributions.

Given that the coordinate transformation T is defined by the deformation field ~ν such

that T(b) = M(T(y)) = M(~x+ ~ν) = M(~∆), an algorithm to compute the mutual informa-

tion cost function C is best implemented by modifying (3.6) as

C =
1

N

KS∑
j=0

KM∑
i=0

hj(i, j) ln
N × hj(i, j)
hS(j)× hM (i)

(3.7)

where the probability distributions pS(a), pM (T(b)), and pj(a,T(b)) are constructed as

image histograms hS , hM , and hj consisting of KS , KM , and KS ×KM bins, respectively.

Also, (3.7) incorporates N , the number of voxels being registered, thereby allowing the

use of unnormalized histograms (which reduces the number of division operations during

histogram generation).

3.2 Efficient Computation of Mutual Information

Evaluating the MI-based cost function in (3.7) requires constructing the image histograms

hS , hM , and hj . Generating these histograms using a serial (or single-threaded) program,

as shown in Fig. 3.7, is straightforward. First, the voxel a = S(~x) found at the tail of

the deformation vector located at ~x is processed for inclusion in the static-image histogram

hS(a). This is a simple matter of determining which bin the intensity value a falls within,

and incrementing it by one (lines 6 and 7). The second operation is to compute the coor-

dinates of the eight corresponding voxels, n0 through n7, associated with T(~y) within the

moving image by looking at the head of the deformation vector ~ν with the tail placed at ~x

(line 10). Similarly, the partial volumes, w0 through w7, are obtained in line 11 for PVI.



3. MULTI-MODAL B-SPLINE REGISTRATION 53

1: /* Calculate the appropriate bin in the static-image histogram and increment it

*/

2: /* hS [ ] is an array containing histogram values */

3: /* BS is the destination bin for voxel a = S(~x) */

4: /* OS is the minimum static-image voxel value */

5: /* DS is the histogram bin spacing */

6: BS = b(S(~x)−OS)/DSc
7: hS [BS ] = hS [BS ] + 1
8:

9: /* Use the deformation vector ~ν to find nearest neighbors and partial volumes

*/

10: ~n = find nearest neighbors (~x+ ~ν,MX ,MY )
11: ~w = compute pv (~x+ ~ν)
12:

13: /* Add partial volumes to the moving-image histogram and the joint histogram */

14: /* hM [ ] is an array containing the moving-image histogram values */

15: /* hJ [ ] is a 2D array of values in the joint histogram */

16: /* BM is the destination bin for voxel b = S( ~nx)*/
17: /* OM is the minimum moving-image voxel value */

18: /* DM is the histogram bin spacing */

19: for i = 0 to 7 step 1 do
20: BM = b(M(ni)−OM )/DMc
21: hM [BM ] = hM [BM ] + wi

22: hj [BM ][BS ] = hj [BM ][BS ] + wi

23: end for

Figure 3.7: Serial method of histogram construction

(The expanded definitions of functions find nearest neighbors and compute pv can be

found in Fig. 3.6.) For each of the eight voxels, the associated bin within the moving-image

histogram hM is incremented by the corresponding partial volume (lines 20 and 21). Ad-

ditionally, the joint-histogram bins of interest are easily found using the appropriate bin

within hS and the eight bins within hM . Each of these bins within the joint histogram

hj is incremented by the appropriate partial volume (line 22). After the above-described

process is performed for every voxel in the static image possessing a correspondence, the

image histograms are complete1.

The algorithm listed in Fig. 3.7 is invoked for each vector ~ν in the deformation field

1Voxels mapping to coordinates outside the moving image have no correspondence.



3. MULTI-MODAL B-SPLINE REGISTRATION 54

and since the number of vectors equals the number of voxels found in the static image,

this algorithm must be invoked N times. When trying to improve computational efficiency,

the algorithm cannot be simply invoked in parallel across N threads due to write hazards

associated with histogram construction wherein two or more threads attempt to increment

the same histogram bin simultaneously. We use two separate thread-safe techniques: one

targeting hS and hM , and the other targeting hj to construct the image histograms in

parallel on the GPU. Since both methods make effective use of the memory hierarchy

available within the GPU, we familiarize the reader with this topic via the following brief

discussion. The interested reader is referred to Kirk and Hwu for more details [57].

The memory hierarchy within a GPU comprises of registers, shared memory, and global

memory. Registers provide the fastest access but are also the most scarce. They exhibit

thread-level scope, meaning every thread is assigned a set of registers that store data that

is private to that thread. Shared memory is the fastest memory type accessible to multiple

threads; it exhibits what is known as thread-block scope. Since GPU kernels can comprise

of thousands of threads, these threads are grouped into many smaller sets called thread

blocks of up to 512 threads each, and each thread block is assigned a modest amount of

shared memory that allows the threads within the block to communicate quickly with each

other. The size of the shared memory assigned to a thread block ranges from 16KB to 48KB

on various GPU platforms1. Finally, ranging on the order of gigabytes, global memory is

the largest yet slowest memory available. It is accessible to every thread, which provides a

means for threads blocks to communicate with each other. Furthermore, global memory is

1The Tesla C1060 GPU limits the size of shared memory available to each thread block to 16KB whereas

the C2050 GPU provides up to 48KB to each thread block.



3. MULTI-MODAL B-SPLINE REGISTRATION 55

how the CPU and GPU exchange data and it remains persistent between multiple kernel

invocations. Consequently, kernels generally begin with a read from global memory and

end with a write to global memory.

3.2.1 Constructing Histograms for the Static and Moving Images

This technique partitions an image into many non-overlapping subregions. Each subregion

is assigned to a unique thread block which then generates a histogram for its assigned

subregion of the image, where the size of a subregion (in voxels) equals the number of

threads within a thread block. Fig. 3.8 describes the operations performed by a thread

block computing the moving-image histogram, beginning with each thread obtaining the

deformation vector ~ν corresponding to its assigned voxel ~x within the subregion delegated

to the thread block. Given ~ν, each thread computes the eight nearest neighbors in the

moving image corresponding to the static-image voxel ~x and the weights associated with

each of these neighbors by computing the partial volumes (lines 4 and 5). Upon reaching

line 8, each thread has local copies of 16 items: the indices of the nearest neighbors and the

associated weights. At this point, all threads simultaneously place each of the eight weights

into the moving-image histogram bins associated with the intensity values of the nearest

neighbors (lines 9 through 13).

Since all threads within a thread block perform the operations listed in Fig. 3.8 concur-

rently, we ensure that threads wishing to modify the same histogram bin do not modify the

same memory location simultaneously. If a thread block has NB threads, we divide each bin

into NB partitions as shown in Fig. 3.9. This data structure, s partitions, resides within

the GPU’s shared memory and allows each thread to have its own copy of each histogram



3. MULTI-MODAL B-SPLINE REGISTRATION 56

1: /* Note: Each thread is assigned a deformation vector ~ν */

2:

3: /* Each thread finds nearest neighbors and partial volumes */

4: ~n = find nearest neighbors (~x+ ~ν,MX ,MY )
5: ~w = compute pv (~x+ ~ν)
6:

7: /* Accumulate weights into shared memory array s partitions */

8: /* Here threadIdx is the index of the thread within the thread block */

9: for i = 0 to 7 step 1 do
10: BM = b(M(ni)−OM )/DMc
11: idx = threadIdx +BM × threadsPerBlock

12: s partitions[idx] = s partitions[idx] + wi

13: end for
14:

15: /* Synchronize threads to this point */

16: syncthreads()

17:

18: /* Assign each thread to a single sub-histogram bin */

19: if threadIdx < num bins then
20: sum = 0.0

21: element = (threadIdx) AND (0x0F)
22: offset = threadIdx× threadsPerBlock

23:

24: /* Merge bin partitions */

25: for i = 0 to (threadsPerBlock− 1) step 1 do
26: sum = sum + s partitions[offset + element]

27: element = element + 1
28: if element = threadsPerBlock then
29: element = 0
30: end if
31: end for
32: /* Each bin has now been merged */

33:

34: /* Write merged bins to sub-histogram for this thread block */

35: /* Here, blockIdxInGrid denotes the index of a thread block within the grid

of thread blocks */

36: sub hist[blockIdxInGrid * num bins + threadIdx] = sum

37: end if

Figure 3.8: Parallel histogram construction using sub-histograms

bin, which prevents write collisions. On line 16, all threads within the thread block are

synchronized to ensure that each has incremented its personal copy of the moving-image

histogram before moving on to the next step: merging the partitions within each bin. This

operation, shown in lines 19 through 36, assigns one thread to each bin and since the num-



3. MULTI-MODAL B-SPLINE REGISTRATION 57

thread 0 thread 1 thread Nthread 2 thread 0 thread 1 thread Nthread 2 thread 0 thread 1 thread Nthread 2

Organization of s_partitions[ ]:

Bin 0 Bin 1 Bin 2

Bin 0 Bin 1 Bin NBin 2 Bin 0 Bin 1 Bin NBin 2 Bin 0 Bin 1 Bin NBin 2

Organization of sub_hist[ ]:

Sub-histogram 0 Sub-histogram 1 Sub-histogram 2

Figure 3.9: Memory organization of sub-histogram method. Graphical representation
of the memory layout for arrays s partitions[ ] and sub hist[ ] used in Fig. 3.8.

ber of partitions equals the number of threads within the thread block, each thread merging

a partition performs NB accumulation operations to complete the process. All bins can be

processed in parallel in this fashion since there are no dependencies between bins. However,

some special considerations must be taken due to the way shared memory is organized.

Shared memory is organized as 16 banks of 1KB memory each. If two threads attempt to

read from the same memory bank simultaneously, the reads become serialized, which nega-

tively impacts performance. We, therefore, aim to minimize these bank conflicts by starting

each thread off on a different bank as shown in line 21. Thread 0 sums its NB partitions

starting with partition 0, residing in the first bank; thread 1 starts with partition 1, residing

in the second bank, sums through to NB, and then “wraps around” to end on partition

0, and so on. This way, each thread responsible for merging the partitions within a bin

in s partitions will always read from a different shared-memory bank when generating

a histogram with up to 16 bins. For histograms with more than 16 bins, bank conflicts

will occur when reading, but they will be minimal; to construct an 18-bin histogram, for

example, threads 0 and 16 will read bank 1 simultaneously, and threads 1 and 17 will read

bank 2 simultaneously, while the reads issued by threads 2 through 15 will remain free of



3. MULTI-MODAL B-SPLINE REGISTRATION 58

conflicts.

Once each thread has merged the partitions of a bin down to a single value (lines 25

through 31), the threads copy the histogram bins to the sub hist array residing in the

GPU’s global memory (line 36), where thread block 0 writes out the sub-histogram 0,

thread block 1 writes out sub-histogram 1, and so on. Once all thread blocks have written

their sub-histograms to sub hist, a simple tree-style sum reduction kernel is used to merge

these sub-histograms into one histogram that is representative of the moving image M .

3.2.2 Constructing the Joint Histogram

The above-described method cannot be used to generate the joint histogram hj since GPUs

typically do not have enough shared memory to maintain individual copies of the joint

histogram for each thread within a thread block1. Therefore, the proposed method, detailed

in Fig. 3.10, relies on atomic operations that have become available in recent GPU models

to guarantee mutually exclusive access to histogram bins, and requires considerably less

shared memory.

The most popular GPU models in use today (the Tesla C1060 and the GTX 200 series

of GPUs) do not support atomic addition operations on floating-point values residing in

global or shared memories. However, these models support atomic exchange operations on

floating-point values residing in shared memory; one can safely swap a value in a shared-

memory location with a register value that is private to the thread. The technique discussed

1Consider generating a 20 × 20 joint histogram on the Tesla C1060 where each bin value is a four-byte

floating-point data type. If we wish to apply the method detailed in Fig. 3.8, each thread would require a

dedicated data structure of 1.6KB. Since shared memory per thread block is limited to 16KB, this limits

the number of threads per block to about 10, which is impractical from a computational viewpoint.



3. MULTI-MODAL B-SPLINE REGISTRATION 59

1: /* Note: Each thread is assigned a deformation vector ~ν */

2:

3: /* Each thread finds nearest neighbors and partial volumes */

4: ~n = find nearest neighbors (~x+ ~ν,MX ,MY )
5: ~w = compute pv (~x+ ~ν)
6:

7: /* Compute the fixed histogram bin and joint offset */

8: BS = b(S(~x)−OS)/DSc
9: offset = BS ×KM

10:

11: /* Add partial volumes to joint histogram */

12: for i = 0 to 7 step 1 do
13: BM = b(M(ni)−OM )/DMc
14: idx = offset +BM

15: if idx != inferred bin then
16: success = FALSE

17: while success == FALSE do
18: val =atomicExch(s joint[idx], −1)
19: if val! = −1 then
20: success = TRUE

21: val = val + wi

22: atomicExch(s joint[idx], val)

23: end if
24: end while
25: end if
26: end for
27:

28: /* Copy sub-histogram from shared to global memory */

29: chunks = (KJ × block size− 1)÷ block size

30: for i = 0 to chunks step 1 do
31: idx = threadIdx + i× block size

32: if idx < KJ then
33: j hist[j stride + idx] = s joint[idx]

34: end if
35: end for

Figure 3.10: Parallel histogram construction using atomic exchange

below uses the concept of atomic exchange to regulate access to histogram bins and avoid

write conflicts between multiple threads1.

The image is once again divided into subregions, each of which is assigned to individual

thread blocks to generate the corresponding sub-histograms. However, instead of maintain-

1Atomic arithmetic operations on floating-point values are available on the recently released Fermi series

of GPUs, for example, the GTX 400 series and the Tesla C2050 family.



3. MULTI-MODAL B-SPLINE REGISTRATION 60

ing a separate partition for each thread within a bin, all threads write to the same bin in

shared memory. So, for a joint histogram with KJ = KS×KM bins, KJ elements of shared

memory are allocated per thread block. This array, s joint, holds the entire sub-histogram

for the thread block. Write conflicts to the same bin are handled using the atomic-exchange

instruction, as shown in lines 16 through 24. The GPU instruction atomicExch(x, y)

allows a thread to swap a value x in a shared-memory location with a register value y that

is private to the thread, while returning the previous value of x. If multiple threads at-

tempt to exchange their private values with the same memory location simultaneously, it is

guaranteed that only one will succeed. Returning to line 18, the successful thread obtains a

private copy of the histogram value in val, leaves the value −1 in the shared-memory loca-

tion s joint[idx], and proceeds to lines 20 through 23; other threads attempting to access

the same bin simultaneously will obtain the −1 previously placed into shared memory. This

technique, therefore, provides an efficient mechanism of serializing threads attempting to

write to the same memory location simultaneously. Note that the threads proceeding to

line 20 increment the histogram value val obtained from shared memory by the appropriate

partial volume weight (line 21), exchange the incremented value back into shared memory

(thus removing the -1 placed earlier), and set their success flag to TRUE to indicate that

their contributions to the joint histogram have been committed. Finally, lines 29 through

35 copy the sub-histogram from shared memory to the GPU’s global memory.

When generating the joint histogram, we also perform a simple but key optimization step

to improve computational efficiency. Since medical images generally contain a predominant

intensity—for example, black, which is the intensity value of air, is abundant in most CT

scans—the technique presented here can result in the serialization of many threads if they all



3. MULTI-MODAL B-SPLINE REGISTRATION 61

update histogram bins involving this color. We prevent this situation, however, by inferring

the value of the bin corresponding to the predominant color since this bin is expected to

cause the most write conflicts. Since the sum of all unnormalized histogram bins must equal

the total number of voxels in the static image having a correspondence within the moving

image, one bin may be omitted during the histogram construction phase and filled in later

using the simple relationship

hj(inferred bin) = N −
∑
i

hj(i) (3.8)

where inferred bin is the bin that is skipped in line 15 of Fig. 3.10. Initially, an educated

guess is made for inferred bin based on the imaging modality, but as the registration

is performed over multiple iterations, the largest bin is tracked and skipped for the next

iteration. Experimental results using CT images indicate a noticeable speedup, since on

average, 80% of GPU threads attempt to bin values correlating to air which would otherwise

be serialized.

3.2.3 Evaluating the Cost Function

Once the histograms are generated, evaluating the MI-based cost function is straightforward,

consisting of simply cycling through these histograms while accumulating the results of the

computation into C as in (3.7). (Care must be taken, however, to avoid evaluating the

natural logarithm of zero in instances where a joint-histogram bin is empty.) Since the

operation does not substantially benefit from parallelization, it is performed on the CPU.

Moving the histogram data from the GPU to the CPU requires negligible time since even



3. MULTI-MODAL B-SPLINE REGISTRATION 62

large histograms incur very small transfer times on a modern PCI bus. Once evaluated, a

single cost value is copied back to the GPU for use in subsequent operations.

3.2.4 Optimizing the B-spline Coefficients

Since we have chosen the coordinate transformation T(~y) = ~x+~ν, where ~ν is parameterized

in terms of the sparse B-spline coefficients ~P , it follows that the mutual information can

be maximized by optimizing these coefficients. We choose to perform this optimization via

the method of gradient descent for which an analytic expression for the gradient ∂C/∂ ~P

is required at every control point ~P . The expression ∂C/∂ ~P can be separated into partial

derivatives using the chain rule:

∂C

∂ ~P
=
∂C

∂~ν
× ∂~ν

∂ ~P
(3.9)

where the first term depends on the similarity metric. The second term depends on the

parameterization of the deformation field ~ν and is easily obtained by taking the derivative

of (3.1) with respect to ~P as

∂~ν

∂ ~P
=

3∑
l=0

3∑
m=0

3∑
n=0

βl(u)βm(v)βn(w). (3.10)

In the first term of (3.9), C and ~ν are coupled through the probability distribution pj and

are therefore directly affected by the partial volume interpolation. This becomes clearer

when ∂C/∂~ν is further decomposed as



3. MULTI-MODAL B-SPLINE REGISTRATION 63

∂C

∂~ν
=

∂C

∂pj(a,M(~∆))
× ∂pj(a,M(~∆))

∂~ν

=
7∑

x=0

(
∂C

∂pj(a,M(nx))
× ∂wx

∂~ν

)
, (3.11)

where M(~∆) is the value of the voxel in the moving image that corresponds to the static

image voxel a = S(~x). However, since ~∆ falls between voxels in the moving image, eight

moving-image voxels of varying weights are taken to correspond to ~x due to the partial

volume interpolation, resulting in the simplification shown in (3.11). The first term of

(3.11) is obtained using the derivative of (3.6) with respect to the joint distribution pj as

∂C

∂pj(a,M(nx))
= ln

pj(a,M(nx))

pS(a)pM (M(nx))
− C. (3.12)

The second term describes how the joint distribution changes with the vector field. Recall

that the displacement vector locally transforms the coordinates of a voxel in the moving

image M such that ~∆ = ~x + ~ν. As the vector field is modified, the partial volumes,

w0 through w7, to be inserted into the moving-image and joint histograms hM and hj

will change in size. Therefore, ∂pj(a,M(~∆))/∂~ν is determined by changes exhibited in

the partial volumes w0 through w7 as ~∆ evolves with the governing deformation field ~ν.

These changes in the partial volumes with respect to the deformation field, ∂wx/∂~ν, x ∈

{0, 7}, with respect to each of the Cartesian directions are easily obtained, thus resulting

in 24 expressions. (The mathematical expressions for w0 through w7 can be found in the

compute pv function shown in Fig. 3.6.) So, for partial volume w0:



3. MULTI-MODAL B-SPLINE REGISTRATION 64

∂w0

∂νx
= (−1)× (1− {∆y)} × (1− {∆z)}, (3.13)

∂w0

∂νy
= (−1)× (1− {∆x)} × (1− {∆z)}, (3.14)

∂w0

∂νz
= (−1)× (1− {∆x)} × (1− {∆y)}, (3.15)

and similarly for w1 through w7. Therefore, as prescribed by (3.11), computing ∂C/∂v at

a given voxel ~x in S involves cycling through the eight bins corresponding to the neighbors

described by ~∆. So, for the first neighbor n0, we determine which bin BM0 within histogram

hM the voxel value n0 belongs. This gives hM (BM0). Similarly, the bin BS within the static

image histogram hS associated with the static image voxel a = S(~x) is easily obtained,

thus giving hS(BS). Knowing BS and BM0 gives the associated joint histogram value

hj(BS , BM0). Now, ∂C/∂pj for neighbor n1 is obtained as

∂C

∂pj(a,M(n0))
= ln

hj(BS , BM0)

hS(BS)hM (BM0)
− C. (3.16)

As prescribed by (3.11), the contribution of nearest neighbor n0 and its associated partial

volume w0 on ∂C/∂~ν is found by first computing ∂w0/∂~x as in (3.15). Each of the three

components of ∂w0/∂~x are weighted by (3.16), leading to

∂C

∂νx
=

(
∂w0

νx
× ∂C

∂pj

∣∣∣∣
n0

)
+

(
∂w1

νx
× ∂C

∂pj

∣∣∣∣
n1

)
+ . . . (3.17)

∂C

∂νy
=

(
∂w0

νy
× ∂C

∂pj

∣∣∣∣
n0

)
+

(
∂w1

νy
× ∂C

∂pj

∣∣∣∣
n1

)
+ . . . (3.18)

∂C

∂νz
=

(
∂w0

νz
× ∂C

∂pj

∣∣∣∣
n0

)
+

(
∂w1

νz
× ∂C

∂pj

∣∣∣∣
n1

)
+ . . . (3.19)



3. MULTI-MODAL B-SPLINE REGISTRATION 65

1: ~n = find nearest neighbors (~∆,MX ,MY )
2:

3: /* Compute partial volumes spatial derivatives */

4: ∂ ~w/∂x = compute pv derivatives x (~∆)

5: ∂ ~w/∂y = compute pv derivatives y (~∆)

6: ∂ ~w/∂z = compute pv derivatives z (~∆)
7:

8: /* Calculate static image histogram bin */

9: BS = b(S(~x)−OS)/DSc
10:

11: /* Compute ∂C/∂~ν at voxel coordinate ~x */

12: for i = 0 to 7 step 1 do
13: BM = b(M(ni)−OM )/DMc
14: ∂C/∂pj = ln((N × hj [BM ][BS ])/(hS [BS ]× hM [BM ]))− C
15: ∂C/∂νx = ∂C/∂νx + ∂wi/∂x× ∂C/∂pj
16: ∂C/∂νy = ∂C/∂νy + ∂wi/∂y × ∂C/∂pj
17: ∂C/∂νz = ∂C/∂νz + ∂wi/∂z × ∂C/∂pj
18: end for

Figure 3.11: Computation of cost derivative with respect to vector field

which gives ∂C/∂~ν at the static-image voxel coordinate ~x. This operation is performed for

all N voxels in S.

The operations needed to compute ∂C/∂~ν are performed in parallel by assigning a

GPU thread to each voxel in the static image that has a correspondence in the moving

image. Fig. 3.11 shows the operations performed by each thread. Once ∂C/∂~ν has been

computed at every voxel, we can now use (3.9) to describe how the cost function changes

with the B-spline coefficients ~P associated with each control point. Fig. 3.12 shows an

example of how the cost-function gradient is obtained at a single control point, highlighted

in white, in a 2D image. Here, ∂C/∂~ν has been computed at all voxels, including the

hatched voxel shown in the zoomed-in view at local coordinates (1,1) within tile (0,0). The

location of this hatched voxel’s tile with respect to the highlighted control point results

in the evaluation of the B-spline basis function with l = 0 and m = 0 in the x and y

dimensions, respectively. Moreover, these evaluations are performed using the normalized



3. MULTI-MODAL B-SPLINE REGISTRATION 66

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

ZOOM

β
m

 (v )

for m = 0
local coordinate

(0,1) in tile (1,1)

u = 03 v = 13

l = 1 m = 1

local coordinate

(1,1) in tile (0,0)

u = 13 v = 13

l = 0 m = 0

β
m

 (v )

for m = 1

β
l

(u )

for l = 0

β
l

(u )

for l = 1

Figure 3.12: 2D example of cost function gradient computation. The process of
re-expressing ∂C/∂~ν in terms of the B-spline control point coefficients, thereby yielding the
cost function gradient ∂C/∂P at each control point, is partially demonstrated for the control
point highlighted in white.

coordinates of the voxel within the tile, therefore evaluating β0(1/3) and β0(1/3) in the

x and y dimensions, respectively. These two results and the value of ∂C/∂~ν at the voxel

in question are multiplied together and the product is stored away for later. Once this

procedure is performed at every voxel for each tile in the vicinity of the control point, all of

the resulting products are accumulated, resulting in the value of the cost function gradient

∂C/∂ ~P at the control point.

Since the example in Fig. 3.12 uses a 2D image, 16 control points are needed to param-

eterize how the cost function changes at any given voxel with respect to the deformation

field. Therefore, when computing the value of the cost-function gradient at a given control

point, the 16 tiles affected by the control point must be included in the computation; these

tiles are numbered one through sixteen in the figure. Each tile number represents a specific



3. MULTI-MODAL B-SPLINE REGISTRATION 67

combination of the B-spline basis-function pieces used to compute a tile’s contribution to

the gradient at the highlighted control point. For example, voxels within tile number 1 use

basis functions with l = 0 and m = 0 in the x and y directions, respectively; voxels within

tile 2 use basis functions with l = 1 and m = 0, and so on. Furthermore, in the 2D case,

each tile of ∂C
∂ν affects exactly 16 control points and is therefore, subjected to each of the

16 possible B-spline combinations exactly once. In the 3D case, each tile affects 64 control

points. This is an important property that forms the basis for our parallel implementation

of this algorithm.

The GPU-based algorithm that computes ∂C/∂ ~P operates on tiles instead of individual

voxels. Here, one thread-block of 64 threads is assigned to each tile in the static image.

Given a tile in which ∂C/∂~ν values are defined at each voxel location, the 64 threads work

together to parameterize these derivative values in terms of B-spline control-point coeffi-

cients, namely a set of ∂C/∂ ~P values. Since 64 control points are needed to parameterize a

tile’s contents using cubic B-splines, the thread-block will contribute to the gradient values

defined at the 64 control points in the tile’s immediate vicinity. In fact, each control point

in the grid will receive such gradient value contributions from exactly 64 tiles (or thread

blocks). The final value of the cost function gradient at a given control point is the sum of

the 64 contributions received from its surrounding tiles.

Fig. 3.13 shows the multi-stage process of computing the x component of ∂C/∂ ~P in

parallel on the GPU. This process takes as input, the starting address of the tile within the

∂C/∂~ν array that is associated with the thread block. During stage 1, the 64 threads work

in unison to fetch a cluster of 64 contiguous ∂C/∂~ν values from global memory, which are

then stored into registers. Once the cluster has been loaded, each thread computes the local



3. MULTI-MODAL B-SPLINE REGISTRATION 68

STAGE 2 -- each thread calculates all 64 possible B-spline basis function products for its dc_dv value

STAGE 1 -- each thread loads a value from the current cluster

each tile of            values is divided into clusters of 64
dC
dv

cluster 0 cluster 1 cluster 2 cluster n pad...

val

Global

Memory

Register

File

coalesced read

(64 threads)

val val val val val

relative tile position 0,0,0

β        (threadIdx)0,0,0

β0,0,0val

calculate

Texture

Lookup

Shared

Memory

contrib[tile_pos]
Shared

Memory

reduction[threadIdx]

β        (threadIdx)0,0,1

reduction[threadIdx]

contrib[tile_pos]

β0,0,1val

calculate

relative tile position 0,0,1

next

β        (threadIdx)3,3,3

reduction[threadIdx]

contrib[tile_pos]

β3,3,3val

calculate

relative tile position 3,3,3

...

once all 64 relative positions are calculated, we return to STAGE 1, move on to the next cluster, and repeat STAGE 2
when all n clusters have been processed in STAGE 2, we progress to STAGE 3

STAGE 3 -- sort condensed tile’s contributions to approtriate control point bins in preparation for !nal sum reductions

Global

Memory

contrib[threadIdx]

Shared

Memory

(64 threads) (64 threads) (64 threads)

(64 threads)

sorted_contrib_x[ ]

64 contribution values

control point m...
64 contribution values

control point 2

64 contribution values

control point 1

64 contribution values

control point 0

Global

Memory ...
dc_dp[ ]

coeff

control point 0

coeff coeff
X Y Z

control point 1

coeff coeff coeff
X Y Z

control point 2

coeff coeff coeff
X Y Z

control point m

coeff coeff coeff
X Y Z

BIN REDUCTIONS

bin reductions are performed only after STAGES 1, 2, and 3 have been completed for all tiles

dc_dv_x[ ]

Figure 3.13: Parallel gradient computation workflow. The multi-stage process of
computing the cost-function gradient ∂C/∂ ~P in parallel. Computation of the x-component of

∂C/∂ ~P is depicted. Components in the y and z directions are calculated similarly.



3. MULTI-MODAL B-SPLINE REGISTRATION 69

coordinates within the tile for the ∂C/∂~ν value that it is responsible for. Also, as shown in

Fig. 3.13, the input values are zero padded to 64, which was chosen to make the tile size a

multiple of thread-block size. The padding prevents a cluster from reading into the next tile

when the control-point configuration results in tiles that are not naturally a multiple of the

cluster size. Stage 2 sequentially cycles through each of the 64 possible B-spline piecewise

function combinations, using the local coordinates of the ∂C/∂~ν values previously computed

in Stage 1. Each of the 64 function combinations is applied to each element in the cluster

in parallel; the results are stored in a temporary array located within the GPU’s shared

memory which is then reduced to a single value and accumulated into sorted contrib x,

a region of shared memory indexed by the piecewise B-spline function combination. This

stage ends once these operations have been performed for the 64 piecewise combinations.

Upon completion, control returns back to stage 1, beginning another cycle by loading the

next cluster of 64 values.

Once stage 2 has processed all the clusters within a tile, we will have 64 gradient con-

tributions stored within shared memory that must be distributed to the control points they

influence. Stage 3 assigns one contribution, to be distributed appropriately based on the

combination number, to each of the 64 threads in the thread-block. To avoid race condi-

tions when multiple threads belonging to different thread blocks write to the same memory

location, each control point is given 64 “slots” in which to store these contributions. Once

all contribution values have been distributed, each set of 64 slots is reduced to a single

value, resulting in the gradient ∂C/∂ ~P at each control point. As shown in Fig. 3.13, the

array dc dp that holds the gradient is organized in an interleaved fashion as opposed to

using separate arrays for each of the x, y, and z components. This provides better cache



3. MULTI-MODAL B-SPLINE REGISTRATION 70

locality when these values are read back by the optimizer, which is executed on the CPU.

The time needed to copy the dc dp array from the GPU to the CPU over the PCIe bus is

negligible; for example, registering two 256× 256× 256 images with a control-point spacing

of 10 × 10 × 10 voxels requires 73,167 B-spline coefficients to be transferred between the

GPU and the CPU per iteration, which incurs a transfer overhead of 0.35 milliseconds over

a PCIe 2.0 x16 bus.

3.3 Performance Evaluation

This section presents experimental results obtained for the CPU and GPU implementations

in terms of both execution speed and registration quality. We compare the performance

achieved by the following different implementations:

• Single-threaded CPU implementation. This reference implementation serves as a base-

line for comparing the performance of the multi-core CPU and GPU implementations.

It is highly optimized, uses the SSE instruction set, and characterizing its performance

using Valgrind, a profiling system for Linux programs [58], indicates a very low miss

rate of about 0.1% in both the L1 and L2 data caches.

• Multi-core implementation on the CPU using OpenMP. This implementation uses

OpenMP, a portable programming interface for shared-memory parallel computers [59],

to parallelize the steps involving histogram generation, cost-function evaluation, and

gradient computation.

• GPU-based implementation. This implementation uses the compute unified device

architecture or CUDA programming interface to perform both histogram generation



3. MULTI-MODAL B-SPLINE REGISTRATION 71

and gradient computation on the GPU. The cost-function evaluation and the gradient

descent optimization is performed on the CPU.

In addition to the registration quality, we quantify the impact of the volume size and

control-point spacing on the execution times incurred by each of the above implementations.

The tests reported here use a machine equipped with an Intel quad-core i7 920 processor

with each core clocked at 2.6GHz, and 12GB of RAM. The GPUs used are: the NVidia

Tesla C1060 model with 240 cores, each clocked at 1.5GHz, and 4GB of onboard memory;

and the Tesla C2050 model with 448 cores, each clocked at 1.1GHz, and 2.6GB of onboard

memory.

3.3.1 Registration Quality

Fig. 3.14 shows the registration results obtained by the GPU-based implementation, given

two multi-modality images of a patient’s thorax: a 512 × 384 × 16 MR volume (shown in

red) and a 512× 512× 115 CT volume (shown in blue). Fig. 3.14(a) shows the two images

superimposed on each other prior to registration. The images were registered using the CT

volume as the static image and the MR volume as the moving image with a control-point

grid spacing of 100×100×100 voxels. When computing the mutual information, the static-

and moving-image histograms were each constructed using 32 equally-wide bins, and the

joint histogram was constructed using 1024 (or 322 bins). The registration process was

allowed to evolve over 20 iterations and the resulting deformation field was used to warp

the MR image. Fig. 3.14(b) shows this warped image (shown in red) superimposed on the

CT volume (shown in blue).



3. MULTI-MODAL B-SPLINE REGISTRATION 72

(a) (b)

Figure 3.14: Thoracic MRI to CT registration using mutual information. (a) A
512 × 384 × 16 MRI volume (shown in red) is superimposed on a 512 × 512 × 115 CT volume
(shown in blue) prior to deformable registration. (b) The same MRI and CT volumes
superimposed on each other after 20 iterations of the deformable registration process on the
GPU. The control-point grid spacing was set to 1003 voxels.

3.3.2 Sensitivity to Volume Size

This series of tests characterizes each implementation’s sensitivity, in terms of execution

time, to increasing volume size where the volumes are synthetically generated. We fix the

control-point spacing at 15 voxels in each physical dimension and increase the volume size in

steps of 10×10×10 voxels. For each volume size, we record the execution time incurred by a

single iteration of the registration process. Fig. 3.15(a) summarizes the results. As expected,

the execution time increases linearly with the number of voxels involved. The OpenMP

version offers slightly better performance with respect to the reference implementation,

with a speedup of 2.5 times. We attribute this result to the high level of serialization,

imposed by the locking mechanisms, during histogram construction.

The GPU achieves a speedup of 21 times with respect to the reference implementation

and 8.5 times with respect to the OpenMP implementation. Also, the relatively simple



3. MULTI-MODAL B-SPLINE REGISTRATION 73

0

20

40

60

80

100

120

300x300x300

320x320x320

340x340x340

360x360x360

380x380x380

400x400x400

420x420x420

Volume Size (voxels)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
o
n
d
s
)

(a)

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

Control Point Spacing (voxels)

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

 

 

Serial Implementation

OpenMP Implementation

Tesla C1060 (no inference)

Tesla C1060

Tesla C2050

(b)

Figure 3.15: Mutual information registration performance. (a) The impact of volume
size on the execution times incurred by the single-threaded and multi-threaded CPU implemen-
tations and the GPU implementations using the Tesla C1060 and C2050 models. (b) The
impact of control-point spacing on the execution times incurred by the single-threaded and
multi-threaded CPU implementations and the GPU implementations using the Tesla C1060
and C2050 models. The volume size is fixed at 260× 260× 260 voxels.

optimization step of inferring the value of the histogram bin expected to incur the most

write conflict (in other words, the most number of atomic-exchange operations) significantly

improves performance on the Tesla 1060C GPU; for actual CT data, this optimization step

speeds up the histogram generation phase by five times. Finally, though not supported on

the Tesla C1060, the atomicAdd instruction available on newer models such as the C2050

allows bins to be incremented in a thread-safe manner without having to performing the

complex atomic-exchange logic shown in lines 15 through 25 of the histogram generation

algorithm listed in Fig. 3.10. Therefore, the Tesla C2050 spends only 60% of its processing

time generating histograms when compared to the C1060 which spends about 70% of its

time, and is therefore, much faster.



3. MULTI-MODAL B-SPLINE REGISTRATION 74

3.3.3 Sensitivity to Control-Point Spacing

As discussed in Section 3.2.4, the parallelized gradient computation exploits key attributes

of the uniform control-point spacing scheme to achieve fast execution times. We consider

each tile in the volume as a work unit where each unit is farmed out to individual cores

that are single threaded in the case of a CPU core or multi-threaded in the case of the

GPU. If the volume size is fixed, then increasing the control-point spacing results in fewer,

yet larger, work units. Fig. 3.15(b) shows the impact of varying the control-point spacing

in increments of 5 × 5 × 5 voxels with the volume size fixed at 260 × 260 × 260 voxels.

Note that the execution times are relatively unaffected by the control-point spacing for all

implementations.

The GPU-based versions show a slight sub-linear increase in execution time starting at

a control-point spacing of approximately 65 voxels. For larger spacings, the work-unit size

becomes adequately large such that the processing time dominates the time required to

swap work units in and out. When the time needed to process a work unit is significantly

less than the overhead associated with swapping it in and out of a GPU core, the execution

time is essentially constant since the overhead incurred by the swapping is constant. When

the processing time begins to dominate, we expect the execution time to increase as the

number of elements within the work units increase.

3.4 Conclusions

We have developed a B-spline based deformable registration process for aligning multi-

modality images, suitable for use on multi-core processors and GPUs. Using mutual infor-

mation as the similarity metric, the goal is to obtain a deformation field that warps the



3. MULTI-MODAL B-SPLINE REGISTRATION 75

moving image such that it is most similar to the static image. We developed and imple-

mented parallel algorithms to realize the following major steps of the registration process:

generating a deformation field using the B-spline control-point grid, calculating the image

histograms needed to compute the mutual information, and calculating the change in the

mutual information with respect to the B-spline coefficients for the gradient-descent opti-

mizer. We have evaluated the multi-core CPU and GPU implementations in terms of both

execution speed and registration quality. Our results indicate that the speedup varies with

volume size and the voxel-intensity distribution within the images, but is relatively insen-

sitive to the control-point spacing. Our GPU-based implementations achieve, on average,

a speedup of 21 times with respect to the reference implementation and 7.5 times with re-

spect to a multi-core CPU implementation using four cores, with near-identical registration

quality. We hope that such improvements in processing speed will mean that deformable

registration methods can be routinely in interventional procedures such as image-guided

surgery and image-guided radiotherapy.



CHAPTER 4: IMPROVING MI WITH VARIANCE OPTIMAL

HISTOGRAMS

This chapter builds upon the preceding chapter covering multi-modal deformable image reg-

istration. Here, we develop a fast method of constructing histograms that better estimate

the marginal and joint image probability density functions. Because the mutual information

similarity metric is directly derived from these distributions, it is vital that they accurately

measure the information content of the images undergoing registration. We propose that the

optimal histogram configuration contains one tissue density per histogram bin – a configu-

ration that we show may obtained by employing variance optimal histograms. Specifically,

this chapter develops a method for approximating such histograms so that they may be

computed within the time constrains imposed by standard clinical work flow. Image tissue

distribution within the variance optimal histogram binning scheme is demonstrated for a

thoracic CT scan. Furthermore, we demonstrate with PET to CT and MRI to CT cases

that registration accuracy may be greatly improved while using fewer bins than previously

required by the equally spaced histograms presented in the preceding chapter – thereby

enabling superior performance while imposing less restrictive memory requirements.



4. IMPROVING MI WITH VARIANCE OPTIMAL HISTOGRAMS 77

4.1 Overview of Variance Optimal Histograms

Multi-modal image registration aligns two images obtained via differing imaging modalities

into a common coordinate system. Two common modalities that often undergo multi-

modal registration are magnetic resonance imaging (MRI) and computed tomography (CT)

imaging. The high-contrast resolution of an MRI image helps distinguish between various

soft tissues that otherwise appear similar in conventional CT imaging. CT images, on the

other hand, have high spatial resolution and are more readily obtained in intra-operative

settings due to the availability of mobile CT scanner technology. Consequently, it is not

uncommon to obtain and register an intra-operative CT image to a pre-operative MRI to

assist in malignant tissue localization and its subsequent resection. In such cases, the spatial

correlation provided by the registration allows, for example, cancerous tissue highly visible

in the pre-operative MRI to be accurately superimposed upon the intra-operative CT where

the cancerous tissue is otherwise indistinguishable from surrounding healthy tissue.

Since MRI and CT images are obtained via fundamentally different imaging methods,

with each revealing features invisible to the other, obtaining an accurate spatial correlation

through registration requires the use of statistical methods rooted in information theory.

Therefore, multi-modal registration is often implemented using mutual information (MI) as

the similarity metric that determines the correctness of a given spatial mapping [55]. Mod-

ern registration algorithms ultimately obtain accurate mappings by iteratively modifying a

set of warping parameters that are then applied to one of the two images involved in the

registration process. This warped image, referred to the moving image, is then compared

to the other image involved in the process, referred to as the static image, using MI as the



4. IMPROVING MI WITH VARIANCE OPTIMAL HISTOGRAMS 78

similarity metric. If the metric indicates that the images possess a good spatial correlation,

then the warping parameters describing the correlation are provided to the physician. If the

metric indicates a suboptimal correlation, the registration algorithm may use suitable opti-

mization techniques to intelligently search for the set of warping parameters that maximizes

the metric.

The MI metric measures the information content shared between the static and moving

images, and the most straightforward way to compute it is to use the marginal histograms

of the static and moving image intensities, hS and hM , respectively, and the joint histogram

hj as

MI =
1

N

KS∑
j=0

KM∑
i=0

hj(i, j) ln
N × hj(i, j)
hS(j)× hM (i)

(4.1)

where KS and KM denote the number of bins in the static and moving image histograms,

hS and hM , respectively, and N is the number of voxels in S with corresponding voxels

in M after application of the warping parameters. The use of histograms to estimate the

probability distributions of the image intensities has been adopted in numerous previous

studies [60] due to the relative ease of computing these histograms. The registration algo-

rithm’s goal then is to determine which bins in the static image histogram correlate to which

bins in the moving image’s histogram. Ideally (4.1) will be maximized when each bin in the

moving-image histogram has only one corresponding bin in the static-image histogram. In

other words, if the pixel intensities within a given bin of hS represent fatty tissue, (4.1) will

benefit the most when the warping maps each of those pixels in S to pixels in M that also

represent fatty tissue, which are similarly lumped together within a single bin within hM .



4. IMPROVING MI WITH VARIANCE OPTIMAL HISTOGRAMS 79

As the foregoing discussion suggests, the width of the histogram bins is an important

parameter affecting both the speed and quality of the registration process. Unfortunately,

the current state-of-the-art requires the operator to manually choose bin widths (specific to

the underlying data set) to achieve good registration [61, 62]. Alternatively, equally sized

bins may be used to construct the histogram. However, this simple binning strategy incurs

the risk of spreading a single tissue type over several bins or, even worse, grouping multiple

tissues together within a single bin, resulting in poor results. In this paper, we develop

a fast variance-optimal or V-opt histogram binning technique suitable for high resolution

medical images that aims to automatically place each distinct tissue type within exactly

one histogram bin.

4.2 Theory of Operation and Implementation

To delegate bins in a way that segregates different tissue types, we define bin boundaries

based on the variance of the pixel intensities falling within the bins. If a single bin were to

contain only pixels for one type of tissue, the variance for that bin would be minimal. This

is due to the tissues possessing a fairly uniform density throughout, thus resulting in an

equally uniform pixel intensity distribution within the bin. So, when considering all tissues

within an image together, the sum of the bin variances for the entire histogram should be

minimal when optimally segregated. The histograms generated using this binning scheme

are termed variance-optimal or V-opt histograms [63].

Generating a V-opt histogram wherein N pixels are partitioned into B bins incurs

O(N2B) computation complexity, thus making the direct application of this binning scheme

to most all medical images prohibitive. For example, it is not uncommon for a 3D CT scan to



4. IMPROVING MI WITH VARIANCE OPTIMAL HISTOGRAMS 80

1: /* Initialize lookup tables */

2: [s, ssq, cnt] = init vopt(k, delta, offset, min val, max val)
3:

4: /* Compute one-bin scores */

5: for i = 0 to K step 1 do
6: err[0][i] = bin error(0, i, s, ssq, cnt)
7: end for
8:

9: /* Compute best multi-bin scores */

10: for j = 0 to B step 1 do
11: for i = 0 to K step 1 do
12: err[j][i] = ∞
13: tracker[j][i] = 0
14: for k = 0 to i step 1 do
15: candidate = err[j-1][k]

16: + bin error(k+1, i, s, ssq, cnt)

17: if candidate <= err[j][i] then
18: err[j][i] = candidate

19: tracker[j][i] = k

20: endif
21: end for
22: end for
23: end for
24:

25: keys = make key table(tracker)

Figure 4.1: The V-opt histogram generation technique.

consist of 512× 512× 128 voxels, that is N = 33.6 million voxels. Though the original data

set can be sub-sampled, even sub-sampling by a factor of four—which is quite coarse—

results in a 128 × 128 × 32 volume where N would still be prohibitive at roughly half a

million voxels. To improve computational efficiency, we generate a temporary histogram in

the initialization stage consisting of a large number of uniformly spaced bins K. We then

merge these bins such that the resulting histogram is an approximation of a true V-opt

histogram. This operation incurs O(K2B) computation complexity where K � N , and

yields good results with values as low as K = 1000.

Fig. 4.1 details the proposed V-opt histogram generation technique. Here, tmp hist[ ]

is the temporary histogram comprising K equally-sized bins, which will be selectively



4. IMPROVING MI WITH VARIANCE OPTIMAL HISTOGRAMS 81

1: function init vopt (k, delta, offset, min val, max val)
2: /* Temp histogram with bin averages */

3: delta = (max val− min val)/(K − 1)
4: offset = min val− 0.5× delta
5: for i = 0 to npix step 1 do
6: bin = b(img[i]− offset)/deltac
7: tmp hist[bin]+ = 1
8: tmp sum[bin]+ = img[i] - offset

9: end for
10:

11: for i = 0 to K step 1 do
12: if tmp hist[i] > 0 then
13: tmp avg[i] = tmp avg[i] / tmp hist[i]

14: else
15: tmp avg[i] = tmp avg[i-1]

16: end if
17: end for
18:

19: /* Generate lookup tables */

20: s[0] = tmp avg[0]

21: ssq[0] = tmp avg[0]2

22: cnt[0] = tmp hist[0]

23: for i = 1 to K step 1 do
24: s[i] = s[i-1] + tmp avg[i]

25: ssq[i] = ssq[i-1] + tmp avg[i]2

26: cnt[i] = cnt[i-1] + tmp hist[i]

27: end for
28: return [s, ssq, cnt]
29:

30: end function

Figure 4.2: Computation of V-opt lookup tables

1: function bin error (start, end, s, ssq, cnt)
2: diff = s[end]− s[start]

3: sq diff = ssq[end]− ssq[start]

4: ∆ = end− start + 1
5: n = cnt[end]− cnt[start]

6: v = sq diff− diff2/∆
7:

8: /* Less than one voxel in bin */

9: if (n < 1) then
10: /* Penalize this solution */

11: return ∞
12: end if
13: return v

14: end function

Figure 4.3: Computation of the bin error.



4. IMPROVING MI WITH VARIANCE OPTIMAL HISTOGRAMS 82

merged to obtain the final approximation of the V-opt histogram comprising B � K bins.

Similarly, tmp avg[ ] is comprised of K values and contains the average values of the voxels

within each bin of tmp hist[ ]. Lines 1–9 generate lookup tables used to accelerate the

computation

Vsum(i, j) = (SSQ(j)− SSQ(i))− (S(j)− S(i))2

j − i+ 1
(4.2)

which gives the sum of the variance for elements i through j in tmp avg[ ] where 0 < i <

j < K. Here S(i) is the sum of all bin averages up to and including bin i. Similarly, SSQ(i)

is the sum of all squared bin averages up to and including i. The s[ ] and ssq[ ] arrays

provide precomputed tables for these summation series. The cnt[ ] array is generated

to provide fast computation of the number of voxels falling within the range [i, j], that is

cnt[j] − cnt[i]. Eq. (4.2) is implemented in lines 2–6 of the listing shown in Fig. 4.3;

lines 9–12 prevent empty bins in the V-opt histogram.

The remainder of the listing shown in Fig. 4.1 uses a dynamic programming (DP) method

to determine the optimal bin boundaries for a V-opt histogram comprising B bins. Broadly

speaking, if B = 32, then 32 ranges within [0,K] would be determined using (4.2) such that

the sum of their variances is minimized. These 32 ranges then become the bin boundaries

for the V-opt histogram. The DP algorithm uses the key property that adding an additional

bin to the current V-opt histogram always decreases the histogram’s overall variance. The

procedure detailed in lines 11–16 can be summarized as follows: Consider the jth DP step

charged with adding one more bin to the V-opt histogram that currently has j − 1 bins.

The previous j − 1 DP steps have computed optimal values for err[j-1][i], 1 ≤ i ≤ K.



4. IMPROVING MI WITH VARIANCE OPTIMAL HISTOGRAMS 83

During the jth step, we use the variable i, ranging from 1 to K, and for each i, compute

the variance when i elements are partitioned over j− 1 bins (for which the optimal value is

already known) and the remaining i−K elements are placed in the jth bin. We then select

the partitioning choice that minimizes the variance over j bins. This process is repeated

until all B bins are added to the V-opt histogram.

4.3 Results

Validation experiments were performed using both V-opt histograms constructed with B =

32 and K = 1000 bins and equally spaced histograms comprising 32 bins. All registrations

are deformable and use MI as the similarity metric with the warping parameters expressed

using uniform cubic B-spline basis coefficients.

Fig. 4.4 visualizes results from experiments aimed at determining the efficacy of the

V-opt binning scheme in terms of automatically placing each distinct tissue type within

exactly one histogram bin (or the fewest number of bins). Fig. 4.4(a) shows the thoracic

CT volume used as the input data and Fig. 4.4(b-f) each show only those image voxels

falling within a single bin, thereby visualizing how different tissue types are partitioned

across 5 of the 32 bins. Bins not shown mostly contain voxels falling within the lung due

to the organ’s high range of contrast in the CT image. The time required to compute the

optimal bin ranges was 659 ms.

Accuracy improvements when registering PET to CT images as well as MRI to CT

images are also validated quantitatively. Fig. 4.5 shows the results for two PET to CT im-

age registrations in which the static image shown in Fig. 4.5(a) is registered to the moving

image shown in Fig. 4.5(b). The two registrations differ only by the type of histogram em-



4. IMPROVING MI WITH VARIANCE OPTIMAL HISTOGRAMS 84

(c)

(e)

(d)

(f)

(a) (b)

Figure 4.4: Example of variance optimal tissue division by bin. Panel (a) shows a CT
volume of dimension 512 × 512 × 128 voxels. Panels (b)–(f) each show only the voxels falling
with a single given bin in the V-opt histogram generated using 32 bins.

ployed to compute the mutual information. Fig. 4.5(c) shows the resulting warped moving

image superimposed upon the static image when using equally spaced 32-bin histograms.

Fig. 4.5(d) shows the same superimposition but using V-opt histograms. The registration

performed using V-opt histograms displays superior registration for an equal number of



4. IMPROVING MI WITH VARIANCE OPTIMAL HISTOGRAMS 85

(a) (b) (c) (d)

Figure 4.5: PET to CT registration using variance optimal histograms. Results of a
CT to PET registration. The CT image shown in (a) is the static image and the PET image in
(b) is the moving image. The post-registration PET image superimposed upon the CT image
is shown in (c) when the registration is performed using histograms with 32 uniformly spaced
bins. The same post-registration superimposition is shown in (d) when using V-opt histograms
with 32 bins.

bins, particularly in the anterior regions of the scan.

Finally, to quantitatively assess the benefits of V-opt histograms, the liver was manually

segmented in both a pre-operative MRI and an intra-operative CT image. The images

were then registered using both equally spaced and V-opt histograms. Subsequently, the

obtained warping parameters were used to warp the MRI liver segmentation, which was

then compared to the CT liver segmentation. The equally spaced histogram resulted in the

two registered livers having a Hausdorff distance of 65.805 mm whereas the V-opt histogram

produced a Hausdorff distance of 43.278 mm. (The resulting vizualization is not shown in

the paper due to space constraints.)



4. IMPROVING MI WITH VARIANCE OPTIMAL HISTOGRAMS 86

4.4 Conclusions

We have developed a fast method of estimating the probability distribution of intensities

within medical images using variance-optimal histograms. The goal is to improve the quality

of MI-based image registration by automatically placing each distinct tissue type in the

image in exactly one bin within the intensity histogram. Experimental results indicate that

for the same number of bins, V-opt histograms achieve better accuracy for both MRI to CT

and PET to CT registrations when compared to histograms that use uniform bin spacing.



CHAPTER 5: ANALYTIC VECTOR FIELD REGULARIZATION

This chapter develops an analytic method for constraining the vector field evolution that

seamlessly integrates into both uni-modal and multi-modal B-spline based registration al-

gorithms. Because image registration is an ill-posed problem, multiple vector field solutions

may equally satisfy the criteria imposed by either the employed similarity metric. Conse-

quently, the registration solution produced may describe a physically impossible deforma-

tion. By imposing explicit constrains on the character of the vector field, it is possible to

guide the registration process towards producing physically meaningful solutions; thereby

regularizing the ill-posed problem. This chapter provides the analytic mathematical for-

malism required to impose second order smoothness upon the deformation vector field in

a faster and more efficient fashion than traditional numerically based central differencing

methods. Furthermore, it is shown that the analytically derived matrix operators may be

applied directly to the B-spline parameterization of the vector field to achieve the desired

physically meaningful solutions. Single and multi-core CPU implementations are developed

and discussed. Performance for both implementations is investigated with respect to the

traditional central differencing based numerical method, and the quality of the analytic

implementations is investigated via a thoracic MRI to CT case study.



5. ANALYTIC VECTOR FIELD REGULARIZATION 88

5.1 Theory and Mathematical Formalism

When it is desired to register one image to another in a deformable fashion, many attempts

at incrementally improving the individual voxel-to-voxel mapping are algorithmically at-

tempted. The “goodness” of a particular mapping, described by a vector deformation field,

is determined by a similarity metric: the mean squared error (MSE) for unimodal registra-

tions, and the mutual information (MI) for multi-modal registrations. Although these two

metrics measure different features, they both resolve to their optimal values when given

a deformation field that yields a perfect registration. However, it is also possible to pro-

vide alternative deformation field configurations that, when scored by the similarity metric,

appear to provide a desirable registration despite actually providing worse or even anatom-

ically impossible voxel mappings. Consequently, image registration is an ill-posed problem

in the Hadamardian sense due to its lack of a unique solution. This chapter describes how

the solution space may be pruned so as to consist only of physically meaningful deforma-

tion fields. In other words, the problem will be “regularized” by the imposition of physical

constrains on the solution space.

We will now develop the mathematic formalism required to perform regularization an-

alytically on 3D medical images in a fashion that is compatible and easy coupled with the

unimodal and multi-modal registration techniques presented in earlier chapters.

The problem of registration may be regularized by implementing a penalty score that

increases with the second derivative of the vector field:



5. ANALYTIC VECTOR FIELD REGULARIZATION 89

S(~ν) =

∫ ∫ ∫ (
∂2νx
∂x2

)2

+

(
∂2νx
∂y2

)2

+

(
∂2νx
∂z2

)2

+

(
∂2νy
∂x2

)2

+

(
∂2νy
∂y2

)2

+

(
∂2νy
∂z2

)2

+

(
∂2νz
∂x2

)2

+

(
∂2νz
∂y2

)2

+

(
∂2νz
∂z2

)2

+

(
∂2νx
∂x∂y

)2

+

(
∂2νx
∂x∂z

)2

+

(
∂2νx
∂y∂z

)2

+

(
∂2νy
∂x∂y

)2

+

(
∂2νy
∂x∂z

)2

+

(
∂2νy
∂y∂z

)2

+

(
∂2νz
∂x∂y

)2

+

(
∂2νz
∂x∂z

)2

+

(
∂2νz
∂y∂z

)2

dxdydz

(5.1)

where the integration is performed over the entire deformation field. This penalty term,

which quantifies the bending energy or smoothness of the deformation field, is a weighted

addition to the similarity metric C:

Ctotal = C + λS. (5.2)

which requires similar modification of the cost function gradient to reflect the influence of

the regularization:

∂Ctotal
∂P

=
∂C

∂P
+ λ

∂S

∂P
. (5.3)

Consequently, deformation field configurations prescribing non-linear changes in patient

anatomy will be avoided by the optimizer due to possessing higher costs. The degree to

which such solutions are avoided is dictated by tuning the parameter λ. Specific values for λ

are application specific and depend on both image modality and the particular anatomical

structures undergoing registration.



5. ANALYTIC VECTOR FIELD REGULARIZATION 90

Traditionally, (5.1) would be implemented numerically – a slow process requiring second-

order central differencing to be performed for each vector in the deformation field. However,

for B-spline based registration algorithms, the deformation field is parameterized in terms

of a sparse set of B-spline control-points. Since the deformation field ~ν can be computed at

any given point within a tile by means of the B-spline interpolation:

νx(~x) =
3∑
i=0

3∑
j=0

3∑
k=0

βi(u)βj(v)βk(w)Ppx,l,m,n. (5.4)

it is possible to express the squared derivative terms in (5.1) analytically. Not only does this

forego the need to compute these derivatives via partial differencing, but it also allows for

analytic integration. Additionally, since an integration over a large interval can be expressed

as a sum of several integrations performed over smaller sub-intervals, the smoothness metric

for the entire deformation field may be computed by simply computing and summing the

smoothness metric for each individual tile defined by the B-spline control-grid:

S(~ν) =
∑

all tiles

Stile (5.5)

where Stile is defined thusly given a control-point spacing of rx, ry, and rz in the x, y, and

z dimensions, respectively:



5. ANALYTIC VECTOR FIELD REGULARIZATION 91

Stile =

∫ rz

0

∫ ry

0

∫ rx

0

(
∂2νx
∂x2

)2

+

(
∂2νx
∂y2

)2

+

(
∂2νx
∂z2

)2

+

(
∂2νy
∂x2

)2

+

(
∂2νy
∂y2

)2

+

(
∂2νy
∂z2

)2

+

(
∂2νz
∂x2

)2

+

(
∂2νz
∂y2

)2

+

(
∂2νz
∂z2

)2

+

(
∂2νx
∂x∂y

)2

+

(
∂2νx
∂x∂z

)2

+

(
∂2νx
∂y∂z

)2

+

(
∂2νy
∂x∂y

)2

+

(
∂2νy
∂x∂z

)2

+

(
∂2νy
∂y∂z

)2

+

(
∂2νz
∂x∂y

)2

+

(
∂2νz
∂x∂z

)2

+

(
∂2νz
∂y∂z

)2

dxdydz.

(5.6)

Furthermore, since the control grid is formed by uniformly spaced control-points, all

tiles defined by the control-grid are of equal dimensions, which allows for the formulation

of six standard matrix operators that can be rapidly applied to each tile’s set of 64 control

points in order to obtain each tile’s smoothness. Specifically, these six operators are:

V1 ≡
∫ rz

0

∫ ry

0

∫ rx

0

(
∂2

∂x2

)2

dxdydz, V2 ≡
∫ rz

0

∫ ry

0

∫ rx

0

(
∂2

∂y2

)2

dxdydz,

V3 ≡
∫ rz

0

∫ ry

0

∫ rx

0

(
∂2

∂z2

)2

dxdydz, V4 ≡
∫ rz

0

∫ ry

0

∫ rx

0

(
∂2

∂x∂y

)2

dxdydz,

V5 ≡
∫ rz

0

∫ ry

0

∫ rx

0

(
∂2

∂x∂z

)2

dxdydz, V6 ≡
∫ rz

0

∫ ry

0

∫ rx

0

(
∂2

∂y∂z

)2

dxdydz.

(5.7)

It is possible to pre-compute matrices representing these six operators. This results in six

matrix operations being performed on each tile’s set of 64 control point coefficients ~p for

each iteration of the registration process.

To this end, let us restate (5.4) in terms of matrices. It is convenient to first construct a

matrix Q containing the B-spline basis function coefficients normalized to the grid dimen-

sions. This is necessary because the B-spline basis may only be evaluated within the range

[0,1]:



5. ANALYTIC VECTOR FIELD REGULARIZATION 92

Qx = BRx Qy = BRy Qz = BRz (5.8)

The matrix B contains the coefficients of the cubic uniform B-spline basis function:

B =
1

6


1 −3 3 −1
4 0 −6 3
1 3 3 −3
0 0 0 1

 (5.9)

and

Rx =


1 0 0 0
0 1

rx
0 0

0 0 1
r2x

0

0 0 0 1
r3x

 , Ry =


1 0 0 0
0 1

ry
0 0

0 0 1
r2y

0

0 0 0 1
r3y

 , Rz =


1 0 0 0
0 1

rz
0 0

0 0 1
r2z

0

0 0 0 1
r3z

 , (5.10)

where rx, ry, and rz are the B-spline control point spacings in millimeters for the x, y, and

z dimensions, respectively. This allows us to restate (3.1) as:

νx =

3∑
i=0

3∑
j=0

3∑
k=0

~pi,j,k

(∑
a

Qx(i, a)~x(a)

)(∑
b

Qy(j, b)~y(b)

)(∑
c

Qz(k, c)~z(c)

)
(5.11)

where Q(0, 0) refers to the first element of the first row of the Q matrix, Q(1, 1) the second

element of the second row, and so on. Additionally, ~x, ~y, and ~z are defined thusly to form

the traditional Cartesian basis in the three orthogonal dimensions:

~x =


1
x
x2

x3

 , ~y =


1
y
y2

y3

 , ~z =


1
z
z2

z3

 . (5.12)

We can now construct matrices for the six operators listed in (5.7) by taking the second

order derivatives of (5.11). To do this, we first redefine Q to include an additional matrix



5. ANALYTIC VECTOR FIELD REGULARIZATION 93

which serves to take the first (δ = 1) and second (δ = 2) order derivatives of the B-spline

basis function:

Q(δ)
x = BRx∆

(δ) Q(δ)
y = BRy∆

(δ) Q(δ)
z = BRz∆

(δ) (5.13)

where ∆(δ) is defined thusly for δ ∈ [0,2] as

∆(0) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , ∆(1) =


0 0 0 0
1 0 0 0
0 2 0 0
0 0 3 0

 , ∆(2) =


0 0 0 0
0 0 0 0
2 0 0 0
0 6 0 0

 . (5.14)

The second derivatives are now easily constructed:

∂2νx
∂x2

=
∑
i,j,k

~pi,j,k

(∑
a

Q(2)
x (i, a)~x(a)

)(∑
b

Q(0)
y (j, b)~y(b)

)(∑
c

Q(0)
z (k, c)~z(c)

)
∂2νx
∂y2

=
∑
i,j,k

~pi,j,k

(∑
a

Q(0)
x (i, a)~x(a)

)(∑
b

Q(2)
y (j, b)~y(b)

)(∑
c

Q(0)
z (k, c)~z(c)

)
∂2νx
∂z2

=
∑
i,j,k

~pi,j,k

(∑
a

Q(0)
x (i, a)~x(a)

)(∑
b

Q(0)
y (j, b)~y(b)

)(∑
c

Q(2)
z (k, c)~z(c)

)
∂2νx
∂x∂y

=
∑
i,j,k

~pi,j,k

(∑
a

Q(1)
x (i, a)~x(a)

)(∑
b

Q(1)
y (j, b)~y(b)

)(∑
c

Q(0)
z (k, c)~z(c)

)
∂2νx
∂x∂z

=
∑
i,j,k

~pi,j,k

(∑
a

Q(1)
x (i, a)~x(a)

)(∑
b

Q(0)
y (j, b)~y(b)

)(∑
c

Q(1)
z (k, c)~z(c)

)
∂2νx
∂y∂z

=
∑
i,j,k

~pi,j,k

(∑
a

Q(0)
x (i, a)~x(a)

)(∑
b

Q(1)
y (j, b)~y(b)

)(∑
c

Q(1)
z (k, c)~z(c)

)
.

(5.15)

To construct the squares of the derivatives, we first simplify notation in a way that eliminates

the summation over indices i, j, and k:



5. ANALYTIC VECTOR FIELD REGULARIZATION 94

~γ(δx,δy ,δz) =



(∑
a Q

(δx)
x (0, a)~x(a)

)(∑
b Q

(δy)
y (0, b)~y(b)

)(∑
c Q

(δz)
z (0, c)~z(c)

)(∑
a Q

(δx)
x (1, a)~x(a)

)(∑
b Q

(δy)
y (0, b)~y(b)

)(∑
c Q

(δz)
z (0, c)~z(c)

)(∑
a Q

(δx)
x (1, a)~x(a)

)(∑
b Q

(δy)
y (1, b)~y(b)

)(∑
c Q

(δz)
z (0, c)~z(c)

)
...(∑

a Q
(δx)
x (3, a)~x(a)

)(∑
b Q

(δy)
y (3, b)~y(b)

)(∑
c Q

(δz)
z (3, c)~z(c)

)


=



γ0,0,0
γ1,0,0
γ1,1,0

...
γ3,3,3



(δx,δy ,δz)

(5.16)

and, similarly:

~px =



px,0,0,0
px,1,0,0
px,1,1,0

...
px,3,3,3


(5.17)

such that the squared second derivatives may be expressed thusly:

(
∂2νx
∂x2

)2

= ~p ᵀ
x

(
~γ(2,0,0) ⊗ ~γ(2,0,0)

)
~px = ~p ᵀ

x

(
Γ(2,0,0)

)
~px(

∂2νx
∂y2

)2

= ~p ᵀ
x

(
~γ(0,2,0) ⊗ ~γ(0,2,0)

)
~px = ~p ᵀ

x

(
Γ(0,2,0)

)
~px(

∂2νx
∂z2

)2

= ~p ᵀ
x

(
~γ(0,0,2) ⊗ ~γ(0,0,2)

)
~px = ~p ᵀ

x

(
Γ(0,0,2)

)
~px(

∂2νx
∂x∂y

)2

= ~p ᵀ
x

(
~γ(1,1,0) ⊗ ~γ(1,1,0)

)
~px = ~p ᵀ

x

(
Γ(1,1,0)

)
~px(

∂2νx
∂x∂z

)2

= ~p ᵀ
x

(
~γ(1,0,1) ⊗ ~γ(1,0,1)

)
~px = ~p ᵀ

x

(
Γ(1,0,1)

)
~px(

∂2νx
∂y∂z

)2

= ~p ᵀ
x

(
~γ(0,1,1) ⊗ ~γ(0,1,1)

)
~px = ~p ᵀ

x

(
Γ(0,1,1)

)
~px

(5.18)

where, for future convenience, we define:

Γ(δx,δy ,δz) = ~γ(δx,δy ,δz) ⊗ ~γ(δx,δy ,δz) (5.19)

which brings us very near the final form of the V matrices. Considering, for example, the



5. ANALYTIC VECTOR FIELD REGULARIZATION 95

operator V1 from (5.7):

∫ rz

0

∫ ry

0

∫ rx

0

(
∂2νx
∂x2

)2

dxdydz = ~p ᵀ
x

(∫ rz

0

∫ ry

0

∫ rx

0

[
~γ(2,0,0) ⊗ ~γ(2,0,0)

]
dxdydz

)
~px

= ~p ᵀ
x

(∫ rz

0

∫ ry

0

∫ rx

0

[
Γ(2,0,0)

]
dxdydz

)
~px

= ~p ᵀ
x (V1) ~px

(5.20)

incorporating the triple integration over the 3D tile region will provide with desired operator

matrix. However, before the integration can be performed, we must first compute the

tensor product ~γ ⊗ ~γ, which we will call Γ, and group like-ordered terms. In the interest of

computational simplicity, orthogonal B-spline basis functions composing the tensor product

Γ will be evaluated separately and finally combined. Consider the computation of an

arbitrary element (α, κ) within the 64× 64 matrix Γ (i.e. Γ(α, κ)):

Γ(δx,δy ,δz)(α, κ) = ~γ(δx,δy ,δz)(α)× ~γ(δx,δy ,δz)(κ)

= γi1,j1,k1 × γi2,j2,k2

=
∑
a

Q(δx)
x (i1, a)~x(a)

×
∑
b

Q
(δy)
y (j1, b)~y(b)

×
∑
c

Q(δz)
z (k1, c)~z(c)

×
∑
d

Q(δx)
x (i2, a)~y(a)

×
∑
e

Q
(δy)
y (j2, b)~y(b)

×
∑
f

Q(δz)
z (k2, c)~z(c)

(5.21)

and regrouping like terms:



5. ANALYTIC VECTOR FIELD REGULARIZATION 96

Γ(δx,δy ,δz)(α, κ) = γi1,j1,k1 × γi2,j2,k2

=

(∑
a

Q(δx)
x (i1, a)~x(a)×

∑
d

Q(δx)
x (i2, d)~x(d)

)

×

(∑
b

Q
(δy)
y (j1, b)~y(b)×

∑
e

Q
(δy)
y (j2, e)~y(e)

)

×

∑
c

Q(δz)
z (k1, c)~z(c)×

∑
f

Q(δz)
z (k2, f)~z(f)


= Γ(δx)

x (α, κ)× Γ
(δy)
y (α, κ)× Γ(δz)

z (α, κ)

(5.22)

which allows for the expression of Γ as the tensor product of the components Γx,Γy, and

Γz:

Γ(δx,δy ,δz) = Γ(δx)
x ⊗ Γ

(δy)
y ⊗ Γ(δz)

z . (5.23)

from which, given (5.20), follows:

V(δx,δy ,δz) =

∫ rz

0

∫ ry

0

∫ rx

0
Γ(δx,δy ,δz)dxdydz

=

∫ rx

0
Γ(δx)
x dx⊗

∫ ry

0
Γ
(δy)
y dy ⊗

∫ rz

0
Γ(δz)
z dz.

(5.24)

The computation of Γ is now a process of computing the three 4×4 matrices Γx,Γy, and

Γz. This operation requires multiplying each of the four B-spline basis functions with every

B-spline basis function. Because each of the four rows of Q is a B-spline basis function, the

desired operation for finding Γx is taking the outer product of each row of Qx with every

row of Qx. To simplify the mathematical description, row λ of a matrix Q will be referred

to as ~q(λ) such that:

Qx =


~q ᵀ
x (0)
~q ᵀ
x (1)
~q ᵀ
x (2)
~q ᵀ
x (3)

 (5.25)



5. ANALYTIC VECTOR FIELD REGULARIZATION 97

thus providing an expression for Γx:

Γx =


~qx(0)⊗ ~qx(0) ~qx(0)⊗ ~qx(1) ~qx(0)⊗ ~qx(2) ~qx(0)⊗ ~qx(3)

~qx(1)⊗ ~qx(0) ~qx(1)⊗ ~qx(1) ~qx(1)⊗ ~qx(2) ~qx(1)⊗ ~qx(3)

~qx(2)⊗ ~qx(0) ~qx(2)⊗ ~qx(1) ~qx(2)⊗ ~qx(2) ~qx(2)⊗ ~qx(3)

~qx(3)⊗ ~qx(0) ~qx(3)⊗ ~qx(1) ~qx(3)⊗ ~qx(2) ~qx(3)⊗ ~qx(3)



=


Ξx,0,0 Ξx,0,1 Ξx,0,2 Ξx,0,3

Ξx,1,0 Ξx,1,1 Ξx,1,2 Ξx,1,3

Ξx,2,0 Ξx,2,1 Ξx,2,2 Ξx,2,3

Ξx,3,0 Ξx,3,1 Ξx,3,2 Ξx,3,3


(5.26)

where, for future convenience, we define the 4× 4 matrix Ξx,λ1,λ2 as:

Ξx,λ1,λ2 = ~qx(λ1)⊗ ~qx(λ2) (5.27)

which possesses the form:

Ξx,λ1,λ2 =


c0x

0 c1x
1 c2x

2 c3x
3

c4x
1 c5x

2 c6x
3 c7x

4

c8x
2 c9x

3 c10x
4 c11x

5

c12x
3 c13x

4 c14x
5 c15x

6

 (5.28)

in grouping like-order polynomial terms for the integration over the region rx, we define the

vector ~σ:

~σx,λ1,λ2 =



Ξ(0, 0)
Ξ(0, 1) + Ξ(1, 0)
Ξ(0, 2) + Ξ(1, 1) + Ξ(2, 0)
Ξ(0, 3) + Ξ(1, 2) + Ξ(2, 1) + Ξ(3, 0)
Ξ(1, 3) + Ξ(2, 2) + Ξ(3, 1)
Ξ(2, 3) + Ξ(3, 2)
Ξ(3, 3)


x,λ1,λ2

(5.29)

and defining:



5. ANALYTIC VECTOR FIELD REGULARIZATION 98

~ψx =



rx
1
2r

2
x

1
3r

3
x

1
4r

4
x

1
5r

5
x

1
6r

6
x

1
7r

7
x


, ~ψy =



ry
1
2r

2
y

1
3r

3
y

1
4r

4
y

1
5r

5
y

1
6r

6
y

1
7r

7
y


, ~ψz =



rz
1
2r

2
z

1
3r

3
z

1
4r

4
z

1
5r

5
z

1
6r

6
z

1
7r

7
z


(5.30)

allows us to express the integrals of Γx,Γy and Γz thusly:

Γ̄(δx)
x =

∫ rx

0
Γ(δx)
x dx =


~σᵀx,0,0

~ψx ~σᵀx,0,1
~ψx ~σᵀx,0,2

~ψx ~σᵀx,0,3
~ψx

~σᵀx,1,0
~ψx ~σᵀx,1,1

~ψx ~σᵀx,1,2
~ψx ~σᵀx,1,3

~ψx

~σᵀx,2,0
~ψx ~σᵀx,2,1

~ψx ~σᵀx,2,2
~ψx ~σᵀx,2,3

~ψx

~σᵀx,3,0
~ψx ~σᵀx,3,1

~ψx ~σᵀx,3,2
~ψx ~σᵀx,3,3

~ψx



Γ̄
(δy)
y =

∫ ry

0
Γ
(δy)
y dy =


~σᵀy,0,0

~ψy ~σᵀy,0,1
~ψy ~σᵀy,0,2

~ψy ~σᵀy,0,3
~ψy

~σᵀy,1,0
~ψy ~σᵀy,1,1

~ψy ~σᵀy,1,2
~ψy ~σᵀy,1,3

~ψy

~σᵀy,2,0
~ψy ~σᵀy,2,1

~ψy ~σᵀy,2,2
~ψy ~σᵀy,2,3

~ψy

~σᵀy,3,0
~ψy ~σᵀy,3,1

~ψy ~σᵀy,3,2
~ψy ~σᵀy,3,3

~ψy



Γ̄(δz)
z =

∫ rz

0
Γ(δz)
z dz =


~σᵀz,0,0

~ψz ~σᵀz,0,1
~ψz ~σᵀz,0,2

~ψz ~σᵀz,0,3
~ψz

~σᵀz,1,0
~ψz ~σᵀz,1,1

~ψz ~σᵀz,1,2
~ψz ~σᵀz,1,3

~ψz

~σᵀz,2,0
~ψz ~σᵀz,2,1

~ψz ~σᵀz,2,2
~ψz ~σᵀz,2,3

~ψz

~σᵀz,3,0
~ψz ~σᵀz,3,1

~ψz ~σᵀz,3,2
~ψz ~σᵀz,3,3

~ψz



(5.31)

which, when applied to (5.24), yields the expressions for the six desired operators:

V1 = V(2,0,0) = Γ̄(2)
x ⊗ Γ̄(0)

y ⊗ Γ̄(0)
z

V2 = V(0,2,0) = Γ̄(0)
x ⊗ Γ̄(2)

y ⊗ Γ̄(0)
z

V3 = V(0,0,2) = Γ̄(0)
x ⊗ Γ̄(0)

y ⊗ Γ̄(2)
z

V4 = V(1,1,0) = Γ̄(1)
x ⊗ Γ̄(1)

y ⊗ Γ̄(0)
z

V5 = V(1,0,1) = Γ̄(1)
x ⊗ Γ̄(0)

y ⊗ Γ̄(1)
z

V6 = V(0,1,1) = Γ̄(0)
x ⊗ Γ̄(1)

y ⊗ Γ̄(1)
z

(5.32)

which can be used to express the terms in (5.1) thusly:



5. ANALYTIC VECTOR FIELD REGULARIZATION 99

∫ rz

0

∫ ry

0

∫ rx

0

(
∂2νx
∂x2

)2

dxdydz = ~p ᵀ
x (V1) ~px∫ rz

0

∫ ry

0

∫ rx

0

(
∂2νx
∂y2

)2

dxdydz = ~p ᵀ
x (V2) ~px∫ rz

0

∫ ry

0

∫ rx

0

(
∂2νx
∂z2

)2

dxdydz = ~p ᵀ
x (V3) ~px∫ rz

0

∫ ry

0

∫ rx

0

(
∂2νx
∂x∂y

)2

dxdydz = ~p ᵀ
x (V4) ~px∫ rz

0

∫ ry

0

∫ rx

0

(
∂2νx
∂x∂z

)2

dxdydz = ~p ᵀ
x (V5) ~px∫ rz

0

∫ ry

0

∫ rx

0

(
∂2νx
∂y∂z

)2

dxdydz = ~p ᵀ
x (V6) ~px

(5.33)

which allows for the concise re-expression of the smoothness metric:

Stile = ~p ᵀ
x (V1) ~px + ~p ᵀ

x (V2) ~px + ~p ᵀ
x (V3) ~px

+ ~p ᵀ
x (V4) ~px + ~p ᵀ

x (V5) ~px + ~p ᵀ
x (V6) ~px

+ ~p ᵀ
y (V1) ~py + ~p ᵀ

y (V2) ~py + ~p ᵀ
y (V3) ~py

+ ~p ᵀ
y (V4) ~py + ~p ᵀ

y (V5) ~py + ~p ᵀ
y (V6) ~py

+ ~p ᵀ
z (V1) ~pz + ~p ᵀ

z (V2) ~pz + ~p ᵀ
z (V3) ~pz

+ ~p ᵀ
z (V4) ~pz + ~p ᵀ

z (V5) ~pz + ~p ᵀ
z (V6) ~pz

(5.34)

whose derivative with respect to the B-spline control-point parameterization P may be

expressed thusly:



5. ANALYTIC VECTOR FIELD REGULARIZATION 100

∂Stile
∂P

= (2×V1~px) + (2×V2~px) + (2×V3~px)

+ (2×V4~px) + (2×V5~px) + (2×V6~px)

+ (2×V1~py) + (2×V2~py) + (2×V3~py)

+ (2×V4~py) + (2×V5~py) + (2×V6~py)

+ (2×V1~pz) + (2×V2~pz) + (2×V3~pz)

+ (2×V4~pz) + (2×V5~pz) + (2×V6~pz)

(5.35)

5.2 Algorithmic Implementation

Because the matrix operators V1 through V6 depend only on the B-spline grid configu-

ration, they may be pre-computed before the registration begins and simply reused within

each iteration. Therefore, the algorithmic implementation of the regularization process con-

sists of two stages: an initialization stage and an update stage. During the initialization

stage, the matrix operators V1 through V6 are simply constructed and stored. The up-

date stage occurs at the end of each optimization iteration and consists of applying the

pre-computed matrix operators to the B-spline coefficients in order to compute the vector

field smoothness S and its derivative with respect to each control point ∂S/∂P . This stage

concludes by adding the smoothness S to the overall cost function C as in 5.2 and the

smoothness derivative ∂S/∂P to the cost function gradient ∂C/∂P as per 5.3.

First, we consider the initialization process, which is performed along with all other

B-spline initialization procedures. Only the B-spline control point spacing in each spatial

dimension is required for generation of the matrix operators V1 through V6. This initial-

ization process is described algorithmically in Fig. 5.1 and Fig. 5.2. Lines 1–4 normalize the



5. ANALYTIC VECTOR FIELD REGULARIZATION 101

1: /* Generate the Q matrices from (5.8) */

2: Q(0)
x = BRx

3: Q(0)
y = BRy

4: Q(0)
z = BRz

5:

6: /* Generate first and second derivatives as in (5.13) and (5.14) */

7: Q(1)
x = Q(0)

x ∆(1)

8: Q(1)
y = Q(0)

y ∆(1)

9: Q(1)
z = Q(0)

z ∆(1)

10: Q(2)
x = Q(0)

x ∆(2)

11: Q(2)
y = Q(0)

y ∆(2)

12: Q(2)
z = Q(0)

z ∆(2)

13:

14: /* Generate Γ̄
(0)
x , Γ̄

(1)
x , Γ̄

(2)
x as per (5.26) - (5.31) */

15: Γ̄
(0)
x = eval integral(Q(0)

x , rx)

16: Γ̄
(1)
x = eval integral(Q(1)

x , rx)

17: Γ̄
(2)
x = eval integral(Q(2)

x , rx)
18:

19: /* Generate Γ̄
(0)
y , Γ̄

(1)
y , Γ̄

(2)
y as per (5.26) - (5.31) */

20: Γ̄
(0)
y = eval integral(Q(0)

y , ry)

21: Γ̄
(1)
y = eval integral(Q(1)

y , ry)

22: Γ̄
(2)
y = eval integral(Q(2)

y , ry)
23:

24: /* Generate Γ̄
(0)
z , Γ̄

(1)
z , Γ̄

(2)
z as per (5.26) - (5.31) */

25: Γ̄
(0)
z = eval integral(Q(0)

z , rz)

26: Γ̄
(1)
z = eval integral(Q(1)

z , rz)

27: Γ̄
(2)
z = eval integral(Q(2)

z , rz)
28:

29: /* Generate V1 through V6 as per (5.32) */

30: V1 = Γ̄
(2)
x ⊗ Γ̄

(0)
y ⊗ Γ̄

(0)
z

31: V2 = Γ̄
(0)
x ⊗ Γ̄

(2)
y ⊗ Γ̄

(0)
z

32: V3 = Γ̄
(0)
x ⊗ Γ̄

(0)
y ⊗ Γ̄

(2)
z

33: V4 = Γ̄
(1)
x ⊗ Γ̄

(1)
y ⊗ Γ̄

(0)
z

34: V5 = Γ̄
(1)
x ⊗ Γ̄

(0)
y ⊗ Γ̄

(1)
z

35: V6 = Γ̄
(0)
x ⊗ Γ̄

(1)
y ⊗ Γ̄

(1)
z

Figure 5.1: Initialization of the regularizer

B-spline basis by the control point grid spacing for each Cartesian axis as per (5.8). This is

necessary so that any given voxel coordinate within a tile will normalize within the required

domain [0,1] within which the B-spline basis functions are defined. Lines 6–12 generate

the first and second order spatial derivatives of the normalized B-spline basis functions as



5. ANALYTIC VECTOR FIELD REGULARIZATION 102

1: function eval integral(Q, r)
2: for λ2 = 0 to 3 step 1
3: for λ1 = 0 to 3 step 1
4: /* As per (5.25) and (5.27) */
5: Ξ = ~q(λ1)⊗ ~q(λ2)
6:

7: /* As per (5.28) and (5.31) */

8: Γ̄(λ1, λ2) = r1

1 (Ξ(0, 0))

9: + r2

2 (Ξ(0, 1) + Ξ(1, 0))

10: + r3

3 (Ξ(0, 2) + Ξ(1, 1) + Ξ(2, 0))

11: + r4

4 (Ξ(0, 3) + Ξ(1, 2) + Ξ(2, 1) + Ξ(3, 0))

12: + r5

5 (Ξ(1, 3) + Ξ(2, 2) + Ξ(3, 1))

13: + r6

6 (Ξ(2, 3) + Ξ(3, 2))

14: + r7

7 (Ξ(3, 3))
15: end for
16: end for
17:

18: return Γ̄
19: end function

Figure 5.2: Generation of integrated sub-matrices Γ̄

per (5.13) and (5.14). Lines 14–17 generate the Γ̄
(0)
x , Γ̄

(1)
x , and Γ̄

(2)
x matrices by squaring

(5.4) for the the zeroth, first, and second order normalized B-spline basis functions Q
(0)
x ,

Q
(1)
x , Q

(2)
x and integrating the resulting 6th order polynomials over the control-point spac-

ing in the x-direction as per (5.26) - (5.31). Similarly , this operation is performed in the

y- and z-directions to obtain Γ̄
(0)
y , Γ̄

(1)
y , Γ̄

(2)
y , Γ̄

(0)
z , Γ̄

(1)
z , and Γ̄

(2)
z . As shown, this process

of squaring and integrating is performed within the function eval integral( ), which is

algorithmically described in Fig. 5.2. Finally, lines 29–35 complete the initialization process

by computing the V1–V6 matrices via the tensor product as per 5.32.

Once the matrix operators V1 through V6 have been obtained, the smoothness S and

its derivative ∂S/∂P may be quickly computed for any given tile via (5.34) and (5.35).

Fig. 5.3 describes the process of computing the smoothness for the entire vector field by

sequentially computing the vector field smoothness for each tile Stile and accumulating the



5. ANALYTIC VECTOR FIELD REGULARIZATION 103

1: S = 0

2: for tile idx = 0 to NUM TILES-1 step 1
3: /* Generate array containing indices for tile’s 64 control points */

4: cp lut = find control points(tile idx)

5:

6: /* Sum partial derivatives as per (5.34) and (5.35) */

7: S += apply operator(cp lut,V1)

8: S += apply operator(cp lut,V2)

9: S += apply operator(cp lut,V3)

10: S += apply operator(cp lut,V4)

11: S += apply operator(cp lut,V5)

12: S += apply operator(cp lut,V6)

13: end for

Figure 5.3: The update stage of the regularizer

results as in (5.5). For each iteration, we first use the tile’s index tile index to compute

the indices of the 64 control points that are associated with that tile. These indices are

stored into the 64 element array cp lut as shown in line 4. The remainder of the iteration

computes the smoothness of the individual tile’s vector field by applying the six matrix

operators as shown in lines 7–12 and summing the results. For subsequent iterations we

continue to accumulate into S, thereby computing the smoothness for the entire vector field

as prescribed by (5.5).

Inspection of Fig. 5.4 reveals the steps involved in the application of a given V matrix

operator to a set of 64 control points. Here, lines 4–12 implement the straight-forward

matrix multiplication required by the ~p ᵀ (V) ~p operation found in (5.34). The array V [ ]

holds the 64 × 64 matrix operator being applied to the B-spline coefficients stored within

P , which is x, y, z-interlaced as shown in Fig. 3.4 in Chapter 3. The control-point index

lookup table cp lut passed into the function contains the indices of the 64 control-points

for the tile in question; thus its use in lines 5–7 and 10–12 serves as a means of converting

from tile-centric control-point indexing (ranging from 0 to 63) to the absolute control-point



5. ANALYTIC VECTOR FIELD REGULARIZATION 104

1: function apply operator(cp lut, V)
2: for j = 0 to 63 step 1
3: /* Compute tile smoothness as per (5.34). */

4: for i = 0 to 63 step 1
5: tmp x[j] += P[3*cp lut[i]+0] ∗ V [64 ∗ j + i]
6: tmp y[j] += P[3*cp lut[i]+1] ∗ V [64 ∗ j + i]
7: tmp z[j] += P[3*cp lut[i]+2] ∗ V [64 ∗ j + i]
8: end for
9:

10: Stile += tmp x[j] * P[3*cp lut[i]+0]

11: Stile += tmp y[j] * P[3*cp lut[i]+1]

12: Stile += tmp z[j] * P[3*cp lut[i]+2]

13: /* -------------------------------------- */

14:

15: /* Compute tiles smoothness derivative as per (5.35). */

16: ∂C/∂P[3*cp lut[j]+0] += 2 ∗ λ ∗ tmp x[j]

17: ∂C/∂P[3*cp lut[j]+1] += 2 ∗ λ ∗ tmp y[j]

18: ∂C/∂P[3*cp lut[j]+2] += 2 ∗ λ ∗ tmp z[j]

19: end for
20:

21: return Stile

22: end function

Figure 5.4: Application of the regularization operators to the B-spline coefficients

indexing used within the B-spline coefficient array P . Furthermore, due to the operational

similarity found in the computation of the tile smoothness Stile and its derivative ∂Stile/∂P ,

we are able to compute (5.35) in place using the partial solutions tmp x[ ], tmp y[ ], and

tmp z[ ] from the tile smoothness computation as shown in lines 16–18.

Finally, it should be noted that since the computation of an individual tile’s smoothness

is independent of all other tiles, it is possible to parallelize the algorithm by simply spreading

the iterations of Fig. 5.3 across N cores and performing a sum reduction on the resulting N

values of S. Additionally, because lines 16–18 of Fig. 5.4 attempt to update 64 control-point

∂C/∂P values by appending ∂S/∂P as in (5.3), this cost function gradient update operation

must be modified to be thread safe. For this, the same thread safe, parallel method used

by Chapters 2 and 3 to update a set of 64 ∂C/∂P values given a tile of ∂C/∂ν values may



5. ANALYTIC VECTOR FIELD REGULARIZATION 105

be employed since the data structure and operation is identical. The only difference being

∂S/∂P data replaces ∂C/∂ν data, but is otherwise identical as the 64 solutions for the tile

affect the 64 surrounding control points in the exact same fashion.

5.3 Performance Evaluation

This section presents experimental results obtained for single and multi-core CPU imple-

mentations in terms of both execution speed and registration quality. A numerically based

central differencing implementation that computes the vector field smoothness by operat-

ing directly on the vector field is provided as a basis for comparison. All implementations

are evaluated in terms of execution speed as a function of 1) volume size given a fixed

control point grid and 2) control point spacing given a fixed volume size. Additionally,

the processing time for a single tile as a function of the tile’s size is also investigated. As

previously described, the sequential analytic implementation computes the smoothness by

applying the V matrix operators to the B-spline coefficients pertaining to each tile – one

tile at a time until all tiles within the volume are processed. Because the computation of

each individual tile’s smoothness is independent of other tiles, the parallel analytic imple-

mentation may process the smoothness for N tiles in parallel given N cores. Additionally,

this implementation uses the parallel gradient update method developed in chapters 2 and

3 to further accelerate the algorithm. These analytic implementations provide interesting

contrast to the numerical method of smoothness computation, which is based on central

differencing of raw vector field values at each individual voxel in the volume. Consequently,

the numerical method differs from the analytic methods in that it is voxel resolution centric

and not control grid resolution centric. This results in the two methods having not only



5. ANALYTIC VECTOR FIELD REGULARIZATION 106

differing processing speeds but fundamentally different execution-time profiles with respect

to the various input parameters.

Lastly, we demonstrate the effectiveness of regularization for a multi-modal case requir-

ing the registration of an intra-operative CT to a pre-operative MRI. Warped moving images

with are without regularization are shown as well as their associated deformation vector

field transforms. Additionally, post-warp CT-MRI fusion images are provided in order to

more clearly demonstrate the affects of regularization on registration solution convergence.

All tests reported within this section were performed using a machine equipped with an

Intel quad-core i7 920 processor with each core clocked at 2.6 GHz, and 12 GB of RAM.

5.3.1 Registration Quality

As previously mentioned, the need for regularization arises from the inverse nature of the

image registration problem. In other words, the deformation vector field solution we seek is

non-unique – there are many possible image mappings that will serve to satisfy our imposed

score requirement dictating a “good” registration. Our imposition of a score penalty based

on vector field smoothness constrains the solution space to a subset. Constraining the

solution space in this fashion is particularly beneficial when performing registration using

mutual information (MI) as a similarity metric.

Fig. 5.5 shows axial cross-sections of thoracic image volumes involved in an MRI to CT

multi-modal registration using mutual information. CT images are shown in blue and MRI

images are shown in red. Fig. 5.5(a) is a cross-section of the CT volume serving as the fixed

image. Similarly, Fig. 5.5(b) is a cross-section of the MRI serving as the moving image.

Fig. 5.5(c) shows the result of a carefully conducted five-stage multi-resolution B-spline



5. ANALYTIC VECTOR FIELD REGULARIZATION 107

(a) (b)

(c) (d)

Figure 5.5: Warped thoracic images with and without regularization. (a) The
static CT image, (b) the moving MRI image, (c) the warped MRI after registration without
regularization, and (d) the warped MRI after registration with a regularization factor of
λ = 5× 10−6.

grid registration that does not impose any regularization on the deformation vector field.

Fig. 5.5(d) shows the same 5-stage registration that imposes the smoothness penalty term

with a weight of λ = 5× 10−6. Fig. 5.6(a) shows the un-warped MRI image superimposed

upon the CT image prior to deformable registration. As shown, the two images have been

rigidly registered manually to one another such that the common vertebra are aligned.

Notice the significant liver deformation on the left of the thorax and the spleen deformation

found on the right posterior. The aim of the deformable registration is to recover the



5. ANALYTIC VECTOR FIELD REGULARIZATION 108

(a) (b)

(c)

Figure 5.6: Fusion of MRI and CT thoracic images with and without regulariza-
tion. (a) The unwarped MRI image superimposed on CT image, (b) the MRI warped
without regularization superimposed on CT, and (c) the MRI warped with regularization and
superimposed on the CT.

deformation vector field accuracy describing the movement of these organs and surrounding

dynamic anatomy.

We will first analyze the result without regularization. Despite this deformation being

physically impossible, as we will show, it does meet the mutual information criteria for a

good registration. Consequently, the fusion of this solution with the fixed CT image is

visually favorable as shown in Fig. 5.6(b). However, notice how the MRI image warped

by the unregularized vector field, when viewed by itself in Fig. 5.5(c), appears “wavy” and



5. ANALYTIC VECTOR FIELD REGULARIZATION 109

(a) (b)

Figure 5.7: Multi-modal vector fields with and without regularization. (a) Superim-
position of a 2D slice of the 3D deformation vector field upon the corresponding axial thoracic
CT slice. This vector field was generated from an MRI to CT registration that did not employ
regularization. (b) Superimposition of a vector field upon a CT image that underwent the
same registration but with a regularization penalty weight of λ = 5× 10−6.

exhibits artifacting reminiscent of a thin film of oil – particularly pronounced within the

spinal column and the anterior layer of fat around the abdomen. Naturally, the human

body is incapable of deforming in this fashion and direct inspection of the deformation field

shown in Fig. 5.7(a) confirms its implausibility.

By contrast, Fig. 5.5(d) shows the result for the same registration performed with a

regularization penalty weight of λ = 5 × 10−6. Notice how the artifacting is no longer

present – the deformation appears physically sane; accordingly, the deformation vector field

shown in Fig. 5.7(b) confirms that the mapping is sane. Finally, the super-imposition of

this warped MRI upon the reference CT image shown in Fig. 5.6(c) represents an accurate

anatomical correlation between the intra-operative CT and pre-operative MRI images.



5. ANALYTIC VECTOR FIELD REGULARIZATION 110

0

100

200

300

400

500

600

700

Volume Size (voxels)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
o
n
d
s
)

20x20x20

240x240x240

280x280x280

300x300x300

320x320x320

340x340x340

360x360x360

380x380x380

400x400x400

420x420x420

440x440x440

460x460x460

480x480x480

500x500x500
 

 

Numerical (1 core)

Analytic (1 core)

Analytic (OpenMP: 4 cores)

(a)

0

0.5

1

1.5

2

2.5

3

3.5

Volume Size (voxels)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
o
n
d
s
)

20x20x20

240x240x240

280x280x280

300x300x300

320x320x320

340x340x340

360x360x360

380x380x380

400x400x400

420x420x420

440x440x440

460x460x460

480x480x480

500x500x500
 

 

Analytic (1 core)

Analytic (OpenMP: 4 cores)

(b)

Figure 5.8: Performance of the regularizer with respect to volume size. (a) Execution
times for each regularization implementation as a function of input volume size. Control-point
spacing is fixed at 5× 5× 5 voxels. (b) Only showing analytic implementations.

5.3.2 Sensitivity to Volume Size

This set of tests characterizes each implementation’s sensitivity, in terms of execution time,

to increasing volume size where the volumes are synthetically generated. We fix the control-

point spacing at 15 voxels in each physical dimension and increase the volume size in steps

of 5× 5× 5 voxels. For each volume size, we record the execution time incurred by a single

iteration of the regularization process. Fig. 5.8(a) summarizes the results. As expected for

the numerically derived solution, the execution time increases linearly with the number of

voxels involved. Fig. 5.8(b) shows the same graph excluding the numerical method. Notice

how the execution time for the analytic increases only when the volume size increases by a

multiple of the control-point grid spacing. This is because the analytic algorithms operates

directly on the control-point coefficients in order to compute the vector field smoothess for

a tile. Therefore, the execution time depends only on the number of tiles within the volume.



5. ANALYTIC VECTOR FIELD REGULARIZATION 111

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

50

100

150

200

Grid Spacing (voxels)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
o
n
d
s
)

 

 

Numerical (1 core)

Analytic (1 core)

Analytic (OpenMP: 4 cores)

(a)

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Grid Spacing (voxels)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
o
n
d
s
)

 

 

Analytic (1 core)

Analytic (OpenMP: 4 cores)

(b)

Figure 5.9: Regularization performance with respet to control grid spacing. (a) Ex-
ecution times for each regularization implementation as a function of control-point grid size.
Input volume size is fixed at 320×320×320 voxels. (b) Only showing analytic implementations.

Increasing the volume size by a multiple of the control-point spacing introduces addition

tiles; therefore incurring additional overall processing time for the volume. In the case of a

large test volume of 500×500×500 voxels, the single core analytic implementation exhibits

a speedup of 191 times over the numerical method. For the same volume size, the parallel

analytic method achieves an additional 3.2x speedup – a speedup of 613x with respect to

the numerical method.

5.3.3 Sensitivity to Control-Point Spacing

Fig. 5.9(a) shows the execution time for all three regularization implementations over a

single registration iteration as a function of control-point grid spacing with the volume size

held constant at 320× 320× 320 voxels. As expected, the execution time for the numerical

implementation is agnostic to the control-point spacing since it performs central differencing



5. ANALYTIC VECTOR FIELD REGULARIZATION 112

0

50

100

150

200

Tile Size (voxels)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
o
n
d
s
)

20x20x20

160x160x160

180x180x180

200x200x200

220x220x220

240x240x240

260x260x260

280x280x280

300x300x300

320x320x320
 

 

Numerical (1 core)

Analytic (1 core)

Analytic (OpenMP: 4 cores)

(a)

0

0.5

1

1.5

2

2.5

3

3.5

Tile Size (voxels)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
o
n
d
s
)

20x20x20

160x160x160

180x180x180

200x200x200

220x220x220

240x240x240

260x260x260

280x280x280

300x300x300

320x320x320
 

 

Analytic (1 core)

Analytic (OpenMP: 4 cores)

(b)

Figure 5.10: Regularization performance with respet to tile size. (a) Execution times
for each regularization implementation as a function of tile size. For these tests, only the time
to process a single tile is measured. (b) Only showing analytic implementations.

at every point in the vector field. Fig. 5.9(b) shows only the execution times for the

analytically derived solutions. Interestingly, the analytic implementations exhibit inverse

cubic decay in execution time with respect to control-point spacing, with finer spacings

showing longer execution times. This character is most easily explained by examining the

execution time required to compute the smoothness for a single tile with respect to tile size

as shown in Fig. 5.10. As shown in Fig. 5.10(b), as the tile size increases, the time required

for the analytic implementations to process that tile remains constant. This is because the

computation operation is based only on the coefficients of the 64 control-points which define

the tile. If the spacing between these 64 control-points increase, the number of elements

required to perform the computation remains unchanged – only the B-spline normalization

matrices Rx, Ry, and Rz from (5.10) are modified, which has no affect on processing time



5. ANALYTIC VECTOR FIELD REGULARIZATION 113

as shown in Fig. 5.10(b). Consequently, the inverse cubic execution profile exhibited by the

analytic algorithms in Fig. 5.9(b) is due only to the number of tiles decreasing in each of

the three spatial volume dimensions as the control-point spacing is isometrically increased.

Finally, Fig. 5.10(a) shows the execution time to increase with tile size for the central

differencing based numerical algorithm. However, because this algorithm’s processing time

is solely dependent on the total number of voxels in the image volume, the overall execution

time remains unchanged with control-point spacing as shown in Fig. 5.9(a). In other words,

if the volume holds constant dimensionality, increasing the control-point spacing results in

longer processing times per tile, however the number of tiles have proportionally decreased;

thus resulting in an overall unchanged processing time for the image volume as a whole.

5.4 Conclusions

We have developed an analytic method for computing the smoothness of a vector defor-

mation field parameterized by uniform cubic B-spline basis coefficients. Furthermore, we

have demonstrated how to integrate this smoothness metric into the deformable registration

workflow; thereby constraining the solution of the vector deformation field and regularizing

the ill-posedness of the image registration problem. The effectiveness of this method of reg-

ularization has been validated by performing multi-modal MI-based deformable registration

of a pre-operational thoracic MRI to an intra-operational thoracic CT scan. The warped

images, fused images, and vector field visualizations show increased anatomical correctness

for registration procedures incorporating regularization over otherwise identical procedures

excluding regularization. Finally, performance analysis shows our analytic method for com-

puting the smoothness metric to be independent of volume resolution and 191 times faster



5. ANALYTIC VECTOR FIELD REGULARIZATION 114

than the traditional numerical method of computation based on central differencing – reduc-

ing the operation from hundreds of seconds to approximately 1 second for most registration

configurations. By parallelizing the analytic algorithm via OpenMP, we achieved a speed

up of over 3.2 times the single core analytic algorithm when executed on a four core Intel

i7 920 processor; thus providing sub-second processing times for even the most demanding

medical image registration problems.



CHAPTER 6: CONCLUSIONS

The ideas and techniques presented in this thesis form a fast and robust basis for deploy-

ing both unimodal and multi-modal medical image registration on multi-core computer

architectures.

In Chapter 2, the grid-alignment scheme and its associated data structures were in-

troduced. These data structures greatly reduce the complexity of the B-spline registration

process and form a strong basis that is used extensively by the techniques presented through-

out this thesis. Highly parallel and scalable designs for computing both the unimodal MSE

similarity metric and its derivative with respect to the B-spline parameterization were devel-

oped for multi-core architectures. The speed and robustness of the proposed parallelization

strategy was experimentally demonstrated using both synthetic and clinical CT data. For

multi-core CPU systems, the acceleration over a highly optimized serial implementation was

shown to be linearly proportional to the number of available cores up to the tested number

of eight cores. The GPU implementation, when executed on a Tesla 1060 GPU, exhibited an

acceleration of 15 times over the serial implementation. Experiments demonstrated a fairly

strong independence between the B-spline grid resolution and the execution time for both

multi-core CPU and GPU-based implementations. Additionally, the presented method for

computing the MSE cost function in parallel formed a solid foundation for developing highly

data-parallel methods for both MI-based multi-modal registration and deformation vector



6. CONCLUSIONS 116

field regularization by providing a fast and thread-safe method of working with B-spline

parameterization.

In Chapter 3, the integration of the MI cost function with the B-spline registration algo-

rithm was introduced; thereby enabling multi-modal registrations such as MRI to CT. The

mathematical foundation of MI-based scoring was detailed, and the fundamental theory

describing how such statistically based similarity scoring differs from the simpler intensity

based MSE scoring was introduced. Furthermore, parallel methods for computing the fol-

lowing were developed mathematically and demonstrated algorithmically in pseudo-code:

deformation vector field expansion from a sparse B-spline parameterization, generation of

marginal and joint intensity histograms, partial volume interpolation, MI computation, and

the computation of the MI derivative with respect to the B-spline parameterization. The

relationship between these operations was presented within the framework of an iterative

optimization workflow that constitutes the multi-modal registration process. Single-core

CPU, multi-core CPU, and many-core GPU implementations based on the presented the-

ory were developed and evaluated in terms of execution speed and registration quality.

Results indicated that the speedup varied linearly with volume size and was relatively in-

sensitive to the B-spline control-point spacing. The GPU-based implementations achieved,

on average, a speedup of 21 times with respect to the serial CPU implementation and 7.5

times with respect to the multi-core CPU implementation when executed using four cores.

All algorithms exhibited near-identical registration quality.

Chapter 4 developed a fast method for increasing the accuracy of estimating the prob-

ability distribution of image intensities by introducing V-opt histograms. It was demon-

strated that such histograms improve the quality of MI-based image registration by auto-



6. CONCLUSIONS 117

matically placing each distinct tissue type in the image within segregated bins. Experi-

mental results indicated that for the same number of bins, the V-opt histograms resulted

in better registration accuracy for both MRI to CT and PET to CT registrations when

compared to histograms that use the traditional method of uniform bin spacing.

Finally, Chapter 5 developed an analytic method for computing the smoothness of the

vector deformation field by operating directly on the B-spline parameterization coefficients.

Additionally, it was demonstrated how to integrate this smoothness metric into the de-

formable registration workflow; thereby constraining the solution of the vector deformation

field and regularizing the ill-posedness of the registration problem. The effectiveness of this

method was validated by performing MI-based deformable registration of a pre-operational

thoracic MRI to an intra-operational thoracic CT scan. Warped images, fused images, and

vector field visualizations were presented and indicated increased anatomical correctness

for registration procedures incorporating regularization over otherwise identical procedures

excluding regularization. Performance analysis showed the analytic method for computing

the smoothness metric to be independent of volume resolution and 191 times faster than

the traditional numerical computation based on central differencing – reducing the opera-

tion from hundreds of seconds to approximately 1 second for most clinical applications. By

parallelizing the analytic algorithm via OpenMP, we achieved a further speedup of 3.2 times

over the single core analytic algorithm when executed on a four core Intel i7 920 processor;

thus providing sub-second processing times for even the most demanding medical image

registration problems.

The topics and methods presented in this thesis have been implemented and comprise

the B-spline registration engine used by the high-performance medical image registration



6. CONCLUSIONS 118

software package Plastimatch, which is freely available for download under a BSD-style

license from www.plastimatch.org. With markedly improved execution speeds and inte-

gration with modern GPU processing platforms, it is hoped that deformable registration

based medical image analysis will become more commonly adopted into routine clinical

practices.

www.plastimatch.org


LIST OF REFERENCES

[1] P. Freeborough and N. Fox, “Modeling brain deformations in Alzheimer disease by

fluid registration of serial 3D MR images,” J Comput Assist Tomogr, vol. 22, 1998. 2

[2] P. Thompson, M. Mega, R. Woods, C. Zoumalan, C. Lindshield, R. Blanton, J. Mous-

sai, C. Holmes, J. Cummings, and A. Toga, “Cortical change in Alzheimer’s disease

detected with a disease-specific population-based brain atlas,” Cerebral Cortex, vol. 11,

pp. 1–16, Jan 2001. 2

[3] R. Scahill, C. Frost, R. Jenkins, J. Whitwell, M. Rossor, and N. Fox, “A longitudi-

nal study of brain volume changes in normal aging using serial registered magnetic

resonance imaging,” Arch Neurol, vol. 60, pp. 989–94, Jul 2003. 2

[4] W. Gharaibeh, F. Rohlf, D. Slice, and L. DeLisi, “A geometric morphometric assess-

ment of change in midline brain structural shape following a first episode of schizophre-

nia,” Biol Psychiatry, vol. 48, pp. 398–405, 2000. 2

[5] D. Job, H. Whalley, S. McConnell, M. Glabus, E. Johnstone, and S. Lawrie, “Voxel-

based morphometry of grey matter densities in subjects at high risk of schizophrenia.,”

Schizophr Res, vol. 64, pp. 1–13, 2003. 2

[6] P. Thompson, J. Giedd, R. Woods, D. MacDonald, A. Evans, and A. Toga, “Growth

patterns in the developing human brain detected using continuum-mechanical tensor

mapping,” Nature, vol. 404, pp. 190–3, 2000. 2

[7] A. Gholipour, N. Kehtarnavaz, R. Briggs, M. Devous, and K. Gopinath, “Brain func-

tional localization: A survey of image registration techniques,” IEEE Trans Med Imag-

ing, vol. 26, pp. 427–451, Apr 2007. 2

[8] M. Ferrant, A. Nabavi, B. Macq, P. Black, F. Jolesz, R. Kikinis, and S. Warfield,

“Serial registration of intraoperative MR images of the brain,” Med Image Anal, vol. 6,

pp. 337–59, Dec 2002. 3

[9] T. Hartkens, D. Hill, A. Castellano-Smith, D. Hawkes, C. Maurer, A. Martin, W. Hall,

H. Liu, and C. Truwit, “Measurement and analysis of brain deformation during neu-

rosurgery,” IEEE Trans Med Imaging, vol. 22, pp. 82–92, 2003. 3

[10] A. Bharatha, M. Hirose, N. Hata, S. Warfield, M. Ferrant, K. Zou, E. Suarez-Santana,

J. Ruiz-Alzola, A. D’Amico, R. Cormack, R. Kikinis, F. Jolesz, and C. Tempany,

“Evaluation of three-dimensional finite element-based deformable registration of pre-

and intraoperative prostate imaging,” Med Phys, vol. 28, pp. 2551–60, Dec 2001. 3



LIST OF REFERENCES 120

[11] A. Mohamed, C. Davatzikos, and R. Taylor, “A combined statistical and biomechan-

ical model for estimation of intra-operative prostate deformation,” in Proc MICCAI,

pp. 452–60, 2002. 3

[12] D. Stoyanov, G. Mylonas, F. Deligianni, A. Darzi, and G. Yang, “Soft-tissue motion

tracking and structure estimation for robotic assisted MIS procedures,” in Proc MIC-

CAI, pp. 139–46, 2005. 3

[13] T. Lange, S. Eulenstein, M. Hünerbein, and P. Schlag, “Vessel-based non-rigid regis-

tration of MR/CT and 3D ultrasound for navigation in liver surgery,” Comput Aided

Surg, vol. 8, no. 5, pp. 228–40, 2003. 3

[14] E. Boctor, M. de Oliveira, M. Choti, R. Ghanem, R. Taylor, G. Hager, and

G. Fichtinger, “Ultrasound monitoring of tissue ablation via deformation model and

shape priors,” in Proc MICCAI, pp. 405–12, 2006. 3

[15] W. Lu, M. Chen, G. Olivera, K. Ruchala, and T. Mackie, “Fast free-form deformable

registration via calculus of variations,” Phys Med Biol, vol. 49, no. 14, pp. 3067–87,

2004. 3

[16] H. Wang, L. Dong, J. O’Daniel, R. Mohan, A. Garden, K. Ang, D. Kuban, M. Bon-

nen, J. Chang, and R. Cheung, “Validation of an accelerated ’demons’ algorithm for

deformable image registration in radiation therapy,” Phys Med Biol, vol. 50, pp. 2887–

2905, 2005. 3, 4

[17] S. Flampouri, S. Jiang, G. Sharp, J. Wolfgang, A. Patel, and N. Choi, “Estimation of

the delivered patient dose in lung IMRT treatment based on deformable registration of

4D-CT data and Monte Carlo simulations,” Phys Med Biol, vol. 51, no. 11, pp. 2763–79,

2006. 3

[18] K. Brock, J. Balter, L. Dawson, M. Kessler, and C. Meyer, “Automated generation

of a four-dimensional model of the liver using warping and mutual information,” Med

Phys, vol. 30, pp. 1128–33, 2003. 3

[19] T. Rohlfing, C. Maurer, W. O’Dell, and J. Zhong, “Modeling liver motion and defor-

mation during the respiratory cycle using intensity-based nonrigid registration of gated

MR images,” Med Phys, vol. 31, pp. 427–32, 2004. 3

[20] E. Rietzel, G. Chen, N. Choi, and C. Willet, “Four-dimensional image-based treat-

ment planning: Target volume segmentation and dose calculation in the presence of

respiratory motion,” Int J Radiat Oncol Biol Phys, vol. 61, no. 5, pp. 1535–50, 2005. 3

[21] M. Foskey, B. Davis, L. Goyal, S. Chang, E. Chaney, N. Strehl, S. Tomei, J. Rosenman,

and S. Joshi, “Large deformation three-dimensional image registration in image-guided

radiation therapy,” Phys Med Biol, vol. 50, p. 24, 2005. 3

[22] T. Zhang, Y. Chi, E. Meldolesi, and D. Yan, “Automatic delineation of on-line head-

and-neck computed tomography images: Toward on-line adaptive radiotherapy,” Int J

Radiat Oncol Biol Phys, vol. 68, no. 2, pp. 522–30, 2007. 3



LIST OF REFERENCES 121

[23] K. Brock, L. Dawson, M. Sharpe, D. Moseley, and D. Jaffray, “Feasibility of a novel

deformable image registration technique to facilitate classification, targeting, and mon-

itoring of tumor and normal tissue,” Int J Radiat Oncol Biol Phys, vol. 64, no. 4,

pp. 1245–54, 2006. 3

[24] J. R. McClelland, J. M. Blackall, S. Tarte, A. C. Chandler, S. Hughes, S. Ahmad, D. B.

Landau, and D. J. Hawkes, “A continuous 4D motion model from multiple respiratory

cycles for use in lung radiotherapy,” Medical Physics, vol. 33, no. 9, p. 3348, 2006. 3

[25] C. Rohkohl, G. Lauritsch, L. Biller, M. Pr

”ummer, J. Boese, and J. Hornegger, “Interventional 4-D motion estimation and re-

construction of cardiac vasculature without motion periodicity assumption,” Medical

Image Analysis, 2010. 3

[26] T. Brunet, K. Nowak, and M. Gleicher, “Integrating dynamic deformations into interac-

tive volume visualization,” in Eurographics/IEEE VGTC Symposium on Visualization

2006, pp. 219–226, Citeseer, 2006. 3

[27] J. Maintz and M. Viergever, “A survey of medical image registration,” Med Image

Anal, vol. 2, no. 1, pp. 1–37, 1998. 4

[28] B. Zitová and J. Flusser, “Image registration methods: A survey,” Image Vis Comput,

vol. 21, pp. 977–1000, 2003. 4

[29] W. Crum, T. Hartkens, and D. Hill, “Non-rigid image registration: theory and prac-

tice,” The British Journal of Radiology, vol. 77, pp. S140–S153, 2004. 4

[30] G. Sharp, M. Peroni, R. Li, J. Shackleford, and N. Kandasamy, “Evaluation of plasti-

match b-spline registration on the empire10 data set,” Medical Image Analysis for the

Clinic: A Grand Challenge, pp. 99–108, 2010. 4

[31] P. Thompson and A. Toga, “A surface-based technique for warping three-dimensional

images of the brain,” IEEE Trans Med Imaging, vol. 15, no. 4, pp. 402–417, 1996. 4

[32] J. Thirion, “Image matching as a diffusion process: An analogy with Maxwell’s

demons,” Med Image Anal, vol. 2, no. 3, pp. 243–260, 1998. 4

[33] G. Christensen, R. Rabbitt, and M. Miller, “Deformable templates using large de-

formation kinematics,” IEEE Trans Image Proc, vol. 5, no. 10, pp. 1435–1447, 1996.

4

[34] F. Bookstein, “Principal warps: thin-plate splines and the decomposition of deforma-

tions,” IEEE Trans Pattern Anal Mach Intell, vol. 11, no. 6, pp. 567–85, 1989. 4

[35] F. Bookstein and D. Green, “A feature space for derivatives of deformations,” in IPMI,

LNCS, vol. 687, pp. 1–16, 1993. 4

[36] D. Metaxas, Physics-Based Deformable Models: Applications to Computer Vision,

Graphics and Medical Imaging. Kluwer Academic Publishers, 1997. 4



LIST OF REFERENCES 122

[37] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach, and D. J. Hawkes,

“Nonrigid registration using free-form deformations: application to breast MR images,”

IEEE Trans Med Imaging, vol. 18, no. 8, pp. 712–21., 1999. 4

[38] R. Frackowiak, K. Friston, C. Frith, R. Dolan, and J. Mazziotta, eds., Human Brain

Function. Academic Press USA, 1997. 4

[39] L. Ibanez, W. Schroeder, L. Ng, and J. Cates, The ITK Software Guide. Kitware, Inc.

ISBN 1-930934-15-7, http://www.itk.org/ItkSoftwareGuide.pdf, second ed., 2005. 4

[40] R. Woods, S. Cherry, and J. Mazziotta, “Rapid automated algorithm for aligning and

reslicing PET images,” Journal of Computer Assisted Tomography, vol. 16, pp. 620–

633, 1992. 4

[41] B. Fischl, A. Liu, and A. Dale, “Automated manifold surgery: Constructing geometri-

cally accurate and topologically correct models of the human cerebral cortex,” IEEE

Trans Med Imaging, vol. 20, no. 1, pp. 70–80, 2001. 4

[42] T. Hartkens, Measuring, analysing, and visualizing brain deformation using non-rigid

registration. PhD thesis, King’s College London, 1993. 4

[43] G. Rohde, A. Aldroubi, and B. Dawant, “The adaptive bases algorithm for intensity

based nonrigid image registration,” IEEE Trans Med Imaging, vol. 22, pp. 1470–1479,

2003. 4

[44] S. Aylward, J. Jomier, S. Barre, B. Davis, and L. Ibanez, “Optimizing ITK’s registra-

tion methods for multi-processor, shared-memory systems,” in MICCAI Open Source

and Open Data Workshop, 2007. 4

[45] S. Balay, K. Buschelman, W. Gropp, D. Kaushik, M. Knepley, L. McInnes, B. Smith,

and H. Zhang, “PETSc Web page,” 2001. http://www.mcs.anl.gov/petsc. 5

[46] S. Warfield, M. Ferrant, X. Gallez, A. Nabavi, F. Jolesz, and R. Kikinis, “Real-time

biomechanical simulation of volumetric brain deformation for image guided neuro-

surgery,” in Proceedings of SC2000, 2000. 5

[47] S. Warfield, S. Haker, I. Talos, C. Kemper, N. Weisenfeld, A. Mewes, D. Goldberg-

Zimring, K. Zou, C. Westin, W. Wells, C. Tempany, A. Golby, P. Black, F. Jolesz, and

R. Kikinis, “Capturing intraoperative deformations: Research experience at Brigham

and Women’s hospital,” Medical Image Analysis, 2005. 5

[48] M. Sermesant, O. Clatz, Z. Li, S. Lanteri, H. Delingette, and H. Ayache, “A parallel

implementation of non-rigid registration using a volumetric biomechanical model,” in

WBIR’03, pp. 398–407, Springer-Verlag, 2003. 5

[49] D. Pham et al., “The design and implementation of a first-generation cell processor,”

ISSCC Dig. Tech. Papers, pp. 184–185, 2005. 5



LIST OF REFERENCES 123

[50] G. Sharp, R. Li, J. Wolfgang, G. Chen, M. Peroni, M. Spadea, S. Mori, J. Zhang,

J. Shackleford, and N. Kandasamy, “Plastimatch-an open source software suite for

radiotherapy image processing,” in Proceedings of the XVIth International Conference

on the use of Computers in Radiotherapy (ICCR), Amsterdam, Netherlands, 2010. 7

[51] J. Shackleford, N. Kandasamy, and G. Sharp, GPU Computing Gems Emerald Edition,

Chapter 47. Morgan Kaufmann Publishers Inc., 2011. 11

[52] J. Shackleford, N. Kandasamy, and G. Sharp, “On developing b-spline registration

algorithms for multi-core processors,” Physics in Medicine and Biology, vol. 55, p. 6329,

2010. 11

[53] J. Kybic and M. Unser, “Fast parametric elastic image registration,” IEEE Trans.

Medical Imaging, vol. 12, no. 11, pp. 1427–1442, 2003. 17

[54] C. Zhu, R. Byrd, and J. Nocedal, “L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN

routines for large scale bound constrained optimization,” ACM Transactions on Math-

ematical Software, vol. 23, no. 4, pp. 550–60, 1997. 19

[55] P. Thevenaz and M. Unser, “Optimization of mutual information for multiresolution

image registration,” IEEE Trans Image Proc, vol. 9, pp. 2083–2099, Dec 2000. 41, 49,

77

[56] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Seutens, “Multimodality

image registration by maximization of mutual information,” IEEE Transactions on

Medical Imaging, vol. 16, pp. 187–198, April 1997. 43, 50

[57] D. Kirk and W.-M. Hwu, Programming Massively Parallel Processors: A Hands-on

Approach. Morgan Kaufmann, 2010. 54

[58] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight dynamic binary

instrumentation,” ACM SIGPLAN Conference on Programming Language Design and

Implementation, June 2007. 70

[59] B. Chapman, G. Jost, and R. V. D. Pas, Using OpenMP: Portable Shared Memory

Parallel Programming. MIT Press, 2007. 70

[60] J. Pluim, J. Maintz, and M. Viergever, “Mutual-information-based registration of med-

ical images: A survey,” IEEE Trans. Med. Imaging, vol. 22, no. 8, pp. 986–1004, 2003.

78

[61] Y.-M. Zhu and S. Cochoff, “Influence of implementation parameters on registration

of MR and SPECT brain images by maximization of mutual information,” Journal

Nuclear Medicine, vol. 43, no. 2, pp. 160–66, 2002. 79

[62] R. Shekhar and V. Zagrodsky, “Mutual information-based rigid and nonrigid registra-

tion of ultrasound volumes,” IEEE Trans. Med. Imaging, vol. 21, no. 1, pp. 9–22, 2002.

79

[63] H. Jagadish et al., “Optimal histograms with quality guarantees,” Proc. Very Large

Database Conf., 1998. 79



VITA

James Anthony Shackleford was born in Memphis, TN in 1983. James earned a Bachlors

of Electrical Engineering from Drexel University in 2006. The Senior Design Project he

completed in partial fulfillment of the degree entitled Design of a CMOS IC Nanowire

Sensor Array received the distinguished honor of first place in the Department of Electrical

Engineering’s Senior Design Competition. Upon completion of his undergraduate studies,

James continued to attend Drexel in persuit of a Masters of Engineering degree in solid

state device physics under the advisement of Dr. Bahram Nabet. While earning this

degree, for the years 2006–2007, James received the honor of distinguished GAANN Fellow.

The work earning his Masters Degree was published on February 2009 in Applied Physics

Letters, Volume 94, Issue 8 under the title Integrated Plasmonic Lens Photodetector. Upon

completion of his Master’s degree, James continued to attend Drexel University in persuit

of a Doctorate of Philosophy degree in Computer Engineering under the advisement of

Dr. Nagarajan Kandasamy. During this time, his work on accelerating deformable image

registration was published as both a featured article in Physics in Medicine and Biology,

vol. 55 as well as a chapter in Morgan Kaufmann publication GPU Computing Gems:

Emerald Edition. During his time as a graduate student, James has taught lab sections for

courses in analog electronics, solid state devices, microcontrollers, Freshman design, Senior

design, and advanced electronics. For the 2009 and 2010 summer quarters, James taught

Embedded Systems as an Adjunct Processor for Drexel University.




	List of Figures
	Abstract
	1 Introduction
	1.1 Applications of Deformable Image Registration
	1.2 Algorithmic Approaches to Deformable Registration
	1.3 Thesis Contributions
	1.4 Thesis Organization

	2 Unimodal B-spline Registration
	2.1 Overview of B-spline Registration
	2.1.1 B-spline Interpolation
	2.1.2 Gradient Computation and Optimization

	2.2 Fast B-spline Registration for the GPU
	2.2.1 The SIMD Programming Model
	2.2.2 Software Organization
	2.2.3 The Naive GPU Implementation
	2.2.4 The Optimized GPU Implementation

	2.3 Performance Evaluation
	2.3.1 Registration Quality
	2.3.2 Sensitivity to Volume Size
	2.3.3 Sensitivity to Control-Point Spacing

	2.4 Conclusions

	3 Multi-Modal B-spline Registration
	3.1 Overview of Multi-Modal B-spline Registration
	3.1.1 Using B-splines to Represent the Deformation Field
	3.1.2 Mutual Information as a Cost Function

	3.2 Efficient Computation of Mutual Information
	3.2.1 Constructing Histograms for the Static and Moving Images
	3.2.2 Constructing the Joint Histogram
	3.2.3 Evaluating the Cost Function
	3.2.4 Optimizing the B-spline Coefficients

	3.3 Performance Evaluation
	3.3.1 Registration Quality
	3.3.2 Sensitivity to Volume Size
	3.3.3 Sensitivity to Control-Point Spacing

	3.4 Conclusions

	4 Improving MI with Variance Optimal Histograms
	4.1 Overview of Variance Optimal Histograms
	4.2 Theory of Operation and Implementation
	4.3 Results
	4.4 Conclusions

	5 Analytic Vector Field Regularization
	5.1 Theory and Mathematical Formalism
	5.2 Algorithmic Implementation
	5.3 Performance Evaluation
	5.3.1 Registration Quality
	5.3.2 Sensitivity to Volume Size
	5.3.3 Sensitivity to Control-Point Spacing

	5.4 Conclusions

	6 Conclusions
	List of References
	Vita

