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Abstract

Statistical Shape Models (SSM) have wide applicatim image segmentation, surface
registration and morphometry. This thesis deal& w&it important issue in SSM, which
is establishing correspondence between a set gfeskarfaces on either 2D or 3D.
Current methods involve either manual annotatiothefdata (current ‘gold standard’);
or establishing correspondences by using segmentati registration algorithms; or
using an information technique, Minimum Descriptioength (MDL), as an objective
function that measures the utility of a model (¢kege-of-the-art). This thesis presents in
principle another framework for establishing cop@sdences completely automatically
by treating it as a learning process. Shannon yhsoused extensively to develop an
objective function, which measures the performawvfca model along each eigenvector
direction, and a proper weighting is automaticaljculated for each energy component.
Correspondence finding can then be treated as mtgnthe objective function. An
efficient optimization method is also incorporataegd deriving the gradient of the cost
function. Experimental results on various dataesented on both 2D and 3D. In the
end, a quantitative evaluation between the propafgatithm and MDL shows that the
proposed model has better Generalization Abilipg&icity and similar Compactness.
It also shows a good potential ability to solve Hwecalled “Pile Up” problem that
exists in MDL. In terms of application, | used thwposed algorithm to help build a
facial contour classifier. First, correspondencén{soacross facial contours are found
automatically and classifiers are trained by ugimg correspondence points found by

the MDL, proposed method and direct human obseiMegse classification schemes

10



are then used to perform gender prediction on faciatours. The final conclusion for
the experiments is that MEM found correspondendatpduilt classification scheme

conveys a relatively more accurate gender predictsult.

Although, we have explored the potential of ourgaged method to some extent, this is
not the end of the research for this topic. Tharitwork is also clearly stated which
includes more validations on various 3D dataseisg¢rignination analysis between
normal and abnormal subjects could be the dirgaliGgtion for the proposed algorithm,

extension to model-building using appearance in&tiom, etc.
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Chapter 1 Introduction

This PhD thesis deals with a fundamental issuetatisiical Shape Models (SSM),
which is the “Correspondence Problem”. In previaygproaches of using SSM,
researchers [1] [13] have been using manual markomgespondences to facilitate this
procedure. However, this subjective and error-proa@ual work is against the spirit of
image processing which is pursuing an automaticidass Recently, Minimum
Description Length (MDL) [2] has emerged as theestd-the-art approach to find
correspondence points across datasets automatidalyever, due to the pitfall of the
MDL cost function, the original cost function ofteonveys wrong results, which have
some of the landmarks congested or overlapped enlacation. This behaviour is
reported in several references [2], [32], [38],][48d is named as “Pile Up” problem.
Therefore, this drawback of the cost function v the main issue discussed in the
next few chapters. The author of MDL also propa$ede objective metrics in order to
evaluate automatic correspondence finding methauts tifferent researchers. We will
use those three metrics as the main evaluation adstho compare our proposed

method with MDL.

In the scope of the thesis, we are aiming to dgvelmew framework of established
correspondence across datasets automatically. @Wweframework should hold some
desired features:

1) Automatic, no human inference is needed;

13



2) Flexible, the methods can work on both 2D and 3aghs;

3) Robust, the proposed algorithm should have goodnpial to deal with complex
shapes, in which case the state-of-the-art algaréghcounters “Pile Up” problem;

4) Better, by using the same accepted metrics, thepneposed method should convey

better results compared with the state-of-the{gdrahm.

In this thesis, “correspondence” is referred to ieaningful anatomy correspondence

points. An illustration of correspondence is showfigure 1.1
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Figure 1.1 Six hand outlines are shown here, the 6crespondence” in the thesis is interpreted
as anatomy correspondence. For example, in this goh, fingertips of different hands are
corresponding to each other. The correspondenceseaidentified by using the same colour.

Applications of using SSM are vast. For examples Work can deal with image
segmentation, registration, and shape modellings Work can also be applied to both

2D and 3D, by using different shape parameterinaghemes. The aim of the proposed
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work is to find an optimal automatic Statisticalapbe Model building method, which
can help the shape model achieve better performandbe applications we just
mentioned. In this sense, we will introduce the liappons of SSM in the next

paragraphs, to Image Segmentation, Morphologicalysis, and Image Registration.

1.1 Model Based Shape Segmentation

In computer vision, segmentation refers to the @sec of partitioning a digital

image into multiple segments (sets of pixels orelgkx The goal of segmentation is to
simplify and/or change the representation of angenato something that is more

meaningful and easier to analyze. Image segmentestitypically used to locate objects
and boundaries (lines, curves, etc.) in images eNpoecisely, image segmentation is the
process of assigning a label to every pixel inmage so that pixels with the same label
share certain visual characteristics. Segmentasoalso an important procedure for
future image processing. For example, identifyind/ar evaluating anatomical areas of
interest, pre-processing for image registratioeppration for analysis with respect to

functional metrics, preparation for surface exiact

Segmentation can be performed manually by drawiaggathe area of interest by an
expert. However, in practice, we will not use thisthod since it is prone to operator
bias, fatigue, and is time-consuming. Although nsirsegmentation is recognized as

the gold standard, Davies al have shown that it will not always hold right undeme
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evaluation properties [2] due to the operator'sband making an algorithm run in an

automatic manner is the ultimate goal for imagecessing.

Some low level methods, such as edge detectionragidon growing (for example
snakes) will often be trapped in an invalid, incdebg and erroneous shape. They will
perform even worse when parts of the boundary assing. An additional remedy has
to be performed for ensuring a valid shape. Shapstrains are often used for this
purpose. For example, in 2D cases, researchers widée the shape contour first order
or second order smooth. In the bottom of Figure Ca&nny Edge Detector (CED) is
used to capture ROIs, which are hidden in the noé&iground. The key point for CED
algorithm is that a Gaussian convolution is applieefore edge detection. The
convolution performs as a low pass filtering sd &lbthe high frequency information is
recognized as non-edge information. By designirsgitable low pass filter, the ideal
edge information can be easily found by an edgesctien method. From the
segmentation results, we can see that ROI ismsided with noise. Therefore, there is
no guarantee for good quality segmentation. In tewdi prior knowledge such as the

cut off frequency for the low pass filter is haodetstimate.
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Figure 1.2 Top, left to right: images with Gaussiamoise added with SNR 5.0, 2.5, 0.5 (with
each shows the final contour found by ASM); BottomJeft to right: corresponding contour
found by Canny edge detector [3]. This graph is fnm Reference [26].

A promising approach is to segment shapes usingoa pformation or knowledge.
For example, properties of shape such as shap&tieas, position, scale, and rotation.
Bearing this information in mind, we can achieyesultant shape that looks the closest
to valid shape(s) in the training set. This becoomsful in blurred or incomplete data,

see Figure 1.2.

Another example of model-based segmentation is showFigure 1.3. Active Shape
Model (ASM) is used for this particular task [9%tatistical Shape Model based
segmentation [37, 61] uses information from botlgesd from images and prior
information of shapes. For example, the new shagenented by ASM will look like
the ones in the training set. Therefore, in thersagation task, even though parts of the

shape boundary is mixed in the image noise, a prepgmentation result can still be
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achieved.

Figure 1.3 This graph shows a segmentation exampberformed by using Active Shape Model
which is from reference [99]. Left: a DXA image shws the spine from the seventh thoracic
vertebra (T7) to the fourth lumbar vertebra (L4). Right: the segmentation achieved by using
the Active Shape Model.

1.2 Shape Model for Morphological Analysis

Morphology comes from the calssical Greek coneeptphé meaning shape or form.
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Morphology is the study of similarities and diffapes in the anatomy of organisms.
Within this thesis, there are two major conceptdofphological Studies:

1. Studies on homologous structures within the samepyr-or example, datasets
collected from the same subject but in differemiej it is quite useful to
analyze shape changes within time.

2. Studies on homologous structures between groups same genetic but
different characteristics. In medical imaging, brag an interesting subject,
which attracted many researchers. One of the redsdhat, as an example, the
structure of hippocampus is related with many #bes. It is useful to identify
the shape difference between subjects with illr@gs control/normal subjects

[22], since it will become easier to identify andpwedict subjects with illness.

Morphology can have a direct application in thedgtaf shape, which will be presented
in this thesis. An example of morphological anayisithe study on hippocampus shape
of healthy and schizophrenic patients [4] as inuFegl.4. By using the Minimum
Description Length algorithm proposed in [44], A®Eh be used as a classification tool

in examining the difference between the controjetts and a new dataset.
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Figure 1.4 The shape variation discriminates betweehippocampus shape of a group of
healthy (-) and schizophrenic (+) patients. This gph is from [44].

Different approaches have been implemented for hadggical studies, many of which

are only applicable to sets of manually annotaéediinarks. Although some automatic
methods exist, they have their advantages andwdiséages. We wish to develop a new
automatic algorithm, which can keep their excekemnd reduce or get rid off the

disadvantages of the previous automatic methods.

1.3 Shape Model of Surface-based Group Registration

Registration is the process of alignment of medioahging data, usually for the
purpose of comparisons or measurement [5]. Thatragjon technique can be used in a
broad range of applications. For example: imagelapiisurgery, analysis of function

images, characterization of normal and abnormatoamaal variability, detection of
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change in disease stages over time, visualizatiomuwtimodality data and atlas
guidance for anatomical interpretation. Many presicalgorithms rely heavily on
landmarks that have been placed during scan oacitfieatures like pixel intensity,
curvatures. However, sometimes there are no loleatatatomical landmarks available.
We want to build a framework that can find thesedlaarks or features automatically,

so surfaces can be registered easily by using thedenarks.

1.4 Evaluations Methods

Validation is a very important process of checkinbether the newly built model
satisfies certain criteria, and compares the resulth the ones from other models.
Therefore, in the thesis, we have to compare oudainwith models built by other
researchers. In 2D, most researchers compare thienabpresults with manual
landmarks, which is the so-called “Gold Standatdibwever, this process is subjective
and error prone. Moreover, it becomes almost impbtsdso mark data in 3D cases,
where landmarks with high curvatures are rare. Urately, there are some general
accepted approaches for evaluating different algms, namely Generalization Ability,

Specificity and Compactness [22].

Briefly, Generalization Ability of a model measurés capability to represent unseen
instances of the class of the object modelled. iBpieg is the ability to measure

whether the model can generate instances of theciothat are close to those in the
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training set. Finally, Compactness is the abildyuse fewer parameters to cover more
shape instances in the training sets. Thereforecameadopt these three approaches to
measure the performance. More details about thase tevaluation criteria will be

presented in section 4.1.

1.5 Conclusions and Contributions

The main contributions of this thesis are listedadlews:

1) A new objective function, which provides a measureant of model utility

Different from the previous MDL approach, we propossing a new entropy
measurement of model utility to find the correspamzk points. During experiments,
we discovered that there are some good featuresirirproposed approach compared
with MDL approach.

2) The gradient of the MEM cost function is derived fo a faster convergence

In this thesis, | also discuss the problem of degwhe gradient of the cost-function.
With the help of gradient information, some mor@lssticated optimization method
can be used in the algorithm. Compared with opimgizhe cost-function with Simplex,
steepest gradient optimization method can achigl®lization faster.

3) A more shape feature preserving shape parameterizanh and
re-parameterization method

Unlike the simplified version of spherical harmaniagsed in the MDL approach by

Davies, we use conformal mapping as our 3D shapanperization method. If
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moving a point on the shape in the original shggees, the point in the corresponding
sphere will move in the coherent direction. A meffcient re-parameterization method
is used, unlike MDL approach, a local kernel isduigerefore, a new kernel can be
added without disturbing other landmarks.

4) The framework is applicable to both 2D and 3D d@asets

The proposed algorithm does not have restrictiothendimensionality of the datasets;
therefore, it can be flexibly applied to both 20d&D.

5) Comparisons with MDL algorithm based on objectie metrics

Comparisons between MDL and the proposed methodpartormed on different
datasets and different scenarios, both for 2D @ndr82D, closed shapes, open shapes,
and shapes with and/or without free ends are exainim 3D, both artificial cuboids
and real medical image datasets are used.

6) Using MEM method to perform automatic classificéion and make comparisons
with similar schemes built by other methods

Classifiers are constructed by using correspondenags found by MEM, MDL and
human manual landmark placing. These three schetogsther with direct human
guessing, are performed on facial contours to perfgender prediction. The
conclusion is that the MEM can help automatic bodgd classification and make
classification accuracy on the datasets testedivella more accurate than the other
three methods.

7) Solving the “Pile Up” problem

In the MDL approach, there is a well known “Pile "Ugroblem. When the problem

happens all the points or parts of the points ile up at some area. This is
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intrinsically wrong behaviour since that a poingsfound in the existing points and
should not be overlapped with other points. Thidl weported problem is effectively

eliminated by using the MEM cost-function.

1.6 Thesis Organization

The thesis will be organized as follows:

Chapter 2 Deformable Models.

Chapter 3 Building Statistical Shape Models.

Chapter 4 Solving the Correspondence Models.

Chapter 5 A 2D Minimum Entropy Approach.

Chapter 6 Experiments and Results in 2D

Chapter 7 A 3D Minimum Entropy Approach and Experiment Result
Chapter 8 Applications of Using MEM & MDL for Classification

Chapter 9 Conclusions and Future Work
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Chapter 2 Deformable Models

In this chapter, we will describe briefly the agile literature on the topics, which are
relevant to this work. Over the years, a numbedifferent approaches have been

developed for deformable models.

2.1 Snakes

The use of deformable models in image segmentégaame popular when Kassal
[6] created the ‘Snakes’. They describe an actorgaur model (so-called ‘snake’), that
deforms inside of an image forming an ideal contoure snake is driven by a

combination of forces: an image force, an intefaade and an external force.

The internal energy represents the smoothing fovoethe curve, and the image forces
represent the image-derived forces that contairctimee to take the shape of the feature.
The image force attains a minimum when the snakiehaa an image contour. The

snake converges when the forces achieve equilibrium

The problem with the snake’s original version waet if the initial curve was not close
enough to an edge, it had difficulty in being atteal to the optimal edge. In addition,
the curves in the original snake had a tendenshtmk on themselves. To improve the
convergence properties, dynamic programming camsbd for energy minimization [7].
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This also allows the objective function to incluthard local constraints. Some
robustness to the problem of finding a good inigjaéss was achieved by the addition
of an extra force, which made the contour have sermgnamic behaviour. In another
paper [8], the curve was considered to be a baltbhah was being inflated. From an
initial oriented curve, an extra pressure force a@ded, which pushed the curve out as
if air was being introduced inside the closed cantdlodel-based snakes [9] allow
deformations based on a template model, but takehape information into account

only in a very limited and general way.

2.2 Thin-Plate Splines

Mathematically, a thin-plate splind (x,y) is a smooth function, which interpolates a
surface that is fixed at the landmark poirfes at a specific heiglit. If one imagines
this surface as a thin metal plate, then this plalieake a shape in which it is least bent.

Bending energy is defined here as the integral oRéof the squares of the second

derivatives,
[ y)]= ”(fxzx +212 + 12 Jixdy 2.1
RZ

Bookstein [10] proposed this method. The solutmnidending energy function is given
by a solution of linear equations. In below we wli$cuss some implementation details
of the Thin Plate Splines (TPS) algorithm. For eganthere are two sets of points,

which are corresponding to each other on diffeptaties and each hagoints.
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The TPS weights x and a can be obtained from spi¥ia linear system:
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The definitions of the symbols are given below:
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Once the above linear system is solved, the coatelnalong z-axis can be interpolated

from:

2(x )= a+ 3 x @%Z wy & ¢]-[ xB (2.6

With bending energy given by:

F, =w' Kw 2.7

The problem for this method is that a large nunmifehomologous pairs of anatomic
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point landmarks should be set. So this method besodifficult when there are not
enough true landmark points that can be accuratelgked. Landmarks are typically
needed throughout the image because local chaongide tspline have global effects.
These landmarks must be reliable and robust, bedaesthin-plate spline forces these
points exactly into correspondence. Also, while th@nsformation has interesting
statistical properties, especially in terms of deposing the warp, it can result in
impossible wrappings. For example, the space cdéoh doer itself, resulting in a
non-homeomorphic warping, when the geometry isiqdarly warped. This technique
is intended primarily as a method for the statticomparison of shape through the
location of homologous landmarks, and not as argénechnique for image warping

[11].

2.3 Statistical Shape Models

Statistical models try to capture the actual pagtesf variability found in a class of
objects, rather than making arbitrary assumptibmthis section, we will present a brief

review of the Statistical Shape Models technique.

In 1989, Staib and Duncan [12] used a Fourier dgosiion to form an orthogonal
shape basis for a set of contours. Normalizatiopeidormed to achieve invariance to
similarity transformations and starting point. Tlaurier coefficients are recorded over

the training set and modelled using a set of distions. New examples are generated
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by sampling independently from the distributionsd ameconstructing the shape. In
practice, different coefficients are often correthbver the training set, so independent
sampling from the individual distributions can le@adinvalid examples, which means
that the new example is not like any other in tlaning set. In addition, there may be
important information in the boundary over a largage of frequencies, leading to a

non-compact model.

In 1995, Cooteset al[13, 33] constructed the “Point Distribution Models (PPNtom
training sets of 2D boundaries. Given a set of llabetraining examples, Procrustes
Analysis [14] is first applied to minimize the swhsquared distances to the mean of
the set. The aligned training set forms a clouthextwo dimensional space. Then, they
used Principal Component Analysis (PCA) [15] tokpip the main axes of the cloud,
and model the first few, which count for the majpof the variations. The shape model

is then:
X =X +Pb (2.9

WhereX is the mean of the aligned training exampRs$s a matrix whose columns are
unit vectors along the principal axes of the cloaddb is a 2n element vector of
shape parameters with is the number of points used in the examples. Bleapes are
generated by sampling independently from the dhgtion along each axis and
reconstructing using the principal vectors. In moates, Cartesian coordinates are
sufficient, but in cases where parts of shapesratate, it may be useful to use angular

coordinates instead [66].
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In 1998, Cooteset al[16] created a more powerful tool, the Active Aprzere Model
(AAM), which is a generalization of the widely us&&M approach. Rather than using
only the shape contour coordinates, AAM uses all thformation including the
intensities in the image region covered by thedtaipject. The model is generated by
combining a model of shape variation with a modethe appearance variations from
the training set. To build a model of the grey lesgpearance, they wrap each example
images so that its control points match the meapehFor reducing the global lighting
variations, the grey information is filtered out bgrmalizing the examples. Again, PCA

is applied to the normalized data; a new modellbmanbtained:

g=g+PRh 2.9
Whereg is the mean moralized grey level vectd?,is a set of orthogonal modes of
variation and b, is a set of grey level parameters.

The shape and appearance of any example can thsisntoearized by the vectors

and b, . For each example, the new shape vector is cordinse

(W b ] (WFT( X X)] (
2.4 Physical Models

First, there is no true physical model for deforimatbetween individuals, for example,
one individual's anatomical structure does notditg result from the deformation of

another individual. Researchers use analogous gdlysiodels to enforce topological
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properties on the deformation. Without them, theults could be almost completely

arbitrary.

Broit et al developed the Fluid model [17], which is basedttoa theory of elasticity
developing restoring forces, which are proportidoaihe deformed distance. The basic
idea for this method is that it simulates the ptgisdeformation of fluid except for the
smallest deformations. Such elastic transformatjmesent the atlas from being fully
deformed into the shape of the study. This slitg/ fis overcome by the viscous fluid
method [18], which allows the restoring forcesdtax over time. For viscous fluids, the
viscosity depends on the relevant velocity andest=igth of the flow and the viscosity

is the reciprocal of the Reynolds number.

The linear elastic model is based on Hooke’s lae Tbading modulus and unloading
modulus are the same for the model. The restoongefholding the template together
grows proportionately with the displacement frora thiginal configuration of the atlas.
The force is proportional to the displacement. Redt and Sclaroff [19], and Nastar
and Ayache [20] describe a method of building shapadels from a prototype
represented by a set of nodes attached to eachhtteprings. The mass of each node
and the stiffness of each spring are specifiedway matrices. These matrices are used

to solve a generalized eigenproblem to obtain tiedes of vibration’ of the structure.

Therefore, Physical models try to give more int@tshape variations, but the resulting

shape is often “invalid” which means the new generated shape does nolikeokhat
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it should do. This is due to the fact that shapétians are not from prior knowledge of
training set but from simulations of physical worldherefore, this physical deformation

does not necessarily result in a valid shape.

2.5 Group Registration

Image registration is not directly related to defable models. However, since
registration can result in a deformable model iectiy, for example, in references [102],
[103], the authors used registration to find cqsoeslence points of internal organs and
use these correspondence points to construct antgite model to analyze the
functionality of the organs. Therefore, we will ciss the basic ideas behind
registration algorithms. Image registration is fiiecess of establishing point-by-point
correspondence between two or more images of a&stéms process is very important
in medical image processing. Many algorithms etassolve this difficult problem. A

good survey can be found in [56]. This family ofj@ithms are mainly composed of

two parts: one is transformation and the otheris@emetric for local matching.

In simple cases, the transform clafss, y]=r([x, ﬂ)can be defined by a set of
parameters such as translation, angle of rotaticale etc. A simple representation of

rotation, scale and translation in 2D is shown Welo

cosH - si
sm@ coy/
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Where parameter¥ is the rotation anglet, andt, are translations along andy
direction; a is the scale factor. It may be a linear affinengéfarmation or a non-linear
transformation. Shape deformation can also be septed by B-splines coefficients on
a regular grid. The details on B-spline registratcan be found in reference [57]. The
physical model we mentioned in the previous pagdgraan also be used as a

deformation method.

The metric or body force encourage images to madefiabetter to each other. Options
for the metrics can be information theoretic measwg.g. mutual information, sum of

squared difference or template intensity differeeime

Based on the discussions above, many algorithmis [68|], [78] have been proposed
and published. For example, in [58], Crum et aksupartial differential equations to

model the properties of viscous water as a drivamge.

2.6 Point Correspondence by Using Flow Field

Another big family of finding correspondence metsod by using flow field theory to
identify point correspondence between images. Hape correspondence can thus be
achieved by defining a shape contour explicitlyame image. In this family of point
correspondence, Optical Flow (OF) [89] and Partigedocity Imaging (PI1V) [90]

showed good performance. These two algorithms wveeiginally used to recover
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motion filed between images taken as times sefioegxample see references [91], [92],
[93]. The difference between OF and PIV is that Rixhulates the nature of fluid
physics. The PIV assumes that the fluid is in aen@iboundary condition) and the
volume of the fluid is uncompressible (constrai@). the other hand, OF simulates the
human instinct that motion is brought by and id&di by motion of light. Therefore,
the basic rule for OF is that the intensity betweernresponding points should hold
constant. However there are two main problems ina@& PIV methods. First, the
intensity constancy will not always hold, even thouBrox et al [94] have proposed
using both intensity and intensity gradient as medy method, which he called
“highest accuracy of method”. However, the metheenss to be quite sensitive to the
weighting components that can force the resultseteery random. Therefore, in order
to cope with one particular application, the methad to be previously trained on some
prepared samples. Moreover, in order to suppressaperture problem, some extra
constrain components, such as isotropic, anisatrapi bilateral filter, has to be
incorporated. In this way, the method becomes reensitive to weighting. In addition,
the algorithm may not recover the motion field clge areas; therefore, it is not a good
option for performing shape analysis. In order t&e uhis particular model, the
weighting component has to be trained using thmibt@ set. Since our goal is to
recover the correspondence field between segmesttage contours, we will not

discuss more details about image correspondence.
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2.7 Conclusions

Although each approach has its own distinguishimtyaatages and application
conditions, the Active Shape Model (ASM) of Cootdsal have shown some good
properties, which other algorithms do not have. &mmple: 1) Without using prior

information of the shape, other methods or algorghoften results in a invalid shape
which does not look like genetically the same aages in the training set. 2) Unlike
ASM, which have explicitly incorporated corresponde points into training set for use,

other methods do not use and define the correspard#rectly in the algorithm.

Despite of the advantages in the ASM, the critidifficulties in ASM on how to

construct the correct correspondences across twatasgomatically are not well

explored. An ill-defined correspondence can resuill alignment, so that a new shape
represented by the model will turn out to be invand will not look like shapes in the
training set. In practice, manual annotation cdmesthis problem. However, this time
consuming and tedious work is very subjective amdrerone. It may be possible for
an expert to mark 2D datasets, but it becomes omssipossible in 3D. Therefore, an
automatic correspondence building method becomedesmanding. This PhD thesis
will discuss some of the relevant review work omwhio find correspondence points
automatically in 2D and 3D cases, and propose a fiamework for solving the

automatic correspondence-finding problem.

The new proposed method is to some extent paralelind at the same time quite
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different from the current state-of-the-art algomit Minimum Description Length
(MDL) [2]. The similarity exists in the way that thothe new proposed approach and
MDL are using a “learning” process to find the opdi correspondence across the
datasets. For example, the correspondence is fhundgh optimizing the predefined
cost function. The properties of the corresponddrae already been predefined in the
cost function. Therefore, optimizing the cost fuoctwill be equal to find the optimal
correspondence given the current condition/data3étere are two main differences
between the proposed method and MDL. Firstly, tr@p@sed method uses Entropy
rather than Description Length as the main metrimeasure the utilities of the Active
Shape Model. Secondly, the new proposed methodselsoan automatic calculated
weighting component for each energy component ratten just summing them up as
MDL does. In order to investigate the potentialligbiof the new proposed model, a
guantitative analysis was conducted between ourpgs®d model and the
state-of-the-art model by using some generally @teck metrics, which will be

disclosed in the next few chapters.
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Chapter 3 Building Statistical Shape Models

3.1 Shape Parameterization

Statistical Shape Models can be extracted front afseshapes. Each example object is
marked with a fixed number of landmarks in Cartesiaordinates X, y, i=123Kn),
each of which marks a particular point on the dbjadich we call correspondence
points. Then, the shape is represented by condatgredl the node coordinates into one
single vector. The 2D case example of the shapéweés in Equation 3.1 and the

extension to 3D is quite straightforward as in Houm3.2.

X= (X, Yioeon X0 Yo )" (3.1)

X= (X, VirZireo Xy Vin Zy ) (3.2

The training examples are aligned into a commonordmate frame by using Procrustes
Alignment [14] to reduce correspondence error phticed by rotation, translation and
scaling. Shape error is directly measured by theolake distance between

corresponding points.

3.2 Procrustes Analysis

In this section, we will give out some details abthe frequently used Procrustes
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Analysis (PA) algorithm [14]. The PA algorithm hasany forms; the Generalized
Orthogonal Procrustes Analysis (GPA) is the mosfulsone. After landmarks are
placed, GPA is used to filter out the effects frimwation, scale and rotation, and retain

geometrical information. A general descriptiontagtalgorithm is shown here:

1) Select one example from the training set asaiget shape. (i.e. the first shape
in the set is taken as the approximate mean shape)
2) Align the shapes with reference to the target one
a. Calculate the centroid of each shape
b. Move all centroids to the origin
c. Normalize each shape to unit size
d. Rotate each shape to the newest approximate megoe sh
3) Calculate the new approximate mean from roughigredd shapes
4) Go back to step 2, if mean shapes from step 2 ard 8ifferent

5) The end (shapes are aligned )

Centroid is achieved by calculating the mean ofaibdmarks on each shape. In here,
we will discuss the rotation in 3-dimension case/e@ a point with coordinate vector

[X, y, z], the rotation will be attained by multyhg this vector with rotation matrix.

Rotation with angle about x-axis is:

1 0 0

0 cos@) - sing) (3.3
0 sin@) cosk)

Rotation with angld» about y-axis is:
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coyh O sin(b
0 1 0 (3.4)
-sinb) 0 cosb)

Rotation with angle about z-axis is:

cof9 -sin(g O
sin(c) cost) (3.5
0 0 1

Then, the rotation about a general axis can becaetliby a combination of the above
rotations about x-axis, y-axis and z-axis.
An example of 2D Procrustes Analysis on datasefaadl profiles are shown in Figure

3.1.
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Figure 3.1 22 facial profiles are marked by an expeé They are aligned by using Procrustes
Analysis. The corresponding landmarks can be iderfied by the same colour.

3.3 Statistical Analysis in Active Shape Modelling

The main contribution for the active shape modglis achieved by Cootext al [40].
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They made an assumption that shape vectdiave a Gaussian distribution for the

training set. We can build a linear model as foow
X=X+Pb (3.6

Where, Xis the mean shapeR is the orthogonal shape variations matrix, dndis
the weighting shape vector.

The approach will be explained in details heresti-the mean shape can be calculated

using Equation 3.7, wher@, is the number of samples. Shape vector is compoged

concatenating landmark coordinates into a singbtove
X (3.7)

Then the normalized covariance matrix will be ciEted from:

1 _ —
D:n—Z()g—x)()g—x)T (3.9
1

[

At last, eigenvalue{") and eigenvectompj will be extracted from matrid

Dp™=A"p" (3.9
The eigenvalues are ranked naturally in a descgnalider according to their values.
The eigenvector represents the directional vanatiior ASM and the normalised
corresponding eigenvalue shows the proportion ofatians is undergoing along this
eigenvector. Normally, we choose the fiMteigenvector to cover enough variations
(say 98%).

It is calculated by Equation 3.10.
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= >98% (3.10

WhereN , is the total number of shape variations captimgdCA and 4 is the i"

eigenvalue from the shape covariance matrix.

3.4 Performance of Active Shape Model

An example of performance of ASM is shown here. Wge a training set of 22

silhouettes of faces as in Figure 3.2.
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Figure 3.2The training set of silhouettes.

These examples are taken by a digital camera. Aeresegmented and marked these
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datasets by hands. (The datasets are from Thodltergpersonal communication; these
datasets are also used in reference [38]). Fromdgseription above, it can be
concluded that by adjusting the weighting parameteequation 3.6., we can see the

effect of different variations captured from traigiset (Figure 3.3).

Figure 3.3 From left to right, this graph shows theeffect of movingthe first three weighting
components independently. The shapes show that meahape minus 3\//]7, mean shape

and mean shape plus3\//Tm. M is the order of the weighting component.

Therefore, the new shape we want to match to, eageinerated by selecting different

values of {p™}. We only select ™} in the interval of |- 3\/)l_m,3x//1m] for generating a

valid shape. The probability distribution for tHi®™} is assumed to be a Gaussian

1
2717

m

_(b™?
shapeP , = e Am. Figure 3.3 shows the first three modes of vamatby

independently varying the values of the first thebape parameter$y"{, m=1, 2, 3) in

equation (3.6), by 3\//1_"‘. In this shape model, 65 marks are used and 7 sncaie

capture 98% of the variation of the training seju&tion 3.10).
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3.5 Conclusions

In this chapter, we introduced the technique detfilstatistical shape model. The main
idea behind Active Shape Model is to use Principamponent Analysis (PCA) to
derive shape variations from training sets. Firghape is represented by concatenated
shape coordinates. After Procrustes Alignment shdpgerence introduced by
translation, rotation and scaling has been removkdrefore, after applying PCA to the
shape covariance matrix, the shape variation digion can be extracted easily. Finally,
the new shape can be represented by using a mege gus shape variations with
weighting component. From Figure 3.3, we can oleséimat the Active Shape Model
can capture the true shape variations from thenitrgi set. However, the essential
problem of using this technique is how to estabtisirespondence points automatically.
Traditionally, manual labeling has been employethtkle this problem. However, it is
quite error prone, subjective and time consumingndél labeling on 3D datasets may
take weeks to accomplish. Therefore, it is withwe spirit of Computer Science to
derive an automatic technique to find correspondgrants automatically. In the next

chapter, we will discuss in detail solving thisrempondence problem.
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Chapter 4 Solving the Correspondence Models

Point correspondence is a fundamental problem imgu&ctive Shape Model to solve

image processing problem. It is thus a criticalbpgo, which can also be related to
many medical imaging applications. For example vithele work for registration either

pair-wise or group-wise is finding the correspormeron either the surface or the
interior of the object. With the correct correspende, we can register different images
from different modalities or different time acquisns. Since information gained from

different images in the clinical track of events asually offer complementary nature.
For segmentation problems, it is quite easy toesoifvwe know the correspondence
points and can construct a Shape Model. Normalhewthe boundary is blurred or
mixed with other tissue or organ, Shape Model déer @ better solution. In reference

[59], readers can find some segmentation resultssing Active Shape Model.

In this chapter, several approaches for solving ttorrespondence problem will be
discussed. Especially, the last one (Minimum Desiom Length approach), which
builds the correspondence in a learning processshawn many advantages over other
algorithms. Therefore, MDL will be the main target comparison with our proposed
method. Before introducing the techniques in lii@r®, we start from some neutral and
general accepted comparison criteria, which cantitized to evaluate the performance

of different techniques.
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Figure 4.1 Shown is an example of “Corresopondenderoblem”. The correspondence points
are identified by using the same colour. These imag are from reference [100].

4.1 Comparison Criteria

In the development of Statistical Shape Modellingtivbds, due to lack of general
accepted ground truth, it is very important forfehént researchers to have an objective
basis for comparing different approaches. For examm Figure 4.1, authors in
reference [100] have found some correspondenceltsesacross shapes. The
correspondence is identified by the same colourwéier, just from subjective
evaluation, it is quite difficult to evaluate th@rcespondence’s correctness. In this
section, we will describe the ‘benchmark’ companiscriteria, which were first

introduced in Davies’s paper [44].

The following paragraphs will describe three propsr of an ideal model:

Generalization Ability, Specificity and Compactnegdl measures described allow
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meaningful comparisons between different modelssttanted from the same training
set. Figure 4.2 will illustrate the notion of Gealeration Ability and Specificity. On the
left is the example of training sets. In the middie blue shows a kind of shape model,
which can capture parts of the pentacle accuratatynot the whole pentacle. Therefore,
the middle model is specific but not general. Qailght, it shows another shape model
which can cover all the shape examples in theihgiset but the shape model does not

look like a pentacle. Therefore, the right modeajeseral but not specific.
Training Set: {[;| i=1,... N}
Sample Set from model pdf: {Ig| a = 1,...90t}

Specific but hot general General but not specific

Figure 4.2 This graph is a brief and vivid introdudion of the concept Generalization ability
and Specificity. Red is training set and blue is saple set generated from model’'s probability
distribution function.

4.1.1 Generalization Ability

The generalization ability (G) measures a moddiitg to represent unseen instances

of the class of object. This is a fundamental prigpas the goal of building a model is
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to fit the model to a new example. If a model igmlfitted to the training set, it will be

unable to generalize to unseen examples.

A leave-one-out reconstruction can be used to meabe ability of each model from
the training set. It means that a model is builbgigll but one member of the training
set and then fitted to the one member excludediquely. The error with which the
model can describe the unseen example is measodeith@ process is repeated until all
examples are tested. The approximation error reptigy this generalization ability can

be the averaged error over the complete set of pbegm

The pseudo code below represents the whole protessGeneralization Ability is
measured as a function of the number of shape maeasnM, used in the

reconstructions, N is the number of dataset members

For M=1...N-2
Fori=1...N

Build the ASM model from the training sathwx removed,;
Reconstruct the unseen shape using M shagengters:
X (M)=% + X0, Po
Calculate the sum of squares approximatioore
e2(M) =[x =x (M)’
Calculate the mean squared error:
G(M) = 37 87(M)

End of i
End of M
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The set of correspondences used to build the maaelso calculate the approximation
error between the model and each excluded exarhplddsbe obtained independently.
Unfortunately, this would make some of the experiteadmpractical. In practice, the
correspondence is obtained by considering all @ftthining shapes that have been used.
This action will tend to overestimate the absoleteor, but allow an unbiased

comparison of different models.

Therefore, for comparison of two models and B, if G,(M)<G,;(M) for allM or
for a givenM, we can conclude that the Generalization Abilitymethod A is better

than that oB.

In order to evaluate the significance of differenegnen using differeril, we estimate

the likely error in G(M). The standard error o6(M , )which is derived from the

sampling distribution for a mean is given by [104]:

a. =
S 4.1)

Where o is the sample standard deviationG§M , and M is the number of

modes/shape variations used in the evaluation.

4.1.2 Specificity

Specificity (S) measures a model’s ability to gaterinstances of the object class that

are similar to those in the training set. It wi# bpontaneous to evaluate this ability by
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generating a population of instances using the inadd comparing them to the
members of the training set. We define this meag@sea function oM, whereM is the

number of shape variations/mode used in the measnt as:
1 ?
S(M) :Nz\xj (M) -x| 4.2
j=1

Where x; are shape examples generated by the model (bysiclgpealues ofb in
ASM in the range over the training set randomlyJ a is the nearest member in the
training set tox;. Therefore, if S,(M) < S;(M) for all M or a givenM, A is more

specific. The standard error d(M) is defined as:

g

g = 4.3
S(M) m (4.3

Where o, is the sample standard deviation (M , N is the number of samples (in
our experimentN =10000), and M is the number of shape variations/modes used in

this evaluation.

4.1.3 Compactness

Compactness (C) measures a model’s ability thag asdew parameters as possible to
cover the same variance. It is helpful to calculiie ability as a plot of cumulative

variance:

M
C(M)=> " (4.9
m=1
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Where A" is the m" largest eigenvalue ar@d(M) is the cumulative variance of the
M™ mode. IfC,(M) < C,(M) is true for all shape modes or some of the shamues)
A is more compact.

As for Generalization Ability and Specificity, thikely error inC(M) is also given. The

standard deviation of the sampling distributiortha# variance of them™node is given

O = \/ZA’" (4.9
nS

where A" is the m" largest eigenvalue of the covariance matrix. Tia@dard error

as:

of C(M) will be defined as:
M
2
m=1 s

where M is the number of shape variations/modes used.

4.2 Manual Landmark Placing

The first Active Shape Model was built by Coo&tsal [21]. In this approach, they built
correspondence by manual landmark placing on haapesoutlines. Although manual
annotation has been accepted as a ground trutlthen&hape Model built by these
points also often lead to a valid shape, thereoiggunarantee for good performance
because it is subjective, and error-prone. Manaradihark placing is also a very time
consuming process. In some 3D cases, it may takerah for a specialist to mark these

datasets. Another disadvantage can be seen frone$£xapaper [22]. In this paper, the
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so-called ground truth has been verified that It mot always show desired properties.
According to the results of reference [22], Minimudescription Length (MDL)
outperformed the “Ground Truth” in the metric ofri@ealization ability, Specificity and

Compactness. In Figure 4.3, shows a set of manpkbed landmarks on MR image.

Figure 4.3 Here is an example of labelled brain MRmage from Cootes’s (reference [16])
website.

4.3 Iterative Closest Point Algorithm

Iterative closest point (ICP) is a straightforwardgistration algorithm to find

correspondences where shapes are close to eachwbidie shapes are roughly aligned.
Besl et al [24] describe this method as a way to registeaia @f shapes and define
correspondences between them. An initial correspocel is established by finding the
closest points between shapes and an initial wamsition is also defined. An iterative
procedure is then adopted for finding the convergeto a local minimum. The cost

function for this convergence is defined by theasqd distance between shapes. Finally,
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the best solution is selected from results startnogn different initial positions. In

Figure 4.4, shows the results of two curve regestdry ICP.

Figure 4.4 An example of using ICP to roughly register twopskgis shown.

The correspondence solution for this kind of metigdtraightforward and simple to
implement. However, it is quite arbitrary to claioorrespondence after shapes are
roughly aligned. Therefore, it is unacceptabledy that correspondence is defined by

the closest distance.

4.4 Shape Matching-based Correspondence

Stalib et al [25] applied flexible constraints on deformableagh, in the form of a
probabilistic deformable model, to the problem efmenting 2D shapes and finding
correspondence. The parametric model is basedeoalliptic Fourier decomposition of
the boundary. Probability distributions on the paeters of the representation bias the
model to a particular overall shape while allowing deformations. Boundary finding

is formulated as an optimization problem of maximgza posterior objective function.
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The problem for this algorithm is that when theinirag set is limited, the final
segmented shape will be unlike any shape from itrgirset (bad Generalization

Ability).

Figure 4.5 An example of result by applying Wang eal's algorithm to a set of hippocampus
Details please see [26]).

Wanget al[26] overcame this problem by adding on a purposeiped matrix onto the
covariance matrix from training set. In this walye tshape variations become more
global and rigid. However, this global variationofien objective and not subjective to

the datasets.

In reference [27], Set alused Independent Component Analysis (ICA) [63]aptare
shape variations, they claimed that by using ICArenlocal and accurate boundaries
can be detected. A Markov Random Fields [86, 87 b&8ed cost function was used to
facilitate the relations between points, and finptimal segmentation results can be
achieved in maximizing the posterior probabilitgtigon [85]. In Figure 4.5, we show a
demonstration of difference between ICA and PCAnkFigure 4.6, it can be seen that
PCA assumes that distributions are normal to eattero ICA can capture real

undergoing distributions which are not orthogowatéch other.
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Figure 4.6 Here is an example of using PCA and ICAo extract the underlying distribution
from a cluster of datasets. On the left, red arrowshow the distribution found by PCA and on
the right shows the distribution found by ICA.

Although compared with Wang's [26] results, Su'@][2esults were improved in terms
of accuracy, the essential problem of automatidr@erk placing is not solved. Since,
during experiments, they used training datasets kedarby an expert and

correspondence is achieved only when they usesttagh$M to segment a new dataset.

4.5 Shape Properties-based Correspondence

Another intuitive approach to establish correspoiedeis to use similar local shape
features. Curvature is the most often used critertr example, such an approach is
established by Varuet al [28]. In the paper, a shape descriptor based ovature

distribution along a geodesic neighbourhood is u3dédesholds of the curvature are
adopted to make the descriptor more robust agamstrigid shape deformation. Once

the descriptor is computed for every point or feateertex of two shapes to be matched,
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a one-to-one correspondence can be built. The #alyarfior this technique is that it can
achieve correspondence relevantly quicker. Moredhes algorithm is based on a very
intuitive way of people’s general idea about therldioTherefore, it can solve some
simple shapes with distinguish features, like bodd with sharp corners, etc. However,
for medical images, it is always not that simplenc8, medical images are involved
with normal organs with smooth surface (e.g. liver)abnormal organs with random
appeared curvatures (e.g. tumour). Therefore, stilisnot ideal for solving the finding

correspondence problem by using curvatures.

Hill et al [29] built a framework for automatic landmark idiéication. It employs a
binary tree of corresponding pairs of shapes tcegga landmarks automatically on
each set of example shapes. The correspondencettatlydocates a matching pair of
sparse polygonal approximations, one for each pdia of boundary by minimizing a
cost function using a greedy algorithm. The grealdyprithm produces a set of points
that lie on regions of high curvature. The costcfion expresses the dissimilarity in
both the shape and representation error (with ctdpethe defining boundary) of the
sparse polygons. Therefore, minimizing the cost ction will convey the
correspondence. The method, however, allows invatidespondences between the
examples. Nevertheless, this pitfall has been oveecby flattening the surface before
establishing correspondence, which is using an lgoigserving technique to map a
shape to a sphere. Although some results can beévach automatically, the
correspondence is still in a completely arbitrargnmer, since different correspondence

can be achieved according to the same theorynAdllj using the curvature to build up
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the initial correspondence set may also jeopattiseolidity of correspondence.

4.6 Finding Correspondence in a Learning Process

The state-of-the-art technique for finding corresgence, so far, is to treat
correspondence as an optimization problem anddancespondences by optimizing an
explicit objective function. This will actually @l good properties according to the

criteria for building the cost function.

Different authors [24, 31, 36,] have proposed usiregtrace of the model covariance as

the objective function.
Function,,.,= > A" @7

where {A" } are the eigenvalues of the covariance matrix. Bymizing this function,
landmarks are moved towards the mean, directlymaing the total variance of the
model. Therefore, it is the same as the Compac(i@ssetric) measure. An example of
using this technique can be seen from Figure 4@nH-igure 4.7, we can see that the
standard deviation has been decreased. As discuss&hvies [35], this model
preferred a model with equal spaced landmarks &nd sensitive to initialization
positions. The other problem is that although a mach model can be guaranteed, its
Compactness is also overestimated such that thpoged model scored less on
Generalization ability and Specificity than Minimubescription Length [35]. Although
the trace-model can use less parameters, howesandllel's bad Generalization and
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Specificity is not ideal.
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Figure 4.7 Shown is the mean shape with red mark#je whiskers starting from the marks
indicate three standard deviation of the first twoprincipal components. Left: The model

is built from equal spaced initialization. Right: The model is built with traces of shape
covariance matrix.

Hill et al[30] adopt a curvature matching dynamic prograngnalyorithm to obtain an
initial correspondence and then optimize an objectfunction for the final
correspondence. The objective function is the tadidbe model covariance matrix plus

a correction term that penalizes points for mowffghe original shape boundary.

n

Function,..= > g +¢ (4.9

i=1

Where in Equation 4.8, if the shape covariance im&rA, the cost-function is the sum
of the elements on the main diagonalfoplus a correction term. Though some of the
plausible results have been achieved, there is pateatial drawback in this algorithm.
Points can be moved off the boundary due to baohstouctions. Several other authors

also reported using trace of model as objectivetfan to find correspondence points as

in [24], [36], [62].
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The determinant of the model covariance matrixrastgective function, is adopted by

Kotcheffet alin reference [31]. The cost-function is shown irugipn 4.9.

Function,,, = > _log(A™) 4.9

Where {A" }Jare themth eigenvalues of the covariance matrix. Similathe previous
cost function based on trace of the covariance ixdtnis cost function effectively
measures and minimizes the volume spanning indhation space but still it favours a
compact model. Moreover, it achieves a meaningessmum when any eigenvalue
approaches zero. To overcome this problem, Kotadtedl add a small constaat and

then the cost function becomes:

Function,, = > _log(A™ +¢) (4.10

They argue that an appropriate value ofcan be estimated from the noise on the

training shapes.

Kotcheff's model [31] will actually lead this modéb a more compact one. The
problem for Kotcheff’'s work is that it degeneratemima and thus requires an arbitrary
parameter to keep it well defined. The arbitraryapzeter will affect the convergence
properties of the model. Correspondences are wsjpigcewise-linear function. Strong
constraints have been used on the re-parameteriziatnctions to make sure the final
converged shape is valid. However, this shape raapeterization can not be extended
into 3D easily. Though a genetic algorithm (GA) Hasen used to optimize the
objective function by manipulating the parametdrara function, it is still relatively

slow. Normally it takes a day to run the whole aigon on 2D and can not cope with
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complex objects or large datasets. Although, theiffium Description Length (MDL)
also cast the finding correspondence problem ieaaning process, since MDL is our
main target for comparison, the background thedrghes algorithm is in the next

section.

4.7 Minimum Description Length Approach

Most recently, the Minimum Description Length (MDhas become the state-of-the-art
approach for solving the correspondence problene fliist paper using MDL as an
objective function to solve correspondence probiemublished by Daviest al [23].
This very first paper publication about MDL modebs attracted a lot of attention to
this field [32], [49], although the algorithm iglkguite hard to duplicate and implement.
In addition, Davies quantitatively demonstrated td&®L has better performance than
Hill's et al [30] and Kotcheff’'s model [31]. In reference [4%he author provided a
simpler form of the MDL cost function and the gt of the cost function, which
makes the algorithm easier to implement. Althougime improvements have been
made to the MDL approach, the model is not flawlgsts As have been reported by
Davies in [23] and also Thodberg in [32], the chstction will be trapped in a
meaningless local minimum, when parts of the lanéswill be trapped in a one place.

We will introduce the MDL theory by first discusgithe rationale behind it.
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4.7.1 Correspondence and Statistics

|

Shape Space

Figure 4.8 This is a demonstration of wrong correspndence.On the top row it shows the dataset
with manual marks. Correspondence is achieved by ating nodes with the same colour. Bottom
row left: A new shape generated by the Shape Modelhich was constructed from the datasets. It
can be seen that due to the wrong correspondencégtnew generated shape does not look like any
example in the dataset. Bottom row right: The stastics in feature space is formed as aelliptical

o™

shape.

Shape Space

Figure 4.9 This is a demonstration of correct corrspondence On the top row, it shows the dataset
with manual marks. Again, correspondence is identiéd by the same colour. Bottom row left: A new
shape generated by the Shape Model, which was congited from the datasets. It can be seen that
with right correspondence, the new generated shapshare the same genus with dataset. Bottom row

right: The statistics in feature space is formed aa line.
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Statistics is often used to describe the propediegroup behaviour. Therefore, it is
straightforward to think about finding corresponcderas manipulating its statistics. In
Figures 4.8 and 4.9, a demonstration of a plausimenection between right
correspondence and statistics is shown. It carebe om the above figures that, with
correct correspondence points marked on the trgisét, the shape space will become
more “compact” and orderly. Therefore, varying espondence will be “equal” to

varying statistics.

Davieset.al.use an information based function to describerif@ination amount used
to represent this shape model parameters andTdad'best” model, which defines the
correspondence, is characterized as the one tmithines the description length of the
training set, arguing that this leads to model$wibod properties. They argue that the
simplest description of the training set will ingetate and/or extrapolate best. The
notion of the ‘simplest description’ is formalizdsy Minimum Description Length

(MDL), which is from the Shannon Coding codewondgth [39]:
Descriptimlength=-log, p bits or —In p nats (4.1

The basic idea is to minimize the length of a mgsseequired to transmit a full
description of the training set, using the modeletwode the data. The whole cost
function is based on the measurement of two pénts:first part is the information
needed to describe the encoded model, which insltite mean shape and the shape
modes; the second is the information for the trgjrshapes, which is thgp from the
model Probability Density Function (PDF). Sinceg thformation to describe the mean

shape X and the eigenvector can be assumed to be coristaatgiven training set,
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thus only information needed to describe trainingpes will be calculated.

The term of “Description Length (DL)” is defined &sllows: for example, a set of
possible events {i} with probabilities §, }, thus, the codeword description length of
event {i} is equal to —log p, . The whole training set of shapes will be encoietthis
way which includes Encoded Model (mean shape, maaeles etc) and each training
shape (p, from model probability distribution function). is quite reasonable to
assume that information amount for describing tleamshape and modes is assumed to
be constant for a given training set, thus only seeond term will be calculated.
Therefore, the total cost function is simply thensof the descriptions for all weighting

variables as in Equation 4.12.

TotalDL = > DL (4.12

For example, when all the shapes are roughly markedActive Shape Model can be
built according to the coordinates of these landmaEach shape can then be
constructed by the mean shape, shape variationsvaiggthting vector (recall Equation
2.8,X =X + Pb). As have been discussed in previous chapterk, @aoponent in the
weighting vector can be assumed to comply with asSian distribution. Therefore, the
Description Length for each component of each weighvector can be easily
calculated by the definition of Description Lengthd the total Description Length is

sum of Description Length of components in eaclghi@ng vector.

Thodberg [38] and Ericsson [49] improve this MDthaique and derive a new form of

the final description length such as:
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Description Length =)L

L =1+log(A, /A,) for A=A, (413

L, =2,/ A for A, <A,
This cost function has the property that it tenolzéro when all eigenvalues tend to
zero and bothL,, and dL,/dA, are first order derivative continuous at the afit-

A..- In other words, whend falls below A, the benefit of decreasing it further is

cut?

no longer logarithmic, but levels off and reachesnmimum one unit below the

transition point. A mode with eigenvalué

cut

contributes on average a variance of

A/ N per mark, and since thens radius of the aligned shapes 1$+/N , the mode

cut

contributes a standard deviation pens radius of o, =+A, .- S0 A, can be

evaluated byo,, thatis defined by the noise level of the trainsed.

ut
In summary, MDL cost function is based on the ag#ion that all shape variations are
independent and equally weighted for each othehBhape variation is normal to each
other but they are not independent to each ottmr.ekample, in théN dimensional
space, givenN-1) shape variations we can use the rule thatuhedf all squared shape
variations is equal to one to calculate the remgirghape variation. What is more, in
reality, the assumption “might” work for some apglions, however when the training
set is loose or the covariance matrix is ill definthe assumption will not hold right.
For example, the shape variations with smallerreigkie will most likely to be blurred
with noise. This may be one of the main reasons vdsgarchers use the first few
eigenvector to construct the shape model. We thiexebuggest using automatic

calculated statistical weights for each energy comept, which will be discussed later.
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4.7.2 “Pile Up” Problem

The results shown by Davies [35] were encouragemyl soon attracted a lot of
attention. However, it has drawbacks. The problerthe reported “Pile Up” problem
[22], [32]. The problem is a situation when allmarts of the landmarks in the Active
Shape Model piled up in some locations and fail cdonveying a reasonable
correspondence shape model. This is due to thetHattthe optimal MDL result is a
local minimum, which has to be near to the inigakition. It is quite straightforward to
realize that when all landmarks pile up into onenpahe cost function of MDL will

achieve global minimum. This problem happens qoiten when the landforms of

shapes are complicated [32].

In Davies’s thesis [22], he suggested a possibletisa in avoiding this “Pile Up”
problem. He suggested using the single master deampthod. In the optimization
method, one of the shapes in the training set tistcsdoe fixed. For this particular
example, the landmarks have been marked and usadreference shape. Therefore,
this shape will influence other shapes. What wapeHbois that the solution will
somehow relate to the result with the accuracyhef first master shape. However,
applying this manual reference shape is againssphé of automatic shape modelling.
Other researchers [32] have reported that this odetli a single fixed master example
is not sufficient to keep the whole set in placer &xample, the free endpoints of open
curves can drift systematically to one side ordtieer, neglecting the master example.

Another example is in closed curve, if we havergdadataset, say 100, the statistical
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weight of the majority can outweigh the single neagixample and gain of the run-away

exceeds the cost of a single outlier easily.

Another solution to this problem is a programmieghnique that we can reinitialize
parameters until the right optimal result is fouar example, if one initialization
parameterization meets the “Pile Up”, another afidation can be used until no
problem is met. However, we need observer intenf@eto select the correct
correspondence result, which otherwise can leadatherithm into an arbitrary and
subjective manner, and the results will be pronenor as well. Therefore, several
credible results will be achieved according to etéit initialization and it is hard to

justify which one holds the right correspondence.

Hans [32] has reported that using a curvature basttnal function or a node penalty
can avoid this “Pile Up” problem. Therefore, thesttéunction is now composed of
using both MDL and an external term. The theorthé this external cost function will

favour some areas (for example, areas with highltmal curvature) so that it will trap

landmarks and limit the landmark’s moving abilibga a small area. However, the “Pile
Up” problem might be solved in this way. Adding external cost function changes the
correspondence problem back to an arbitrary marethermore, in complex cases,
where high curvature is present (for example, fadiles), the external term may be
overweighed. Whereas is an organ like the livereghe lack of change on the surface.
The MDL term can overwhelm the curvature term gasllherefore, in practice

weighting those two terms in different circumstaedl be a veryhard problem.
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The “Pile Up” problem can be imagined clearly as goints that run away from the
correct positions and pile up in some locationgrdfore, the shape model fails in
describing the rest of the shapes and in reachisigpaller description length than the
optimal correct one. The reason for Minimum Dedarip Length’s misbehaviour is

quite complex. However, we can attribute this te dmawback of Description Length.
For example, if all the points on the shapes falb ione point, it will attain minimum,

which is actually a global minimum. Here, we penfioan experiment regarding to this

“Pile Up” problem.

Twenty-four artificial datasets as the ones useBigures 4.8 and 4.9 were generated.
The shapes are rectangles with a bump moving franieft to right. Since the ground
truth of datasets is known, we can make a compabstween the ground truth and the
MDL results. From Figure 4.10, it can be observest the MDL results are different
from the ground truth. We therefore calculate thBWMoutput for both ground truth
position and the MDL converged position. In theugrd truth position, the MDL output

is 20.135 and for the converged position the MD&tdanction output is 18.591.

N M

i . u _ |
| I | | .I I I Optimal Results
J h‘ 3 |'
u Ll MDL ReSU1tS

Figure 4.10 A comparison between optimal results ahresults from MDL. The top row shows
the optimal results; the bottom row, shows the MDLresults.
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Another experiment is performed on the datasetsuofian face profiles. We compare
the MDL converged results and some of the manuadnterked results as in Figure

4.11.

Manual Results

s
1

i . *\ MDL Results

P Ny

Figure 4.11 A comparison between manual results anMIDL results. On the top it shows the
manual landmarks results; On the bottom, it showshie MDL results.

It can be seen that some of the points in the atea piled up. The MDL cost function

output for both cases: manual results is 29.43tla@dDL result is 27.6643.

4.8 Conclusions

Based on the knowledge offered by reviewing theliphéd literature on finding
correspondence across shapes, we can see that momeésing results have been
achieved, although they suffer from a number ofbpmms. For example, the manual

landmark placing is too error prone and time cornagmespecially in 3D cases; ICP
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registration provides a quick way to find corresp@mce where shapes are close to each
other. However, close in distance does not nedgssagan that they are corresponding
to each other. By giving different initializatiorogitions, several converged results can
be found and there is no evidence shown how to pjkhe correct correspondence
from these convergence results. For shape matdbasgd algorithm, the essential
problem of how to automatically find correspondements across datasets is not
solved. Therefore, it is still a segmentation tegbha. Correspondence points will be
achieved in the same time, when a new shape isesggthby using an Active Shape
Model constructed from manually marked datasets: $lwape properties based
techniques, it can be seen that for a soft orgach as liver, there are no obvious shape
properties to model. Daviext al [35] showed the most appealing and intuitive sotut
to tackle the correspondence problem so far. T the correspondence across the
datasets in a learning process. The objective ftogition is based on information
theory which mainly measures the utilities (Deswip Length) used for one model.
They argued that the model, which has the smdllestription Length, would hold the
correspondence. However, problems have been repbytdhodberg [38] and Davies
[35], that due to a small pitfall of the cost funct, shapes will “Pile Up” from the right
correspondence and pile up in some areas. Davigss[®jgested using one marked
example to influence other examples in the trairgeg In theory, given a large dataset,
one single marked example is not enough to inflaetiee rest of the examples.
Thodberg [38] suggested using external cost funama solution to original MDL cost
function to constrain the moving ability of nodagidg optimization. The cost function

can be extracted from shape properties such astcwev Then again, this external cost
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function becomes hard to define according to deffietandforms of datasets. Therefore,
it allows different correspondence to be achievegrg different weights to the cost

function.

As a result, a new method that can have the gooésmondence properties and do not
suffer the problem of “Pile Up” without using extal energy function is required. In
term of good correspondence properties, we arerirggeto the performance of Active
Shape Model constructed from the automated idedtiiorrespondence landmarks.
This performance evaluation can be achieved by comatcepted measurements, for
example the Generalization Ability, Specificity aG@dmpactness. These three criteria
have been used by many other researchers in [85]99] [98]. Due to lack of ground
truth, researchers often use manual marked resul®svaluate the performance of
different methods. However, these manual resuétgjaite subjective, and dependent on
user’s experience. Different users may concludiemiit manual results. Rather than
trying to retrieve the ground truth, the three canmgbn methods evaluate the
performance of the model from a different perspectivhich evaluates the properties
of the shape model built from correspondence pdousd by different algorithms. In
validations, all these three estimates are meagutite error quantity of the
corresponding ability. Something we should keepnimd is that, for example in
Generalization Ability, the smaller Generalizatiéhility value is, the more general the
model is. Within those three criteria, GeneraliatiAbility and Specificity are more
important, since in most of the cases, researatsesmore about the performance of a

model rather than how many parameters were usedeXxample, if modeA with 12
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parameters and mod@® with 10 parameters can represent same variatwhgh

mean<(A) > C(B), but if G(A) <G(B),S(A) <S(B), in general case, we will still
choose modeRA. Another possible approach to evaluate differégorghms is to cast
the constructed shaped model in a real medical emeggplication such as image

segmentation or shape classification/recognition.

The following chapters will describe our new progwsnethod, which is also based on

information theory and group-wise optimization than hopefully deal with the

limitations of both Davies’s and Thodberg’s papesolve the “Pile Up” problem.
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Chapter 5 A 2D Minimum Entropy Approach

This chapter will provide a brief description ofrgoroposed approach, which builds
correspondences in a learning process and in pguse manner. We also note that a
pair-wise method exists in literature [60]. In tolsapter, we will focus on 2D cases, and

discussion on 3D will be in later chapters.

Our goal is to develop a method for solving thebpgm of finding correspondence
automatically and solving problems left by the orad MDL approach, for example the
“Pile Up” problem. We also treat the correspondemodlem, as a part of shape leaning
process, by doing this the desired propertieshelhchieved, in terms of Generalization
Ability, Specificity and Compactness. This approaah involve several steps in the
framework, such as surface/shape parameterizatisamipulating correspondence,
efficient optimization, an objective function to topize and criteria to evaluate the
performance of the objective function. Among theseps, the objective function is
essential. We seek an objective function that hagdllowing properties:
(1) Achieve comparable or better score in the threduatian criteria compared
with “the state-of-the-art” method,;
(2) Guarantee that the optimal result offers valid egpondences as an example:
Solve the “Pile Up problem”;
(3) Applicable to both 2D and 3 D;

(4) Efficient to optimize: achieving convergence statua relevant shorter time
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compared with “the state-of-the-art” method

This chapter is organized as follows:

Section 5.1 will focus on the techniqgue used folpgh parameterization and
correspondence manipulation in 2D. Details of gpomdence manipulation will be
further presented in sections 5.1.1 and 5.1.2 exdiely.

Section 5.2 will discuss our method of composingoat function and some of the
relevant work.

Section 5.3 will give the optimization strategy2D cases.

Section 5.4 a brief conclusion will be drawn.

51 2D Shape Parameterization and Correspondence

Manipulation

Many approaches have been developed for surfabewrdary parameterization in the
literature. The proposed approach should guarathae only valid correspondences
would be achieved during optimization. Intuitivebyye plausible way is that we can put
a number of points along the boundary and move tlespectively. It is, however, very
hard to converge to valid correspondence locatem$ also inefficient. A specified
order of points must exist to make sure of the fgoaorrespondence. This will become
an even more difficult problem in 3D cases. In 2i3es, we use the normalised shape

length to parameterize landmarks; therefore, fréant-4andmark to end-landmark, the

72



parameter runs from zero to one. A hierarchical vimyadopted here for shape
parameterization. This approach acts similarly tenalti-resolution approach. The
figure below shows the method which is used toelaades along a 2D shape. Figure

5.1 gives the demonstration of placing landmarks@la 2D shape.

50 Y
Y IRVERVERY

Figure 5.1 The node placement method is shown hefdodes are numbered from O to 8 with
four levels. First level is blue, which include nod 0 and 8. Second level is in between blue
nodes (parents nodes), which is node 4. Third levd black, which are node 2 and 6. Fourth
level is red, which are nodes 1, 3, 5 and 7.

The advantage of this hierarchical node placengethtat optimization can be performed
to a specified level, which is defined by the aecyrrequirement of the particular

application.

For correspondence manipulation, one approach peapby Kotcheff and Taylor [31]

is very promising. They use re-parameterizatiorm@nipulate correspondence along

curves or surface. Each node is defined by a mowotly increasing parameten (in
11 1 ,

the case ofN landmarks u has values {N'N*Z'm'ﬁ* N }. A different

re-parameterization functior, u ( s defined for each shapg§ u ( With a diagonal

line as the re-parameterization function for thestegpaced case. Bothand &, (1)

will be in the range of zero to one and of monatoimcrease. For a valid

correspondence, this objective function has to ifeainorphic, which means folds or
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tears of shapes are not allowed. An example ofdiépe re-parameterization is shown
in Figure 5.2 on corpus callosum data. By defindiiflerent curve scenarios, we can
have different marks allocated along the boundarglosed curve case, the last point is
identical to the first point on the boundary. Tlkig(u value for the last point should
be assigned to be equal tb, (@n the contrary, in open curve case the firshipisi
different from the last point on the boundary. Eiere, the optimization problem can

be sorted out by looking for the correct mappingveuto represent the correct

correspondence.

(D(:’t')

—o—90—0—8—&
u

Figure 5.2 On the left, it shows the parameterizatin and re-parameterization function.
The dilute blue is equally spaced otJ coordinate representing function parameter. They
direction represents the normalized correspondingurve length. On the right is an outline
of corpus callosum segmented from brain data. Theueve length is calculated from the
black dote. It can be seen that the red dotes areteacted from the dashed line and the
green dotes are from the dilute blue curve.

Floater and Hormann [34] have investigated sediffdrent representations of shapes.
Here we will use a recursive, piecewise-linear @spntation that is related to and

extends the work of Kotcheff and Taylor [31], whishdetailed in the next section.
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5.1.1 A Piecewise-Linear Representation of Re-Param eterization

Kotcheff and Taylor used a piecewise-linear repregeon for re-parameterization

function®. In 2D case, a set of nodep.{ are defined and placed along the function

@ curve, linear interpolation is used to evaluatties between nodes. An example

can be seen from Figure 5.3. A linear function rkdi by nodes p.} will be used to

approximately estimate functi@n.

®(u,,) = P(Y)

i U,

o) =d(u)+u-u) Ususu, (5.7

Where u and ®(u ) are function parameters standing for the path-lengt
parameterization and re-parameterization of nqglerespectively.
The diffeomorphic properties of the function medémst both u, and ®(u, ) must be

monotonically increasing:

0sP(u)<...dPU)<P(U,,)...<P(u,) <1,
(5.2
Osy<..<u<u,..su,<1

o
AP
D(ur) 7 Ps
g Ps
/ﬁ{i’l Py
o Py
& B
o Ll
u

Figure 5.3 Seven points are used to describe the-parameterization function. Each node
can be moved along the curve and a linear functiowill be used to approximate the curve.
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5.1.2 A Recursive Definition of Re-Parameterization

A more efficient and recursive algorithm is extethdlyy Davies [35]. We are seeking a
set of 2" +1 marks on each curve to represent the shape. BsedIshapes, the start
and end points (number 0 &g are identical and there are onBF points on each
shape. The hierarchical method to define pointd @ described as follows: the
position of new node (say, leveil andi is an integer between 1 and L-1) is coded as
its fractional distancex; between its two parent nodes (levelp and p;. So «;

lies in the range of [0, 1] where it achieves @ i§ placed on its left parent and 1 if it is
placed on the right parent. For a closed curve wihmarks, we specify on the first
level the coordinates of mark O and 32 by theiroalis arc length position. On the
second level, mark 16 and 48 are specified by patens between 0 and 1. For example
mark 16 can be anywhere on the curve between mankd(32, corresponding to the
extremes 0 and 1. On the third level the marks4840 and 56 are specified in between
already fixed marks. This is continued until leget so that all marks are placed. A

clear example can be seen in Figure 5.4.

In Figure 5.4b,K, is the fractional distance between origin and éigure 5.4c (i.e.
level two): two other points are inserteH{,,, # K ,,. It shows an example of how to

place 5 points of 3 levels on an open curve.

As the representation of re-parameterization isop@ed in a hierarchical manner, it

allows optimization performed up to a specific leaed makes the points of remaining
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levels inserted in the middle of parents pointse dptimization details will be revealed

in section 5.3.

D)

D(u)

(@)

B

(b)
Figure 5.4 These three graphs show the
recursive representation of re-parameterization
on an open curveThe circles represent parents
nodes and squares represent son nodes. The

> brackets show the range that each node can be
allowed to move around. (a) level zero: a node
is first placed as an origin and end for its child
node. (b) level one: another point is placed
=i between the origin and end of the curve; it

achieves zero when it approaches the origin and
(c) one when it approaches the end.

5.2 An Entropy Based Objective Function

The essential property of an objective functiothist it has a guaranteed minimum or
maximum. By finding this optimal result, correspende can be achieved at the same
time. This section will give a glimpse of the pr@ws work on the subject of finding

correspondence in a learning process. Then we refliesent our proposed entropy

based objective function, which is from anothemioiaof information theory.
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5.2.1 Previous Work

5.2.1.1 A Minimum Description Length Approach

Davieset al [35] developed an information theory based apgrdac building the cost
function. Moreover, they have shown that their Miom Description Length model has
better performance than the previous two modelsyTargued that the simplest
description of the training set will interpolated&or extrapolate best. The notion of the
‘simplest description’ is formalized by Minimum Dmgption Length (MDL), which is

by the Shannon Coding codeword length [39]:
Descriptimlength=-log, p bits or —In p nats (5.3

The basic idea is to minimize the length of a mgsseequired to transmit a full
description of the training set, using the modeletwode the data. The whole cost
function is based on the measurement of two pénts:first part is the information
needed to describe the encoded model, which insltide mean shape and the shape
modes; the second is the information for the trgjrshapes, which is thgp from the
model Probability Density Function (PDF). Since thirmation to describe the mean
shape X and the eigenvector can be assumed constant gorea training set, only

information needed to describe training shapesheiltalculated.

After coding the parameters and data, a very caat@dd form is achieved, which is
very hard to manipulate and understand. Therefbinedberg [38] and Ericsson [49]

improve this technique and derive a new form offthal description length like:

78



Description Length =)L

L =1+log(A, /A,) for A=A, (549

L, =2,/ A for A, <A,
This cost function has the property that it tenolzéro when all eigenvalues tend to
zero and bothLand dL,/dA, are first order derivative continuous at the affit-

A..- In other words, whend falls below A, the benefit of decreasing it further is

cut?

no longer logarithm, but levels off and reachesigmum one unit below the transition

point. A mode with eigenvaluel,, contributes on average a variance &f,/ N per

cut
mark, and since thems radius of the aligned shapes i¢+/N , the mode contributes a

standard deviation pems radius of g, =/A,, . SO0 A, can be evaluated by,

that is defined by the noise level of the traingeg.

In summary, MDL has become a benchmark for autarstiape model building. It
achieves better values of the three evaluation eoti@s than the previous models;
however it still has some problems, which have egn totally clarified, one is the

so-called “Pile Up” problem.

5.2.1.2 Solution for the Pile Up Problem

Some methods have been proposed to stop the “Pilefiect. One way to avoid this
undesirable effect is by selecting a single shapa master example (introduced by the
MDL author Davies in [23]). The master examplehis bne that all points on the shape

have been manually placed by an expert and thesgspare not allowed to move
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during optimization. This method is trying to matke master influence the behaviour
of the other datasets. In this way, the MDL autisdnoping that the points will not pile
up in some locations. However, in some cases,glesfixed master is not sufficient to
keep the whole set in place. For example, the MJorghm will be run on 100
datasets. One is selected as the master examglethr 99 datasets will be optimized
by MDL. During optimization, the statistical weigbt 99 datasets will overweight the
only one master example easily. In this case, Bie“Up” problem could happen. In
another example, the free endpoints of the opewesuipoints can drift systematically

to one side or the other easily; Thodberg repdtiexin [38].

Another remedy for the “Pile Up” problem is to aaldtabilizing term to the MDL cost,
which was introduced by Thodberg [38]. Instead ixinf the node parameters of the

master example, he used a node cost instead:

NOdECOSF z (aiaverage_ aitarget)Z /TZ (55)

target

Where a

average

and & representing parameters of target and averageesh#s

defined previously, the parameteis the parameter which defines the node’s absolute
position between existing node§_/|_2 is a weighting component for the external
energy component. Therefore, if the average defts T =0.05 sway from the target,

one unit of cost function value is added to thed.cos

Rich shape information such as curvature playsrgrortant role in image processing,
therefore it is straightforward to use it as a cam@ntary component to the existing

MDL cost function:
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t=r—h, ¢ =N, -6, —2r )ﬁ /ti2 (5.6)

Where . is the 2D-vector of points t, is the tangent of the shape contour, dnds
the normal of the shape contour. From the expressiahis equation, it can be seen

that curvature expression is independent of thee mdsthe shape and it is one for a

circle. The curvatures, are then convolved with a Gaussian filter. The simed
curvature value at markof the rth example is denoted a€u, . For open curves, the
curvature can not be computed at the ends, ané tbothe ends it also becomes quite

noisy due to the smearing. Therefore, curvature tieaends is not calculated.

The following extra term added to the MDL cost ftioo is constructed to measure the

compactness of the curvature description of the set

Curvature@®st= ﬁ%%Z(qu —-Cu™)?

(5.7
mean 1
Cy™"==>"Cu,
S

Here,s is the number of the shapes, aiéd is the weighing factor for this term. The

curvature cost is independent of the resolutiorthather terms in the cost function.

The proposed method of adding an external term asaiode penalty or curvature cost
can solve the “run-away” problem by force, howetlds external cost-function can
lead the method to an arbitrary solution. For eXamgifferent weights on external
energy function can result in different corresporws and different local extremes.

Nothing has been revealed on how to evaluate thwesghting parameters. The ideal
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approach is fixing the ill posed cost function gesb inherently, rather than using outer
force to constrain its behaviour. In the next settiwe will discuss the proposed
approach, which also used an information theoryntwlel the shape but has shown

better performance than MDL approach.

5.2.2 An Entropy Based Objective Function

We seek a principled basis for choosing an objedfimction to describe the training
shapes that will directly favour models with gooofrespondence performance and
strong ability to fight the “run-away” problem. brder to achieve these good properties,

we try to consider Entropy [39] as a basis to fammobjective function.

It can be useful to think of finding correspondenserying to maximize the amount of
shared information in all images in datasets, gr@up-wise manner. In a qualitative
sense, we may say that if shapes with correct sporedence are correctly aligned, then
the mutual information between the shapes will baximized. Therefore, less
information will be needed to describe the shapalehoOn the other hand, if the
correspondence is poor, shapes will be out of aleymt, in which case, we will have
duplicated and redundant versions of informatioamfr shapes. Therefore, more
information will be needed for describing the shapedel. Bearing this in mind,
finding correspondence can be thought of as redutia amount of information in the

combined images, which suggests the use of a nexasut of information as a
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criterion. The most commonly used measurement foffnmation in signal and image

processing is the Shannon-Wiener entropy med$(ig]

p log(n) (5.9

H=2

=
H is the average information supplied by a seh &ymbols whose probabilities are
given byp,, p,, B.... R - One of the desirable properties of Entropy i¢ thaill have a
maximum value if all symbols have equal probabibifyoccurring, which is the case
when a stack of points pile up into one locatiom dRile Up” happens and MDL
achieves a meaningless minimum. Although the difiee between the equations of
Entropy and Description looks trivial, this obsdr@a can solve the so-called “Pile Up”
problem inherently. The Entropy based Energy casttion has the ability to fight the

“Pile Up” problem.

In finding correspondence, we have several shape#,,..., A, to align. We therefore

have probabilities of weighting components fromsthraining set. Joint entropy
measures the amount of information we have in éveral combined images [39]. The
concept of joint entropy can be understood usirggabsumption that the probability

distribution for every weighting component in thetike Shape Model (ASM) [40] is a

zero centred Gaussian distribution. So fgr weight b, on j, component

€ (5.9

Where A isthe j, eigenvalue.
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In general, there are two main differences betwd®&L and the proposed Minimum
Entropy Model (MEM) in the way of composing the tésction. Firstly, Entropy is
used as an alternative of Description Length fdormation quantity measurement,
since, Entropy has important physical implicati@ssthe amount of “disorder” of a
system. We are arguing that, the system is ordehesh the points are corresponding to
each other. Secondly, as we can see both MDL anil Mjgproaches are using PCA to
extract shape variations and the probabilities & are based on these variations. In
PCA analysis, we normally use the eigenvalue tmtéethe degree of shape variations.
Therefore, it is quite straightforward to think thehape variations should be treated
differently in measurement, and shape variatiorik \@rger eigenvalue should be more
appreciated. In this sense, we propose a methawraposing our cost function as a
combination of entropy with different assigned viegy We chooseld as weight for

each H,, since A is the natural expression of statistical weight@th mode.

t
Costfuncton=>"AH, (5.10

j=1
Where A, is the |, eigenvalue, H, is the |, Entropy derived from
{bl'bz’b,'b;]} The parameteb was defined in Equation 2.8, which are
weighting parameters for Active Shape Modtels the number of eigenvectors used, as

well as the number of weighting components usdtiershape model.

5.3 Optimization Strategy

Instead of the Genetic Algorithm (GA) used in Da8epaper [35], Thodberg [38]
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proposed a local iterative optimization method, alihihas been used in many
applications [41, 42, 43]. Compared with Daviegpmach, this local search algorithm
is easier to implement and understand. Since p#esonal communication, Thodberg
[38] provided his code and datasets for us to exalour proposed algorithm. We are

going to discuss more details about Thodberg'smwptition method below.

For example, an Active Shape Model uses 32 landsnark each shape, but
optimization is performed up to the third levell@®dmarks). The other landmarks are
set equally spaced between the existing landmadkghe landmarks are first placed
along the boundary according to ascending level. iditial step-length, which is
decided by the accuracy the experiment needs siscated with each node. The step
length controls the changes of landmark positiorampe&ter K, which was defined
earlier in paragraph 5.1.2. Please recall thatpimameterK runs from zero to one,

which controls the landmark run from left to rigiitthe parent landmarks.

In our experiment, Thodberg's approach uses 0.0iniéisl step length for MDL
algorithm and it will decrease automatically by #igorithm. Below, a pseudo code is
provided about the MDL optimization procedure. histoptimization scheme, the
whole training set is roughly Procrustes aligndwnt PCA is applied to the aligned
shapes, after computing the MDL cost, each noderabed 6 times to find a
cost-function value in the downhill direction. Thiyorithm runs sequentially for each
control node, and will stop after 40 passes. Weieacafly found that this number of

passes is enough to help the algorithm find theradtsolution.
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A: ForPassesl...40

B: ForNode=1...8

C: ForStep-1...6

D For Example=1...N (N is the total number pamples)
Probe + and — directions
Re-compute mark locations of each example
Do Procrustes to set
Do PCAto set
Compute new MDL cost
If new cost is lower then accept and bileap D
Undo a (node) change

D End of example loop

C: End of step loop

B: End of node loop

A: End of passes loop

In the experiment, the step length and the stepbeurare related. They can be roughly

calculated as follows:

Distance between nearest two nodes=step lengthretaeper 5.1)

This equation guarantees that every node can rerywhere along the boundary. For a
fair comparison with MDL, a master example is useddoth MDL and MEM. A master
example is a manual landmarked example. Duringnopdtion, landmarks on this
particular example are not allowed to move. If rmodad number of examples increase,

the computation time will increase dramatically.

One of the problems for finding correspondence idearning process is slow
convergence. In the next section, we will calculdwe gradient of our proposed cost
function, in this way a variety of optimization tegques can be considered. Ericsson in

[49] has shown a promising way to derive the gnatdieformation from cost function
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by using Singular Vector Decomposition (SVD) [5®e will adopt this method, and

extract a gradient from our proposed cost function.

5.3.1 Introduction of SVD

How to calculate SVD

1) Find the eigenvalues of the matri&" A and arrange them in descending order

2) Find the number of nonzero eigenvalues of the maii A;

3) Find the orthogonal eigenvectors of the mat®X A corresponding to the
eigenvalues, and arrange them in the same orderrofthe column-vectors of the
matrix VO R"™;

4) Form a diagonal matrixSC0 R™" placing on the leading diagonal of it the square

roots \/)l_ in a descending order;

Find the column vector of matrix) O R™™: U :1 AVT

A brief introduction of how to perform SVD is givext the above table. A basic theory
of linear algebra is that any real or complé xN matrix A can be factored
into A=USV", whereU is a M x M orthogonal matrix,V is an NxN orthogonal
matrix and S is anM x N diagonal matrix with non-negative diagonal eleragaiso
called singular values).

Next, we are going to present the connection betwe€A and SVD and their

application in ASM.
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5.3.2 Connection between PCA and SVD in the Applica tion of ASM

Recall from paragraphs 3.4 and 3.5 that the iddandePCA is to extract shape
variations and statistic weight of each variati®@milar results can be achieved by
using SVD, as in the following equation.
X =USV' (5.1

Since U and V are orthogonal matrices arfsl contains the singular values of
factorizingX can give two eigenvalue factorizations relate¥ &s in Equation 5.13.

XXT =USUT, XTX =VvSVT (5.13
Now, dividing both sides of equation with, = , &nd multiplying both sides witW,

we get Equation 5.14.

1 XXV =VS? !
n.-1 n.—-1

S S

(5.14

By comparing Equation 5.14 and Equation 3.9, we sam thalV is the eigenvector

matrix and S® is the eigenvalue.

5.3.3 Derive a Gradient from the MEM Cost Function

In this section, the gradient of the cost functisrgoing to be derived based on the

above sections. Given the” landmark on them” shape, we denote that changing

the position of this landmark i€ ,. Therefore, the gradient of cost function is
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OMEM
oC

. Since during the experimend, will not change dramatically, we assume that

mn

H is a constant in derivation. As a result, recgllfrom Equation 5.10, we will have

Equation 5.15.

OMEM oA
=2.H

aC Fom (19

mn

According to this equation, we can see that thevdive of the cost function is directly
related with the derivative of eigenvalue of shajpwariance matrix. Recalling the

connection between PCA and SVD, we can have Equéatits.

01 _ 0s’ ds  OXy
— ! =1 = S .
oC._ oC. Z ox,, oC, . (519

m

Here,s is the diagonal matrix product from SVD, ang; is Cartesian coordinate for

0X_.
the m™ landmark on thej™ shape.ac—mJ is the surface gradient, which can be

mn

estimated using differential approximation.

. I 0s, : . .
We will focus on the derivation of th%—' part. Given a matrix X, which was
X

mj
composed by the concatenated shape vectors as itlefmed in paragraph 3.3. Then,
this matrixX is decomposed by using Singular Value Decompas#ioalysis. We are

interested in computing the derivatives of the glagvalues s with respect to shape

locations. Here we have equation 5.17.

]
X _U oy Sy s

ax ax ax.. axij

[

(5.17)
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Then we multiply Equation 5.17 witkl © on the left and/ on the right, which leads to
equation 5.18.

.
Ua—XV:UTaU S+ aS+SaV \Y, (5.19
ox; ox; 0x; 0X;
: + oU oV’ : . . .
SinceU' — and S V are anti-symmetric, all their diagonal elementsisia

ox; ox;

Recalling thatS is a diagonal matrix, it is clear to say that thagonal elements of

.
UTZTUS and S%V V vanish too. Therefore, we have a conclusion in Eqn#.19.
i X
0s
— = U,V 5.1
axmn mi " ni ( 9

If we combine the results of Equations 5.15, 546 2.19, we come to derive Equation

5.20, which will be the gradient of the MEM coshétion.

OMEM & oX
=2) Hisu,V— 5.2
aC z =ns—mi a)(l ( Q

mn i=1 ij

5.3.4 Gradient Descent Optimization

This section introduces Gradient Descent (also knasvBteepest Descent) optimization
method, which was used in 2D optimization of MEM. rglodetails and other

gradient-based optimization method can be fourjd4

The method is very simple; it is based on the olsgemw that if the real-valued cost
function F(x) is differentiable in a neighbourhood of a poftThe cost function

value decreases fastest if we move the pdéinalong the opposite or orthogonal
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direction of gradient £[JF (x)) at pointA. With a free parameter of length of stgp
the next poinB will be given in Equation 5.21:

b=a-)0F(x (5.21)
Then, it can be seen thdt (a) = F(b). Keep this in mind and recall our MEM cost

function and initial landmarks; we can start frdme tnitial positions i), we will have

Fo)=F(h)=..., (5.2

This process can be illustrated in the followingu¥e 5.5:

Therefore, the sequence ()kn) will converge to a local minimum. Note that théuea

of the step size is allowed to change at everwtiian.

- - "= ‘//l by
i’ 3 h 1 p - E:.i ,
F = ke ik 5 1
/ ] T - ’_,-/"'"-. bz Y . I'-I
{ / /! . |
[ I|I [ f ¢ __ = A E}E i \ \

Figure 5.5 This graph shows the process of the spmst gradient optimization. It can be seen
that the point is getting closer to the local minimm/maximum after each step.

In general, if the gradient of a function is knaoy & particular optimization problem, it
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generally pays off to use more sophisticated ogttion techniques than Simplex or
Simulated Annealing [49]. Here for comparison wMDL approach, we use the

Steepest Descent optimization method in our prapbdeM approach.

5.3.5 Scheme of Optimizing MEM

With information about the gradient of cost funaotiowe can use some more
complicated optimization algorithm rather than tBenetic Algorithm [79], which is
used by Davies et.al. [22]. The scheme of our apaition method is going to be shown
in this section.

1) Initialization: This step will help prepare the parameters forrogtion. First, each
shape is labelled swith a specific number of lanthsdf we usan levels of landmarks
to represent the shape model and optimize therfikstels of landmarksrfi > n), then
number of landmarks will be2™ —1. These landmarks will be placed according to
equal arc length rule.

2) Procrustes alignment:This step will involve processes of rotation, réisca and
translation. In each iteration, corresponding &ffishape error is minimized then
normalized to unit shape. One important thing altloistprocess is that in each iteration,
the only change is the re-parameterization funcéisrthe curves are fixed. Landmarks
on curves, rather than on the nodes, are estinbgtederpolation.

3) MEM & Gradient: Based on the second step and using Equations 8dl3.23, we

can easily calculate the MEM cost function valud gnadient from the parameterized
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landmarks.

4) Update Parameters:During this step, each landmark will be moved taisathe
MEM gradient direction. Local minima will be probethd new shape parameters will
be generated at the same time. Finishing this dtéipe process does not converge, it

will go back to step 2.

The whole optimization scheme is shown in Figufe 5.

Initialization

Figure 5.6 This graph is a brief scheme of optimizéon used in MEM algorithm. The inputs
are shape surface meshes and the outputs are surégowith landmarks.

5.4 Conclusions

In this chapter, we proposed a new framework afifig correspondence across dataset
automatically. We treat the finding correspondepogblem as a coding problem and
measure the order degree of a statistical shape system by Entropy. Therefore, we
argue that the minimum entropy status will hold ¢berect correspondence. In addition,

we did not compose our MEM cost function by dingcdumming up energy
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components derived from each eigenvector as MDIsdBach Entropy component is
assigned with a statistical weight concerning tifeergnt importance of each shape
eigenvector. These weighting components make s&nese they are based on the fact
that the eigenvector with very small eigenvaluesraostly blurred by shape noise and
we trust those eigenvector with large eigenvalUé®refore, each eigenvector should
be treated differently and energy component deriveoh each vector should also be

assigned with a different weighting.

The optimization scheme of MEM algorithm in 2D isaintroduced. For simplicity,
we use the parameterization method introduced irLMihis is also because we want
to make a neutral comparison with MDL, and evalduh&performance difference only
from the cost-function. Optimization is performey mapping the 2D shapes, either
closed or open curves, onto a curved line by ufiegnormalized shape length. Then
each node is assigned with a parameter, which fisede by the absolute distance
between the two ends or one end in closed shapesrsc. During optimization, nodes
are manipulated by shape re-parameterization. datirpiecewise re-parameterization
method was discussed. MDL uses a local search izatiilon method. One problem of
the MDL approach has been the slow convergenceeobptimization step. In MEM, a
gradient based steepest descent optimization meikodised. Singular Value
Decomposition was introduced in this chapter, whiak a direct connection with PCA.
By using SVD, we successfully derived the JacobiaMEM cost function; therefore, a

variety of optimization techniques can be considere
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In conclusion, MDL and MEM share the same schemeshape parameterization
method, however, MDL uses a local search schemeMifld uses a gradient based
optimization method. Both algorithms start optinti@a from equal spaced positions.
In the next chapter, we will discuss the quantiatcomparisons between MDL and

MEM on various types of 2D datasets.
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Chapter 6 Experiments and Results in 2D

The previous chapters have described and discusised development of an
automatically constructing method for finding c@pendence across datasets, and
evaluating schemes of different optimization methoth this chapter, numerous
experiments are performed on different kinds of @asets for different validation
purposes. The experiments will be conducted in re¢wgays: closed curves, open
curves with free ends, open curves with fixed erldseach case, experiments are
guided to compare performances between MDL and MBMasets in this section are
from Thodberg and Ericsson as used in referencey,[4], after personal

communications.

By using the criteria discussed in Chapter 4, ishewn that our MEM shows better
performance on Generalization Ability and Spedii@nd similar in Compactness. One
more experiment is carried out with the purposdesting the control of “Pile Up”

problem and its comparison between MDL and MEM. prediminary results show that

the MEM algorithm can make improvements in soluving “Pile Up” problem.

6.1 Experiments on Closed Curves

In this experiment, we will try both MDL and MEM dhree different datasets, which

are 24 contours of metacarpals (all closed curns=e Figure 6.1), 15 flying birds
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contours, and 20 Mickey Mouse like cartoon contota a fair comparison, initial
conditions and parameters are the same for bothauet For example, both methods
start from equal spaced position landmarks (coimgi nodes and 64 marks), and each

node can move freely along the contours (one mastample is used in MDL

JRRO L)
BN
INERReRe

Figure 6.1 24 Contours of metacarpals, with differet orientations, sizes and shapes.

algorithm).

All these 24 datasets, each is saved as 281 cabegiof points along the boundaries.
During optimization, if a new coordinate needs &fbund between existing points, a

2-Dimension interpolation will be used.

After MEM converged, it can be seen from the figabmve that 8 nodes are placed at
corresponding locations in the seemingly same nrann€igure 6.2. In the same time,

we also show the correspondence results found by MPigure 6.3.
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Figure 6.4 Shown is the process of node value chamg during the experiment on
metacarpals. There are 8 graphs representing 8 défent nodes (from A to H) and in each
graph 24 lines with different colours represent nods from the 24 examples. The X-axis
represents numbers of steps in optimization; Y-axisepresents the node parameter value.
The general idea of Node Parameter can be recalléesm Figure 5.4.

In the process of MEM, it can be seen from Figurethat the node value will change
in different steps until eventually stabilized. &iig 6.5 shows the output of MEM
cost-function by using steepest gradient method aotput of MDL by using

Thodberg’s approach [38].
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Performance of the Cost Function
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Figure 6.5 A demonstration of the output of the cdsfunction. X-axis represents number of
steps in time and Y-axis is the corresponding valuef cost function. The blue solid line shows
the MEM performance by using the Steepest Descentathod.

From Figure 6.5 we can see that the value of th&IMBst function drops dramatically
in the first 2500 steps then stabilizes and coraegjterwards. During experiments, we
found the MEM approach will converge approximatg @mes faster than Thodberg’s
approach.

An ASM is performed by using the corresponding pofiound by MEM, in Figure 6.6
the effect of the first three principal componeistshown. Then comparisons between
MDL and MEM are implemented on three shape modeberties: Generalization

Ability, Specificity and Compactness.
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Figure 6.6 Shown is the mean shape with red markshe whiskers starting from the marks
indicate three standard deviations of the first thee principal components.

Generalization Ability

19 T T T T
— MOL
18} — MEM ||
17F .
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o
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=
I
12F i ]
11 1 1 1 1
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Figure 6.7 Generalization Ability comparison on clsed curve. X-axis represents number of

shape modes and Y-axis represents Generalization Aty.
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Specificity

1.735 . . . .
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Figure 6.8 Specificity comparison on closed curvé-axis represents number of shape modes
and Y-axis represents Specificity.
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Figure 6.9 Compactness comparisons on closed curd&axis represents number of shape
modes and Y-axis represents Compactness.
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Deviation

MEM MDL Percentage
Difference
Generalization | Mean — Standarg 28.72832358 29.6247037 3.072266049%
Ability Deviation
Mean 29.93930458 31.57360417 5.313680068%
Mean + Standard 31.15028559 32.85005712 5.311757577%
Deviation
Specificity Mean — Standard 36.37891469 37.00119245 1.696039383%
Deviation
Mean 37.00788914 37.25340015 0.661208582%
Mean + Standard 37.01458584 37.26185859 0.665817423%
Deviation
Compactness Mean — Standard 71.64381592 63.77564717 11.62044002%

Mean

100.5747843

91.81160115

9.109982607%

Mean + Standarg

1 129.5057526

118.1826462

9.14302525%

Deviation

Table 6.1. A quantitative analysis on the three ctéria comparisons based on Area Under the
Curve. The smaller corresponding value is marked ifbold character.

Since it is difficult to justify how many shape iarons are suitable in experiments, we
make a conclusion of a shape model's performancend mode achieves better
performance in most of the number of shape vanati). This manner of evaluation

method is also suggested by Davies [22].

As we can see from Figure 6.7, for 14 out of 2%sheariations, MEM achieves better
performance in Generalization Ability G(MEM)<G(MDL) ). Therefore, we can
conclude MEM achieved better performance in Gertabn Ability. In Figure 6.8,

MEM also achieved better performance in Specificity all shape modes,

sinceS(MEM) < S(MDL ). In Figure 6.9C(MEM) is slightly larger tharf€C(MDL), but
considering the error for eadd, we can say that these two methods offer similar

Compactness level or MEM is a bit worse than MDL.
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We also estimated the Area Under the Curve (AUQ)rder to quantitatively calculate
the difference between the three criteria. The Aldflie is calculated for each criteria
of mean value, mean value minus standard deviamh mean value plus standard
deviation. The results of AUC are presented in dabll, where smaller values are
showed in bold characters. It can be seen thabémeralization Ability, MEM is better
than MDL from 3% to 5.3%, for Specificity, MEM isetier than MDL from 0.6% to

1.7% and MEM is worse than MDL from 9% to 11% inngzactness.

For further analysis on the results of our quatitiégacomparisons, we perform ANOVA
test on Generalization Ability and Specificity (Ted 6.2 and 6.3). The purpose of
two-way ANOVA is to find out whether data from sealegroups have a common mean.
In this thesis, we perform two-way ANOVA. One-wajN@VA and two-way ANOVA
differ in that the groups in two-way ANOVA have tweategories of defining
characteristics instead of one. The standard AN@\#e has columns for the sums of
squares (SS), degrees-of-freedom (df), mean sq(@&/'df),F statistics ang-values.
We therefore can use tltestatistics to do hypothesis tests in order to fond if the
results are from two groups or just one. For examiplthe p-value is near to zero, it

means a strong indication that the two groupsrama tlifferent distributions.

Compactness is excluded from this statistical s#ste Compactness is not derived
from samples like the Generalization Ability andeSificity. From the results, since
most of thep-value is zero or close to zero, we can concludettie null hypothesis is

rejected in most of the experiments and theretoeeMDL and MEM results are
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ANOVA Table ANOVA Table
Source g5 df Hs F Prob=F Source S5 df H= F Prob=F
Colunns 0. 00003 1 0.00003 0.17 0.6812 Colunns 0.63641 i 0.&83641 B&Z o
Error 0. 00832 aq 0.0001% Error 0.03z43 a4 0. 00074
Total 0.00835 45 Total 0.e6289 45
Columnng 0.00114 1 0.00L14 6.56 0.014 Columns 0.68594 1 0.68594 81zZ.95 o
Error 0.00765 44 0.000L17 Erroxr 0.03713 a4 0.000E84
Total 0.00873 45 Total 0.72307 45
Columns 0. DoL4z 1 000142 Z.36 0.1316 Colunns 0.76262 1 0.76262 990. 38 L]
Exrror 0.0Z65Z 44 0. 0005 Erroxr 0.03388 a4 0, 00077
Total 0.027395 45 Total 0.7365 45
Columns 0. 00z37 1 000237 8_57 0. 0054 Colunns 0.802803 1 0.80303 95z.83 ]
Error 0.01215 44 0.00022 Errox 0.03731 44 0. 00085
Total 0.01452 45 Total 0.84534 45
Colunns 0.00231 1 0.00231 7.61 0. 0084 Coluuns Q.84372 1 0.84372 #3z.05 o
Error 0.0L237 a4 0.0003 Error 0.03983 a4 0.00021
Total 0.01568 45 Tetal 0.88355 45
Columns  0.00927 1 0.00927 9.6% 0.0033 Coluuns  0.88534 1 0.88534 911.04 a
Exrox 0.0421lz 449 0. 00058 Erroxr 0.04276 44 0.00097
Total 0.05139 45 Total 0.8281 a5
Columns 0.Z0Z212 1 0.20oz1z2 i7re.7 1] Colunns 1.1203% i 1.1203% T4l. 18 2]
Error 0.04977 a4 o.ool13 Error 0.06651 ET 0.00181
Total 0.z518% 45 Total 1.1353 45
Columns 0.3131& 1 0.313168 372.35 o Colunns 1.293939 1 1.29399 1050.33 a
Error 0. 037 44 0. 000S4 Error 0.08zz2 a4 o.00119
Total 0.35016 45 Total 1.3462 as
Columns 0.3z702 1 0.32702 408_195 (V] Colunns 1.38881 1 1.38881 1071.64 o
Rrror 0.03525 a4 0.0008 Error 0.05702 44 0.00L13
Toral 0.36227 45 Total l.44583 45
Columnns 0. 50872 1 0.5087Z 462.93 o Columns 1.4295 1 1.4295 1674 21 o
Error 0.04835 44 0.0011 Error 0.03757 44 0. 00oss
Total 0.85707 45 Total 1.46707 45
Columns 0. 52455 1 0.58455 7a5.2 [n} Colunns 1.41797 1 1.41797 1674 o
Error 0.02234 44 0.00074 Errox 0.037227 44 0. 00085
Total 0.816% 45 Total 1.45525 45

Table 6.2. ANOVA table of the Generalization Ability on datasets of closed curves

ANOVA Table ANOVA Table
Fource 55 dat i F Prob=F Bource [2] dar (5] r Frob>§
Columne  0.11317 L 0.1R317  l429.52 a Colusns 0. 11617 1 0.11617  L3ET7T.09 o
Error 0. 15817 1958 [ U lalajat: ] Error 0. 0017 1958 L]
Tetal 0.27133 1% Total 0. 11787 L9539
Columns  @.1E143 1 6.13143 104014 @ Columra  0.11594 L 011594 498306.97 0
Error 0. 0F30Z 1558 0. 00001 Error 0. 0004E L9%0 (]
Totml 0. 14445 1999 Tanak 0. 1164y 1ass
Columne  ©. 11408 1 G.1ié08  118M0. 2 a Colusns  0.11897 I 0.1188% E4T813.47 ]
Errer 0.0010% 1998 © Errer 0. 0004z i9se O
Total 011718 1899 Totel 0. 1184 1955
Columns  ©.12F 1 6.12E 4rB3 O Coluams  0.1187 1 0.1189 73372.84  ©
Error 0.0604 18R  0.00003 Error o.00318 1938 0
Totml O.1884 1959 Toral 0. 11885 1959
Colusns  0.1180% L 0.11809  1BZ09_ 64 a Colusns 0. 11872 I 0.116%72 :T7eMd. 62 ]
Erces 0. 01Z9E LoF0 0. 00008 Errar . OO0E4 issg 1]
Total 0.13108 1999 Tatal 0. 11786 1939
Columns  0.11672 1 0.11872 1567738 0 Colusns 0. 11629 L 0.11€Z2% E.2710Llev004E €
Errar 0.00148 L9 O Errer O.00004 1358 O
Total 0. 1182 1885 Toral 0. 11633 1999
Colusng 0, 1183 1 0.1I18%  §357.9F Q Columna 0. 11633 L 011623 LE445T.TM 0
Erron G. 04548 LBSR  0.00002 Error 0. 0018 1998 0
Toral 0.16734 1999 Total 0.1174 1999
Columns  0.11371 1 0.11371  ITRIR. 47 o Columns 0. L147% 1 001479 [5 A o
Error 0. 0046 issa 0O Error 0. 00307 198 L]
Toral 0.11972 1999 Tocal ©.117as 1993
Columns  0.1159& 1 0.1189§ TIRI. 60 o Columns 0. L1502 I 0.11882 I6607E.4 @
Erros 0. 003 1558 & frrer 0. 00087 193k O
Total O.116% 1999 Torsl 0. 1168 1558 O
Columny  0.114Z6 1 0.116X6 3IT433.11 o Columns 0. 11886 L 0.11886  45060%.07 -]
Irror 0.006Z1 1¥M O Rerer 000047 L%%E O
Total O.12248 1999 Tobal O. 11633 1999
Colusns  0.11457 1 011457 G2024.84 Columny 0. L1638 1 0.15638 5. 10177et008 [~
Error 0.0037 Le%a 1} Errar 0 0003 1588 [+]
Tetal 0.li@Es 15D Total O.1l841 1999

Table 6.3. ANOVA table of the Specificity on datads of closed curves

105



statistically different (Tables 6.2 and 6.3). Resubn the other datasets are also
presented in this section, beginning with the datasf flying birds with landmarks

found by MEM, see Figure 6.10.

R 4
SR OWL sl WSy

R

Figure 6.10 Graph shows the 8 landmarks found by ouMEM algorithm on the dataset of 15
flying birds.

Figure 6.10 shows the correspondence results by MiEMiatasets of 15 flying bird

examples. From the results, we can observe thatdirespondence points are marked
in the same manner. For example, the points ors hiedd, wings and tails are marked
in the seemingly same locations. In the examplevekan Figure 6.10, we used only 8
control points in the optimization. However, we diseore points in the reconstruction
of Active Shape Model. In this experiment, we usetbtal of 64 points, the rest 56

(64-8) points are set equally spaced in betweestiegi points. This strategy can
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effectively save computation time and only allolwe algorithm to be optimized to the
accuracy we need. Figure 6.11 shows the outpute™MEM cost-function. It can be
observed that cost-function will stabilize evenltyiaDuring experiments, we observe
that the MEM approach can be optimized approxirgated times faster than the MDL

approach. This is due to the usage of the stedpsstnt optimization algorithm.

flightbirds
55 T T T T

54 | .

B2+ .

A0 .

43 .

42 | | |
0 0.5 1 15

[

2.5

w10

Figure 6.11 A demonstration of output of cost-fundgon during optimization. X-axis represents
number of steps time in optimization and Y-axis repesents value of the cost function. The blue
solid line shows the MEM performance by using ste&st descent method.
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Figure 6.12 Shown is the process of node value clgamg during the experiment on flying birds.
There are 8 graphs representing 8 different nodedrOm A to H) and in each graph 15 lines
with different colours representing nodes from thel5 examples. The X-axis represents
numbers of steps in optimization, Y-axis representthe node parameter value.

ool 0

=

%— 1
|

oz 0oL 0

il
a0
90

I

I

0oz 0ol
0oz ool

Figure 6.12 demonstrates the location changes ef 8hcontrol points during
optimization. From this figure, it can be seen ttie all 8 control points start from
location parameter 0.5, since we are using absclutee length as a parameterization
method, 0.5 means that the points are equally gpd2ering the optimization, each
control point’s location parameters first changandatically, then after a few steps,

achieve stabilization.
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Figure 6.13 Graph shows the effect of first 3 shapeariations.

Figure 6.13 shows the first three main shape vanatcaptured by Active Shape Model.
In this figure, the gray round dot shows the measitpn of the flying birds and each

node is assigned with an arrow pointing along tigerevector captured by the shape
model. It can be observed from Figure 6.13 thatfitlsé eigenvector captures most of
the shape variations and the variations exist ostmbthe shape contours except both

ends of the wings.

Figure 6.14 shows another example of using MEMajmture the correspondence points
across the dataset of Mickey Mouse like cartooh® datasets change in different size
and different shapes. From the results, we carthsgdhe 8 control points are placed in

the same manner. The correspondence points liearsnfeet, mouth, hand and tail.
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Figure 6.14 Graph shows the 8 landmarks found by ouMEM algorithm on the dataset of 20
Mickey Mouse like cartoons.
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Figure 6.15 Graph shows the performance of cost fution. The X-axis represents the number
of steps and Y-axis represents the value of costrittion. The blue solid line shows the output of
MEM cost-function performance by using the Steepeddescent method.
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Figure 6.16 Graph shows the process of node valukanging during the experiment on Mickey
Mouse like cartoon. There are 8 graphs representing different nodes (from A to H) and in
each graph 20 lines with different colours represeing nodes from the 15 examples. The X-axis
represents numbers of steps in optimization, Y-axieepresents the node parameter value.
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Figure 6.17 Graph shows the effect of first threehmpe modes.
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Figure 6.15 shows the output of the MEM cost-fumttiFrom experiments, we observe
that MEM can be optimized approximately 2.3 timastér than the MDL, which is due
to the usage of Steepest Descent optimization rdeffigure 6.16 shows the parameters
change during optimization. As the previous experniton birds, after a few steps of
optimization, MEM finally achieves stabilization.igbre 6.17, shows the Mickey
Mouse like shape variations captured by Active hilodel. From this figure, it can
be seen that the first shape variations is mormprent than the rest two variations and

the shape variations mainly concentrated on thd béMickey.

From the experiments performed above, it can be ted the new MEM algorithm can
find correspondence points across closed curveselstan a reasonable same manner.
MEM by using steepest descent method can convegierfthan Thodberg’s MDL
approach [38]. Furthermore, in comparison tests,Mvautweighed MDL in both
Specificity and Generalization Ability evaluatioasd achieved similar performance in

Compactness.

6.2 Experiments on Open Curve with Fixed Ends

In this experiment, we will perform both MDL and WMEon a dataset composed with
32 contours of femurs (all open curves, see Figut&). We will fix explicit ends to

each example, which are tHg' point and 32" point.

112



L
P 0 L 0 Y
) A
W
) L
sl g i Giagly
I

Figure 6.18 Examples of 32 contours of femurs takeinom different patients.

For a fair comparison, we use one master exampdek@d by an expert), 9 nodes and
65 marks for both MDL and MEM (two fixed points thaan not be moved in
optimization have been pre-placed). All the poimtseach example start with node
parameter 0.5 except the fixed points in the enthefshapes. During optimization,
points will move along the shape contours to find tinal optimal result. The process
of node movement is shown in Figure 6.21. Afterheatep, the value of the cost
function will decline until stabilization. After dinization by MEM algorithm, we can
see from Figure 6.19 that four level, 9 nodes Hasen placed across 32 datasets in a
reasonably same manner. The first level is bluetiaa been fixed, the second level is
green that lies in between blue, the third levddlek that lie between blue and red and

the forth level is red that lie either between béunel black or between black and green.
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placed along the boundary curves with the blue colo representing the fixed points. The first
one is the master example that has been pre-procesdsby an expert.

RYARTER VAR VARV YARY:
RV VRV VAV VARY.
VAR VR VARV AR VAR VAR
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IARVERYERY:

placed along the boundary curves with the blue colo representing the fixed points. The first
one is the master example that has been pre-procesdsby an expert.
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Figure 6.21 A demonstration of node movement duringptimization. Seven out of nine nodes
are shown here. Each graph gives the movement ofé@mode in 32 examples represented by
different colour. X coordinate is step number and Ycoordinate is node value. All nodes start
to move from parameter 0.5 and stabilize around th&0" step.

As previously, the outputs from MEM cost-functiore gpresented in the Figure 6.22.
During experiments, we can observe that our prapbddEM approach can converge

approximately 2.2 times faster than the MDL apphoac
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Figure 6.22 A demonstration of output of cost-fungbn. X coordinate represents steps in time
and Y coordinate represents value of the cost funicin. The blue solid line shows the output
of MEM cost-function by using our proposed MEM approach.

After applying MEM to datasets, all correspondingnps are allocated. At the same
time, an ASM will be ready for performing furthersts. An example of the effects of

first three principal components are shown beloWwigure 6.23.
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Figure 6.23 Shown is the mean shape with red markshe whiskers emanating from the
marks indicate three standard deviations of the fist three principal components.
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Figure 6.24, shows the Generalization Ability congzn on open curve with fixed

ends, which providesG(MEM)<G(MDL) in all M but the first one, so we can

conclude that MEM achieves better performance ingéaization Ability test.

In Figure 6.25, it can be seen that MEM only haghdly better performance in most of
M (number of shape modes). Compared with resulta fre experiments performed on
closed curves, MEM’s advantage over MDL has beeduced due to manual
interference in the form of fixed end points. St can conclude that MEM is more

specific than MDL when applying to open curve witted ends.

Similar to what happened in experiments with closadves MEM achieved similar

Compactness level as MDL did, results are presentEajure 6.26.
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Figure 6.24 Generalization Ability comparisons on pen curve with fixed ends.X-axis
represents number of modes and Y-axis represents lua of Generalization Ability.
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Figure 6.25 Specificity comparisons on open curve it fixed ends. X-axis represents
number of modes and Y-axis represents value of Spicity.
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Figure 6.26 Compactness comparisons on open curvethvfixed ends. X-axis represents
number of modes and Y-axis represents value of Coraptness.
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Deviation

MEM MDL Percentage
Difference
Generalization | Mean — Standard 19.6739668 21.34493112 8.147290193%
Ability Deviation
Mean 20.36815613 22.84819852 11.47733264%
Mean + Standard 21.06234546 23.59616743 11.34754297%
Deviation
Specificity Mean — Standard 29.14427775 30.50049923 4.54766216%
Deviation
Mean 30.52226656 30.55334555 0.101772171%
Mean + Standard 30.5440339 30.57412511 0.098468955%
Deviation
Compactness Mean — Standardl 32.52903414 31.6409396 2.767944232%
Deviation
Mean 44.11569886 43.18801673 2.125183621%
Mean + Standard 54.97383523 53.84699932 2.070992959%

Table 6.4. A quantitative analysis on the three ctéria comparisons based on Area Under The

Curve. The smaller corresponding value is marked ifbold character.

We estimated the Area Under the Curve (AUC) to ttatively present the differences
between the three criteria. The AUC value is caliad for each criteria of mean value,
mean value minus standard deviation and mean valuge standard deviation. The
results of AUC are presented in Table 6.4, wherallemvalues are made in bold
characters. It can be seen that for Generaliz#timhty, MEM is better than MDL from

8.1% to 11.5%, for Specificity, MEM is better thetbL from 0.1% to 4.5% and MEM

is worse than MDL from 2% to 2.7% in Compactness.
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ANOVA Table ANOWVA Table
Taurcs BE at HE ¥ FroboF Tource ] T 3 3 TrobF
Coluans ©0,0030& 1 0,00306 34.66 L.99425a-007 Colwsnas ©0.37237 1 0.97287  394.77 a
Exror 0. 00547 &0 Q. 00o0g | (4514 Q. 0581§ &0 0. 00037
Total 0.00864 61 Total d.43ll% &l
Columns 0.06548 1  0.06548 340.6L o Columns  0.2837 1 02037 30355 o
Errer 001182 &0 00001 Tiier o, 0508 &0 0. 00093
Total o.070r €l Total 0.33%717 &L
Columns 0.00525 1 0.00525 IL.E4  B.TIMEAe-008 [oinne’ oo31g94 1 0.21894 J60.6L a
Ercor 0.01333 &0 00002 ErtoE 0.05307 60  0.00088
Toesl  OOAMAy B Ty G.37201 &l
Columns  0.0073 1 0.0073 2.3 L.6ES0Te-D0F oo T oL e 1 0.3803% 413 18 B
:""’l g-g;gg; f"‘; L Error 0.0EEEY €0 0.00082
R cceemeeienes TOERL 0,43557 6L
Colusns O, 05745 O T T T L L Y R T
Error 0.02728 60 0.00CAT Colvara 047332 1 G.47832 720,74 9
Error 0,0384 &0 000066
Tocul O-DYEEY; .8l Total 0.51278 61
Columns ©0.11213 1 0.11213 142,16 0 AR AT 05 S A .
s 004733 €0  ©D.0007 Columns ©0.3531% 1 0.3631%  424.22 o
Teeal 0 15946 €1 Exror 004555 E0 0, 00083
e e e s e A Toral 0.40314 61
Colusna 0.198€5 1 D.19665 237,21 0 e Y B, BIEH L BLSLLS P80 s
Errar 0.0%028 &0 a_ooned M 0% & 0.6
Total o x488% &1 FECE 0, 08625 a L0144
— i = = Total 0.3901% €L
Columns 0.23166 1 0.23166 301,44 N e e ™ Eh B
Col G197 1 0.19737 139.%s o
Errer 0. 0481l L L] 0. 00077 l:t::n’ 0. 0048 &0 000141
e sl e O ENEEs AT s e
Tolunms 041055 1 0.4L125  E43.33 &  Colwsns 0.18661 1 0.18661 113.03  1.9984a-01%
frror 0. 04542 €0 000076 Fesor 0.09906 60 0.00L6S
Total 0.45667 €1 Toral 0.28568 &1
Columns 0.54435 1  0,54435 962,96 0 Columns 0, 1401 I 0.1404 61,75 8.555836-0L1
Error 0.033%¢ &0 000057 Beror 0.13614 &0 0.00227
Tonal 0.57826 6l Total 0.27624 6l
Columns 0.61974 1 0.61%74 105918 0 Columns 0.13159 1  0,13159%  70.05  1.15044e-0L1
Errar 0:03511 &0 0.0D0E9 Terar 0.11271 &0 ©0.00LEE
Toeal 0. 6485 &1 Total o.r43 &1
Coluans 0,L1918 1 0.11919 €6.69 2,54903e-0L1 Colusne 0.09005 1 0.0800F 50,45  1.67093a-009
| 844 4 Q.07 (1] . 00LTF EEcer 9. 0852 [-17] 0. 00155
Total T T Total 0.17828 6L
Colusny 0,108 1 0olos §0.5€ 1.1765Te-0L0 Colusng 0.10236L 10,1026l 65.F 3. 5E44Ee-0L1
Trror 0.10387 €0 0.0Q1TY freor 0.03428 &0  0.DOLET
Total 0. 20BE7 6l Total 0.19688 &L
Columns 0,08450 1 0.05451 54.38 5. 73552000 Colusns 0.13828  § 013926 9€.32 4. 31ET7e-0l4
frror 0.10471 €8 0.00176 — 0.08674 £0  0.00145
Total o, L8ed (5§ Toeal 0.22553 (3|
Colusns  0,0089 1 0.0888 56,9 Z,95543e-000 Coluwmns 0.13843 1 013843 94,50 6. 06LT4e-0L4
| 84414 Q. 03364 &0 . 00LEE Rerer 0. 08785 &0 0. 00L4&
Total 0. L8244 &l Total 0,263z 6L

Table 6.5 ANOVA table of the Generalization Ability on datasds of open curves with fixed
ends.

From Tables 6.5 and 6.6, it can be seen that nidse@-value is zero or close to zero
therefore the ANOVA results suggests that the tataskets are statistically different for

all the cases in Generalizaion ability and differfemn most of the cases in Specificitiy.
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ANOVA Table ANOVA Table
Tource 38 it e F Frob=F Frurce T [T [ F Frobsf
Columns  ©.0D0S4 L 000064 L.26  0.2613 Columns  O.00073 1 0.00073 48,27  2.12817e-012
Irror 0.84663 1996  0.00042 Trrar 0.02858 1996 0.0000L
Total 0.84716 1957 Total 003031 1997
Columns 0. 00031 i 0. 00031 L.68 0.257% Colusns 0. 00044 1 0. 00044 16, 44 o
Ireor 0.86183 19%& 000028 Error 0.00535 1996 0
Total 0.SE184 1997 Total 0.0056% 1397
Colusns 000066 L 0.00066 3.95 0.0469 Colummn  B.OOOEE L 000088  $9.68  Z.4ddde-0if
Ercor 0.33044 1906 0.00017 Error 0.0L185  189&  O.00001 N
Total g.2313 1999 Total 0.01234 L899
Columns  ©.00046 L D.00048 35170 o Colusms  ©.00041 1 0.0004L 17754 o
Treor 000258 1996 0 Trror 0.00465 1996 0
Teral 0.00305 1937 Total 000806 1997
Columns o 000ad i 000049 7.3 0. 0068 Colusny 0, 00042 i 0, 00042 2%, k8 ]
Irsor 043330 1996 0,00007 Leror 0.00862 1996 ©
Total 0.4338 1997 Total 000803 1997
Columns  0.00063F L 0.00063 ZB.79 8. 981158008 polgsmg 0. 00044 1 0.00044 408,37 ']
Erees RONMT. 1996 0. 0e00E Treor 0.00215 1996 0
Toral G084l - 1937 Totad 0.00250 1997
Colusns  ©.00033 L 0.0003% L0.7E 0.00L Colusns ©,0006% 1 0.00062 33147 o
Ircor 006153 1996 10,0000 Error 0.00376 1996 ©
Total 0.06186 1997 foral 0.00438 1997
colmns goopey AT emen WLE 8 o oer 3 e wie o
R iy DOMOE. 30 1 Trcar 0.007ZF 1586 0
Total 0.00E48 1947 fical Bions: | Cipin
Colusng  0,00075 T e T E T e i o
Ereoy 9.03528 1%%€ 0. 00002 E:'i::“’ E ggg;: H?-: E'W“' 923.1 0
Total 0.03588 1987 Yorol 0 00086 1557
Columns . 00033 L 0,000 1847 L.OTEVe-00F polumms 000047 1 0.00047 205.3% o
Ereox Q.02 19%  0.0000E Trpor 0. 0046 1996 @O
Total 0.03E3 1997 Total 0.00807 1§97
Columrs . 0008 i 0. 0006 184 83 [i] Columms 0. GGHaET i 0. 0HOET 235 85 [:]
Ereor 0.00644 1888 @ freor 000471 1886 @
Total 0.00703 1947 Total 0.00828 1999
Columns 0. 00048 i ©0.00048 7836 [ Coluens | 0.009% L 00005 4Te.85 ”
frror 0.00068 1908 O Error ¢.000Z4 1336 0
Total o.0021& 1557 Total &.000% 1957
Columns  0.0004% 1L 0.0004% 635.79 o Colusns  0.00082 i B.0005T 2¥M.39 °
ErEar 0. 00141 1998 o Error 0. 00065 1996 o
Tocal 0.001% 1537 i VAo A A e O e T
Columns  0.00051 1 0.00081 1509.23 o E‘““"“ g-ggg;i msé E-m“ 76T 48 L
Ervor 6.00067 1996 O ""’: O BTIEE. T8
Total 0.00018 1997 s im e O e
Columns  ©,0008 I 0.000F 1774.79 o ol L oo S B L s
Error 0.00057 199§ O Yocal Dosian 158
Total 0.00007 1997

Table 6.6 ANOVA table of the Specificity on datasstof open curves with fixed ends.

6.3 Experiments on Open Curves with Free Ends

Furthermore, experiments are performed on the shtasets of 32 contours of femurs,
but they will have free end points during optimiaat It means every point on each
shape is able to move freely following the declirection of the cost function. Again,

MDL with one single master example and MEM withmaster example were tested.

121



the previous experiment.
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lying MEM on open curg with free endsAnnotation is the same as
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plying MDL on open curg with free ends
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As can be seen from Figure 6.27, the blue levehtpaare not fixed to the end of the
curves. Compared with results of open curves wikedf end, the correspondence
results are different. Figure 6.28 shows the cpoedence results found by MDL

algorithm.

Figure 6.30 shows the output of cost-function of MBuring optimization. From the
figure, we can observe that the cost-function ashigtabilization after a few steps of
optimization. During experiments, we can obsenet thur MEM converge about 2.2
times faster than the MDL approach. Comparison eetwFigure 6.22 and Figure 6.30
shows that MEM achieves stabilization faster if #rels are free. The movement of
each node during optimization and three standavéhtiens of the first three principal

components are also shown in Figures 6.29, and eS8fectively.
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Figure 6.29 This figure shows nine nodes’ movemeduring optimization. Each graph gives the
movement of the node in 32 examples represented lljfferent colour. X coordinate is step
number and Y coordinate is node value. All nodes att to move from parameter 0.5 and
stabilize around the 2%’ step.
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Figure 6.30 Cost function performance during optimzation with x-axis representing steps in

time, y-axis representing output of the cost functin. The blue solid line shows the performance
by our proposed MEM approach.
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Figure 6.31 Shows the mean shape with red marks, ghwhiskers emanating from the marks
indicate three standard deviations of the first thee principal components.

Details of the MEM performance versus MDL are shamwRigures 6.32, 6.33 and 6.34.
The conclusion is that MEM has better Generalira#dility, Specificity and similar
Compactness compared with MDL. We also noticed thampared between
experiments on open curve with free ends and exgertis on curve with fixed ends, the

former one performs better in more modes and tferehce in each mode is larger

considering the error bar.
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Figure 6.32 Generalization Ability comparison on opn curve with free ends. X-axis represents
number of modes used in optimization Y-axis repres#s Generalization Ability.
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Figure 6.33 Specificity comparison on open curve i free ends.X-axis represents humber of
modes used in optimization Y-axis represents Speiciity.
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Figure 6.34 Compactness comparisons on open curvethvfree ends. X-axis represents
number of modes used in optimization Y-axis represgs Compactness.

MEM MDL Percentage
Difference
Generalization | Mean — Standarg 20.8549217 21.84049217 4.616750983%
Ability Deviation
Mean 21.56465324 23.4852349 8.526465812%
Mean + Standard 22.27438479 24.24138702 8.45735612%
Deviation
Specificity Mean — Standarg 29.34152043 30.5049467 3.888036601%
Deviation
Mean 30.52784939 30.76233419 0.765162664%
Mean + Standard 30.52784939 30.55075207 0.767901327%
Deviation
Compactness Mean — Standard 25.75947493 22.52097315 13.41537581%
Deviation
Mean 34.12603632 31.44714765 8.170683524%
Mean + Standard 42.49259771 39.1970983 8.068335589%
Deviation

Table 6.7. A quantitative analysis on the three ctéria comparisons based on Area Under the
Curve. The smaller corresponding value is marked ibold character.
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We perform the Area Under the Curve (AUC) to quatitiely calculate the difference
between MEM and MDL using the three criteria. THe@\value is calculated for each
criteria of mean value, mean value minus standadation and mean value plus
standard deviation. The results of AUC are presemdable 6.7, where smaller values
are made in bold characters. It can be seen tmaGémeralization Ability, MEM is
better than MDL from 4.6% to 8.5%, for SpecificitEM is better than MDL from
0.8% to 3.9% and MEM is worse than MDL from 8% t8.4%6 in terms of

Compactness.

The ANOVA tests in Tables 6.8 and 6.9 shows thastmevalue are zero or close to
zero, therefore it suggests that the MDL and MEM different in all the cases for
Specificity test and are different for most of tteses for Generalization Ability except

two.

128



ANOVA Table ANOVA Table
Source 58 F Prob>F Source 85 df HE ¥ Prob>F
Columns  0,00429 0,00429 23.51 9, 16648e-006 Columns 0.06278 1 0.06278 160.52 o
Error 0,01094 0,00018 Error 0.02347 60 0.00039
Total 0.01523 Total 0.08624 &1
Columns  0.00041 L 0.00041 3.1 0.0832 Columns  0.06306 1 0.06906 12578 2.2204Se-016
Error 0.00786 &0 0.00013 Peror 0.03295 60 0.0005%5
Total 0.00828 &l Total 0.10201 €1
Columns  0.0001 1. BU0001, 057 0ua7SR 0 DEioiie et Rl i
Error 0.00755 60 0.00013 Egi::n‘ g‘ég:é: sé g‘égg:i 45378 o
Toval 0.00765 &1 Yital 0.14115 €1 :
Columns  0.02582 1 0.D25BZ 41,84 ZL0040Se-008 TTTT Tt oTememssssmmmessssees
Error o.03703 80 0. 00062 Columns 0.1223%1 1 0.12251 2l1.2 @
Tacal 0.06285 &1 Error 0.03492 &0 0.00058
R B o L e A S S Total 0.15783 61
Columns 0.08252 1 0,082%2 299.23 B e e e e e e e e - e
Error D.0l683 &0 0.00028 Columns 0.18543 1 0.18543 396.78 1]
Total 0.09954 &l Error 0.02804 60 0.00047
-------------------------------------------------- Total 0.21347 61
Columns  0.1408 1 0. 1408 §58.78 L e T Y, _ =
Exror 0.01sl2 &0  0.00025 Columns 0.15424 1 0.15424 552.8 o
Total 0.158%2 61 Error 0.01674 60 0.00028
e B e B e e S T e e e el Total 0.170%8 61
Columns  0.15424 1 0.15424 5EZ.8 ] Ty
Error 0.01674 &0 0.00028 Columns 0.2Z351 1 0.Z2951 375.639 o
Total 0.17098 61 Error 0.03665 60 0.00061
e i e e e o g S e Total 0.26616 61
Columns  0.18752 1 0.18752 535.74 0T emEieeeseddsrdesosfelesesooosneissns s meoeeereis
Error 0.021 &0 0,00035 Columns  0.28833 1l 0.28833 555.11 Q
Toral 0.20852 €1 Error 0.03116 60 0.00082
e SRR . o B B e Toral 0.31%4% &1
Columns 0.22748 1 0.22748 514.88 o B e G T g R e

Columns 0, 3530 0.3590 64,41 0

Error 0.02651 £0 0.00044 I:l'or O.G;Sltli 6; 0. gona: i
Total | O S L Total 0.39718 61
Columns  0.04854 1 D.04854 92.99  8.30447e-014 R R = S e e e S
Error 0.03132 60  0.00052 :Dlunns g-g;;g: st g-g;;fg -3 o
Total 0.07986 &L T;::i g g ;
Columng 0,06075 1 0,06075 180.93 0 Columns 0.25172 1 0.25172 443.31 ]
Error 0.02014 &0 0.00034 Error 0.03357 &0 0.00056
Total 0.08089 gl Total 0.28523 &1
Colunns 0.28%2 1 0.2972 495.42 1] Columns 0.19141 i 0.19141 334, 34 o
Exrror 0.0388% &0 0.0006 Error 0.034235 &0 0.00057
Total 0.3332 (38 Total 0.2257%5 &1
Columns  0.37013 1 0.37013 596.56 0 oo CEI LT o
Error 0.03723 60 0.00062 ST Rty 45 O ooisy u "
Total 0.40736 61 Toral 0:21367 &1 N
Columns  0,35502 1 0.35502 611.12 O] T e e T e e T e e T e
Error 0.03486 60  ©0.00058 e e I T o s
Total U895y &k Total 0.21796 61
Golune | U-9380 & BORg. 6983 5 Columns 0.20952 1 0.20952 530.2 0
Erzor 40F98¢ ‘89, D.DOUS9 Error 0.02371 60 0.0004
ALl UsgEgtn pk Total 0.23323 61

Table 6.8 ANOVA table of the Generalization Ability on datasets of open curves with free

ends.
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ANOVA Table ANOVA Table
Source 55 df HS F Prob>F Source 25 df HS F Prob>F
Colunns 0.07869 1 0.0786% 95,26 1] Columns 0.06672 1 0.06672 753817.87 Q
Error 1. 64876 199¢ 0,00083 Error 0.ogole 1996 (1]
Total 1,72748 1997 Total 0.0669 1997
Columns  0.0697 1 0.0697 476.31 0 Columns 0.06675 1 0.06675 36182.45 0
Brror 0.29207 1996  0,0001§ i 0.00368 1996 O
Total 0.36177 1997 Total 0.07044 1997
Columns  0.06551 1 D.0655L  3543.13 O Column:  0.06632 1 0.06633 9264.49 0
Errox 2.03s31 1936 0.00002 Error 0.01429 1996  0.00001
Total 0.1024& 1297 Total 0,.08062 1997
galies DIEEE g ROREE RARE % Columms 0.06758 1 0.06758 18097.12 0
b diToRal  yagd x Error 0.00745 19%6 O
3 P = B — Total 0.07504 1997
gziz‘”‘s g'g:ggg 1992 g'ggggg 3571.29 O coruans 0.06736 1 0.06736 13192.9% 0
o QI DiGosE  os% 7 Brror 0.00019 1996  0.00001
i - Total 0.07755 1897
Columns  0.06808 1 0.06808 4454.4 [ e it e e e e
Error 0.02051 1996 0. 00002 Columns 0.06623 1 D.06623 54620.8 Q
Toral 0'09359 1597 & Error 0.00242 1996 L]
B ety TSIt LS el e i M i e Total 0.06865 1997
Columns  0.06608 L .0.06508 5261.04 O Columns  D0.06714 1 0.06714 30205.88 o
Error 0.02507 1986 000001 §un 0.0014% 13% O
focel . R S WY Total  0.06863 1597
Columns  0.0612% 1 0.06128 4731.21 b i rose e et e et e et e o i et
Error 0.02585 1986  0.00001 Columns g-gg;‘“‘ ”1 g-'—"‘“’-‘ Z6lid.8 0
Total 0.08714 1987 Rexer 00515 1336
Lt Total 0.07262 1997
Columns  0.06434 1  0.06434 6465.23 0 Columns  0.06695 1 0.06695 54692.16 0
Brror 0.01986 199€  0.00001 Error 0.00244 1996 O
Total 0.08421 1997 Total 0.06939 1397
Columns  0.06642 1 0.06642 4990.37 0 Columns 0.06712 1 0.06712 53209 0
Error 0.02656 1936  0.0000L Error 0.0024% 1996 O
Total 0.0929% 1997 Total 0.06961 1997
Columns  0.06626 1  0.06626 £172.95 0 Columns  0.06753 1 0.06753 Z15001.15 0
Error 0.02143 199  0.00001 Error 0.00063 1936 O
Total 0.08769 1997 Total 0.06818 1997
Columns 0.06765 1 0.08765 191126.51 ly] Colunns 0_06735 1 0.06735 Z836514_ 24 [u]
Brror 0.00071 1996 Error 0_00047 1356 1]
Total 0.06835 1997 Total 0.06782 19357
Columsns 0.08741 1 0.068741 E3448.5 o Colunns 0.0674 1 0_0674 308388.82 o
Error 0.00252 1996 i Errcor 0_00044 1998 (1]
Total 0.08923 1997 Total 0. 06784 1397
Columsns 0.0871 1 0.0871 299721.23 o Colunns 0.0676 1 0.0676 346773.09 1]
Error 0.00045 1996 o Error 0. 000329 1386 (1]
Total ai e e i e i e e s Total oghien A9
Columns 0.0&8745 1 D.0&745 157326.71 L e N 0 7 T s e e
Co lumn 0.06724 1 0.06724 1.60 +006 Q
Exzoz 000086 1296 0 E::nx : n.ogoge 1996 0 : e
Ipkal 906821 2937 Total 0.06732 1997

Table 6.9 ANOVA table of the Specificity on

datasstof open curves with free ends.

6.4 Experiments on Improved Control of “Pile Up”

When applying the MDL technique, one may encouthterso-called “Pile Up” problem.

The problem happens during optimizat

ion, when gotatn pile up into one location. In

this case, the cost function will attain a globahimum or meaningless local minimum

and fail in describing the rest of the shapes. A&skwow, the points we move in the

130



experiments are control points, defined by the emuwe need. There are more low
levels in between existing control points. Therefdt is unacceptable to have two or
more control points overlapping each other. As hbgen stated in paragraph 4.7.2,
different researchers have tried different methodsolve this problem. They either do

not work efficient or lead the algorithm into arigrary manner.

In Figure 6.35, 22 datasets of silhouettes contavesshown. During the experiments
on these datasets, we encountered the “Pile Uglgma Figure 6.36 shows the results

by applying MDL and Figure 6.37 shows the resujtapplying MEM respectively.
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Figure 6.35 22 datasets of silhouettes contours asown here

An example of the “Pile Up” effect is shown in Figu6.36 when MDL was applied to
datasets of silhouettes contours (open curves frgh ends). Figure 6.36, shows the

final converged results found by MDL algorithm. Foking more clear the visual
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effect of the “Pile Up”, we put the bottom two ptsrone pixel away from each other. In
fact, the two bottom points are overlapping eadtentlt can be seen from the figure
that the two points (a level one point and a Idéeal point) at the bottom will collide or
overlap. This “Pile Up” happened even when thet fsgbject is used as a master
example and this example has a well distributedrobipoints on it. This “Pile Up”
happened in MDL is because that the MDL will haseér cost function value if two
points at the bottom are actually overlapping.his tase, however, since MEM has a
larger cost-function value when points are overémpand have equal probability, MEM

approach prevents the “Pile Up” problem from hajppgn
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Figure 6.36 Results of MDL analysis of silhouettesontours. Here all 22 examples are shown,
they are one step before MDL finally converged (ble is level one, green is level two, black is
level three and red is level four). It can be seethat the two points at the bottom (red and blue)
tried to pile up although one fixed master exampléas been used (first one).
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Figure 6.37 Results of MEM analysis of silhouettesontours.
In Figure 6.37, MEM results are shown. Compareth Wigjure 6.36, we can see that the
MEM results do not suffer from the “Pile Up” probie and the results are reasonably

more accurate, all points are placed in the sammaraacross the datasets.
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Figure 6.38 Performance of the MEM cost-function isshown here X-axis is steps in time and
Y-axis is output of cost-function. The blue solidihe shows the performance by using our
proposed MEM approach.
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Figure 6.38 shows the performance of the cost-fonctFrom this graph, we can
observe the cost-function value decline during mation. Once again, during the
experiment we observe that the MEM can be optimedeaut 2.2 times faster than the
MDL approach due to the usage of gradient inforamain MEM approach. Figure 6.39
shows the parameter value for each control nodesglaptimization. The figure shows
that all nodes start from value 0.5 (equal spacdetson) and gained a stabilization
after a few steps. After correspondence points vi@naed by the MEM algorithm, an
Active Shape Model can be built to capture shap#atians. The first three largest

variations are shown in Figure 6.40.
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Figure 6.39 The changes of node value during optizetion is shown in the graphEach graph
gives the movement of the node in 22 examples repented by different color. X coordinate is
step number and Y coordinate is node value. All nagk start to move from parameter 0.5.
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Figure 6.40 The changes of node value during optization is shown in the graph.

6.5 Conclusions of the Experiments

In this chapter, we validated our proposed MEM atgm by performing both MEM
and MDL on several datasets for different 2D sdesaiThey are closed curves, open
curves with fixed ends, and open curves with fregse Due to lack of ground truth, we
adopted three generally accepted criteria to coenpar proposed MEM with MDL.
These criteria are Generalization Ability, Spedificand Compactness. Based on the
results from the above paragraphs, several coweclsscan be drawn. From the
performance of the MEM cost function, we can ses the cost function converged
during optimization and the converged results pecedureasonable correspondence
results. Based on the cost function performancen footh MDL and MEM, it can be
observed that our proposed MEM approach can coaviesier than the MDL approach.

From our quantitative comparison results between.MbBd MEM, it can be observed
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that MEM usually achieved better scores on Germtatin Ability, and Specificity, and
worse results on Compactness. In the case of opees; it takes longer for the cost
function to find correspondence under the sceraritxed ends. Therefore, we suggest
using free ends during optimization of datasetspEn curves. The final experiment on
facial profiles showed the advantage of using Entroather than Description Length,
as the component of cost function. In the experimMDL suffered the “Pile Up”
problem, where bottom points on chin areas oveddpplowever, MEM did not have
this problem although the experiment was performvétiout using a master example
and external cost function. We argue that MEM fasoal distributed correspondence

and MDL favours a congested correspondence.
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Chapter 7 A 3D Minimum Entropy Approach and

Experiment Results

7.1 Discussion on 2D Work

The MEM method introduced in the previous chaptewiges a principled framework
for automatic statistical shape model building. @& be seen from Chapter 6, MEM
has been successfully applied to numerous 2D datd3éferent datasets, for example,
closed curves, open curves with free ends, opereswrith fixed ends, and open curves
with complicated landforms were tested. Accordimghte experimental results based on
the comparisons between MEM and MDL (the curreatesbf art), we can see that
MEM provides better performance on Generalizatidliy and Specificity and similar
Compactness. Some good properties of MEM are a&geated, since it can keep the
objective function away from the local minimum thaften traps MDL without
changing the function into an arbitrary manner. MEfvours a distributed
correspondence, which makes balance between egaakd results and congested
results. On the contrary, MDL will pile up occasatly. The gradient of MEM is also
proposed by using some useful results derived bi.SNith the help of cost function
gradient, various optimization methods can be peréal rather than the Genetic
Algorithm used in the MDL approach. However, mdsthe medical image datasets are
in 3D format [47], which requires an extension af ourrent 2D method. In this chapter,

we will discuss some preliminary results on 3D MEMthod.
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7.2 Limitations of 2D MEM and MDL

From the previous chapter of our 2D results, we sae that the proposed MEM
algorithm has provided a reasonably more robustdims of solving the “Pile Up”
problem) and accurate (in terms of better Genextdim Ability and Specificity)
approach to solve the “Correspondence Problemtatli find corresponding points
across 2D datasets automatically. However, theridthgo is not perfect enough to solve
all the correspondence problems yet. Since, therstdl some issues in MEM to solve.
For example, both MDL and MEM inherently do not swoler images with missing
information. Figures 7.1 and 7.2 are shown as am@ke of limitations of MEM and
MDL approaches. When images with missing infornratéoe used, correspondence
points found by both algorithms can be very wrdng=igure 7.1, since the dataset is in
2D, parts of the bird’s shape is blocked by itsié final results are heavily influenced
by this. Therefore, if 3D shape information canused, the optimal correspondence
results can be improved. Most of the medical dé&tasee in the form of three
Dimensions. Therefore, to make our proposed methoce applicable to real medical

image processing task, we will have to extent emrent 2D scheme into 3D.
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Figure 7.1 Correspondence points found by MEM arel®own in this graph.

Figure 7.1 above, shows the correspondence pomsdf by our proposed MEM
algorithm. In this the experiment, we used 8 cdrdoints during optimization and as in
the previous 2D experiments, the rest of the lanmksn@ between control points are set
equally spaced. In Figure 7.2, the MDL algorithmswased to find correspondence
points across shapes automatically. As in MEM, @@ points are used and landmarks

in between control points are also set equally egpac
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Figure 7.2 Correspondence points found by MDL

It can be seen from Figure 7.1 and 7.2 that bajbrahms found correspondence points
in a wrong fashion. The cause of these wrong restdn be interpreted as in this
particular dataset has some structure informatibrthvis not shared by each example.
For example, they have different type of tail (sdmas one tail, some has two tails), feet
and some of the shape variations are hidden dtietohanges of 3D view angle. These

differences are marked in Figure 7.3.
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Figure 7.3 Coloured round masks are used to emphas the differences between
corresponding structures.Green is marked on tails, some tail has one brandmnd the other has
two. Yellow marks the bird beak, because some picates are shot from behind, therefore the
beak is not shown. Red marks feat, for some of thgrds, only one branch can be observed due
to camera angle and 3D rotation.

The problems, reported above, are not considerathorithms MEM and MDL. MEM

and MDL are applicable to dataset#\, A,,... A, uhder the condition that data have
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corresponding information to each other (for anyudtre in A, there is a

corresponding structure in all other datasets).

In this birds examples, some of the missing infdromais due to changes of view
angles and different poses, which obscure the nmdtion in images. In 2D, it will

become quite difficult to solve this problem, whiebas introduced by 3D shape
variations. Therefore, in this chapter we will pides our natural extension of MEM in
3D. In the next few sections, we will discuss a r&gvscheme of MEM algorithm and

some experiments on 3D datasets are also presented.

7.3 MEM on 3D

This chapter shows how our previously stated 2Dhodt can be extended to 3D.
Though intuitive, something straightforward in 2Dbniot that simple in 3D. In 3D MEM
algorithm, several problems have to be solved. They. (i) refining the surface
parameterization and (ii) re-parameterization metfemrrespondence method). In this
section, we are going to discuss the details oE8eme. We use an existing technique
to tackle the shape parameterization and re-paeaination, and combine them with

our proposed MEM cost-function to form a completedyv scheme.

The parameterization method has to be refined. &mmple, a 2D shape is

parameterized by absolute length and mapped tongedaudine. In 3D cases, shape
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surfaces are mapped to a unit sphere, where sbagefined by only two parameters
(longitude and latitude). This parameterization ttabe unique and invertible to make
sure of a valid mapping. Re-parameterization alseds to be refined to fit the 3D

approach. Even, the initial parameterization methmagito be reformed accordingly.

We use conformal shape mapping [52] as a bridgedmat datasets and unit sphere to
solve the 3D shape parameterization problem. Gassivelope function and random
rotation matrix method are fitted into our approath tackle the 3D shape
re-parameterization problem. The initialization ifios is realized by dividing the unit
sphere along longitude and altitude equally. Thasiats are then mapped to original
shape space to locate the initialization positiofsally, the gradient of 3D cost
function and optimization scheme are establishdw Gonclusions are based on our

comparison results on 3D artificial datasets apgpdcampus datasets.

7.3.1 Surface Extraction

In the scope of this thesis, we are working on sagad datasets. In 2D, they are shape
contours, which are saved as points along the kaynth 3D, we are mostly working
with binary data, under the assumption that 1 s the object, and 0 the
background. Therefore, surface extraction techrsichaeve to be utilized to cope with
our MEM algorithm. In reference [64], the Marchi@@ubes algorithm, also called
iso-surface extraction, is described. This algarmitts chosen in our 3D scheme to

generate the mesh from binary datasets. The basomale behind this idea is that we
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can define a voxel (cube) by the pixel values atdlght corners of the cube (Figure

7.4).

L L

Cube

Fa e
i &
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Figure 7.4 The definition of voxel/cube is shown ithis graph.

Figure 7.5 The cube is cut by object surface on yelv points, red point is in the background.
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If one or more pixels of a cube have values leas the user-specified iso-value, and
one or more have values greater than this valie the know that the voxel must
contribute to some component of the iso-surface dBigrmining which edges of the
cube are intersected by the iso-surface, we caatecteangular patches, which divide

the cube between regions within the iso-surfaceragibns outside, see Figure 7.5.

In 3D space, we enumerate 256 @%. different situations for marching cubes. In
Figure 7.5, only one simple situation is shown. &nnecting the patches from all
cubes on the iso-surface boundary, we get a surBgresentation. The problem with
the marching cubes method is that it can geneaage Inumbers of surfaces, which are
more than we need. Thus, down sampling of the seri® usually needed to keep the
same number of vertices and faces. After this m®cthe datasets are saved into two
separate files, one with extensipts another one witlice File with extensiorpts
contains the vertex coordinates, which isNex3 matrix. Each row represents the
coordinates of one vertex and these vertices atexad the number of row from O to
N —1. File with extensiorfce keeps the vertex relations, e.g. which 3 vertioes a
face. Therefore, with these two files, we can recothe original data surface

information. Moreover, these two files are quiteyeto use for parameterization.

7.3.2 Shape Parameterization

In order to minimize the complexity of the paramiet&ion of 3D shapes, we will limit

our discussion to the closed two-manifolds of ger&i® only (which means that the
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surface can not be allowed to fold, tear and se#rsect). Objects of this kind are
topologically equivalent to a unit sphere and thexét medical image data, which
belong to this class, such as the liver, kidneyg#j and brain. An example of brain data
and mesh found by Marching Cubes algorithms arevshm Figures 7.6 and 7.7

respectively.

Figure 7.6 This is an example of 3D human brain datfrom reference [64]

3

pile =t
FaTar

. P

=t )

1
= | 8 a

Figure 7.7 This shows a magnified display of a braisurface constructedby using marching
cubes. This picture is from reference [64]
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Therefore, our task is to find the means (i.e. rp@terization functio® ) to map our

data on a unit sphere such that this process shmulebsily reversed (Figure 7.8 and

7.9).

Figure 7.8 A demonstration of mapping between shapand sphere® is the bridge between
original dataset and parameterized sphere.

(D_l

Figure 7.9 This graph shows mapping and inverse m@mng between shape space and spherical
space.
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If successful, we can downgrade the complexitywfalgorithm to two dimensions of
longitude @ and latitude ¢ . Mapping one arbitrary shape to unit sphere walliously
introduce some error. Therefore, metrics are desiga minimize this type of error. For
example, metrics are created to preserve eithel egles or triangle face relations
while trying to minimize the distortions of otheeatures. Davies et al [44] have
proposed using a simplified version of the sphérltarmonics method, which is
described in [51]. In our proposed 3D algorithm, uge an angle preserving method,
which is the Conformal Mapping (CM) from Gu et &P]. We used a public available
CM from the Insight Journal (www.insight-journagdrand ITK (www.itk.org). This
shape parameterization method introduces minimugteatiistortion. Compared with
Davies et al approach, Conformal Mapping offersimium distortion on angles, which
means moving clouds of points on the parametershegbe in a specific direction will
cause the corresponding landmarks on the trairliagesto move in a coherent direction
as well. This kind of shape parameterization ofernvenient method to retain local

geometric information, when mapping data betweefases.

We will begin to discuss this method by first pratgey Algorithm 1, based on reference
[51].

Algorithm 1 Each dataset is represented as a triangulated Kne:{V,E), with V
denoting Vertices, anB Edges. Vertex locations are specified by funcfiotV - R?,
which is an embedding function defined on the oagiertices oK. A second function

Y:V - R® specifies the verted location as mapped to thiesphiere.

Definition 1 «(v) represents the normal vectonof
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Then, conformal mapping energy is given by the ggndelow.
EK.W) = Ky fleotu) = axv)|’ .1
u,v|eE

This form is string energy with all edge weigHts, . Therefore, minimizing this energy

is with condition that edge weightK ,, are controlled by Equation 7.2.
1
Koy = 5 (cota +cotp) (7.2

Where a and S are opposing angles on edggv) . On the other hand, setting

to 1 will yield barycentre mapping, where each eerits positioned at the centre of its
neighbourhood. For more details, it is recommendedread reference [53]. A
demonstration of this conformal mapping is showrdrigure 7.10 below. More results

about conformal mapping are shown in Figure 7.19.

Figure 7.10 The colour coded correspondence is shioun this figure. Original dataset is colour
coded, therefore corresponding points between origal data and sphere can be found by
identical colour.

Until now, we only discussed the shapes with sphériopology. Although, this is
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appropriate for most of the medical image data weeiravestigating, it is interesting to
consider shapes, with other kind of topologies. gkding to my limited knowledge
about finding correspondence in a learning proctsse is no robust way for using
either MDL or MEM on other topological shapes. Hoeg in reference [22], Davies
proposed some approaches. Since some methods bameubed to parameterize 2D
shapes with openR") or closed §') end, it can be helpful to think about shapesas i
the space ofR' x S'. In this way, some 2D techniques can be utilitéolwever, this is
only a computation trick; a more general methodukhde developed in future

research.

7.3.3 A Continuous Parameterization

Sometimes, in order to obtain a 3D position foraabitrary landmark/node, which is
not a vertex on the dataset, we have to find aipasn between landmark nodes. Since
mapping landmarks between shape and sphere is tatiopally quite expensive in our
algorithm (it takes about half of our whole compiata time), we came to the
conclusion that the advanced intersection stratadhed likelihood search has to be
employed, this intersection approach was introducereference [54]. The theory is
that intersected triangles are cached and in dasgssing cache, neighbour landmarks
will be given higher priority to be probed. For gigity, we adopt the intersection
based on barycentric co-ordinates. Equation 7.8e®f(¢,,&,,&,) as the bar-centric

co-ordinate of new verticaswith respect to trianghkg, see Figure 7.11.

150



vi?) o)

Figure 7.11 How a new point is inserted into an egiing triangle, where a new point is inserted
into a triangle.

Q» -
)

Where Area(ABC) is the area of the triangdBC. Triangle t, containsv with the
conditions thaté, >0,¢{, > 0,£,> Candé, +¢,+¢&,=1. Therefore, with a vertex, on
the original data, its barycentric co-ordinate tenused to define the corresponding

point on the sphere.

u(8,4) =@, (V1)) + &, (A €)) +eo(ME) @

The reverse mapping can be found in the same way.
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7.3.4 Shape Re-Parameterization

To cope with 3D cases, we need a transformatioatiium which can manipulate points
around the shapes. In Daviesal. [44], they use a symmetric theta transformation,
which employs a Cauchy Kernel representation. TlaucBy Kernel function is

addressed in [46], is uni-model, symmetric funciodnhe form:

1 n
)=t >
(X) 77',72 +(X_a)2 , o< X<o, /] >0 (7.5

Where, 17 is the width of the Cauchy, amdis the position of the centre. By using this

kernel, the normalizedz{u) that lies in the range [0, 1].

@,

®(x) = c{u +b- Z% arctarEMH (7.6)

Where

(7.7

cl= {1+ b-Z%arctarEak _1]} +b

Where A is the magnitude of th&" kernel. The constant term ensures tlz;ém) =u
when all A are set to zero. The basic idea is to draw a greaé (which is the circle
with the biggest diameter on the sphere) betwegnpamtv and a “fixed” pointm on
the sphere. The re-parameterization of the sphereheam be achieved by applying the
same re-parameterization to each great circle udlmg kernel stated above. A

demonstration of the re-parameterization is showiRigure 7.12.
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Figure 7.12 This graph shows how the sphere is reammeterized. For any point v on the
sphere, a great circle is drawn through it and a ked point M (the centre of the kernel). Each
great circle can then be re-parameterized accordingto the same function to the
re-parameterization function.

Although, by accumulating thousands of kernels dter@nt positions, arbitrary
parameterizations can be achieved, this re-paraixetion method produces the
desired results in an inefficient way. Not onlytihthe main disadvantage is that it is a
global modification. For example, adding one newnkéwill change the locations of
all landmarks. This is highly undesirable for tligplication. Therefore, we suggest
another method for shape re-parameterization, whicbased on kernels with strict

local properties.

From the previous chapter, we have shown that thendill direction of our cost

function can be estimated by using products of SWien, we assume that the gradient
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direction is (Af,A¢) in parameter space. Thus, we define a Gaussiareld&pe/

function to change each spherical coordinates@®(x,d) [(Af,A¢ . FunctionGE is

given below:
¢ =(39)
GE(X,J) — 8252 _ e 2072 ’ for X<%, (78)
0, forx=3®

However, this method will become restricted whemkés are allocated on either north
or south pole, because landmarks will all be ath¢o or pushed away from the poles
depending onAg¢. According to reference [55], by keeping the késraavay from the

poles and randomly rotating our parameter spaeedésired effect can be achieved.

We show this process in Figure 7.13.

Figure 7.13 An example of kernels on unit sphere arshown here with 0=0.2 Red is the

centre of the kernel. Colour changes from red to ylow to green, which shows the magnitude
changing from high to low.
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7.3.5 Initial Parameterization

Normally, after pre-processing, our datasets chdraye binary dataset to meshes with
identical number of vertices and faces. Then, i step is to provide a set of identical
number of initial landmarks for the optimizatiorrategy to work on. The initial
landmarks can not be randomly generated, therdchbge a rule which can be easily
performed on each dataset. A good initializatiom ¢ead to a quick and reliable
convergence. Therefore, in this section, we presantmethod of establishing initial
landmarks on the mesh datasets.

Based on the previous section about Conformal Mappnd Point Intersection, we can
easily have continuous mapping relations betweeshrdatasets and spheres. Thus, we
can establish our initial landmarks by equally ding the sphere along its latitude and

longitude. An example of the initial set of markstbe sphere is shown in Figure 7.14.

Figure 7.14 An initial shape re-parameterization isshown on the unit sphere.

Using reverse Conformal Mapping, we can map thishrfeom parameter space to the
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original Cartesian shape space.

7.3.6 MEM in 3D

In this paragraph, we will discuss the MEM costdiion in 3D and its gradient. On the
aspect of cost function, MEM is the same as in2hecase. The only difference is the
co-ordinates system changes from two to three Dsmes. Recall Equation 5.13, we

will use the same formula in Equation 7.9.

t
Costfunctdn=>" A H, (7.9

j=1
However, the gradient of cost function is slighdifferent between 2D and 3D scenarios.
Here, we are keen to transform the calculated gradiields into optimal kernel
movements, e.gu = (8,¢) on the parameter space of unit sphere. Therefezewill
calculate the gradient of the MEM objective funntiovith respect to individual

landmarks.

OMEM _ OMEM 0X_

7.1
ou 0X adu (719
Recalling from 2D MEM gradient, we can get the samresults:
OMEM - oX 719

=2) Hsu,.,.V—

au Zl 1=ns—"mi au

Here again, the surface gradi%é% can be estimated by using finite differences. In
u

practice, there are other variables, which willluehce landmark positions, e.g. the

random rotation in shape re-parameterization. Bgutating the gradient of rotating

parameterization sphere in 3D Euclidean space abstituting the surface gradients in
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Equation 7.8, we can have a very efficient optirmiarastrategy.

7.3.7 Optimization Scheme

In this section, we are going to present the MENmozation framework details of the

proposed algorithm. The framework is also showa #isw chart in Figure 7.15.

Preparation: Datasets are pre-processed; meshes are gengaatelinary files. Initial

landmarks (say 642) will be placed in parametecspa

Step 1 Based on the knowledge of conformal mapping, st build the connection
between shapes and unit sphere.

Step 2 The gradient of the MEM cost-function is calcelhfor the purpose of a quick
convergence. A small step of movement is made dloaglirection of gradient on the
sphere.

Step 3 Re-parameterization is used to move landmarkagatbe coherent gradient
direction on the original shape space.

Step 4 MEM cost-function value is calculated and compangth previous calculated
values, if not converged, the program will go b&zlStep 2. If converged, for example,
the difference between the current and previous-foostion value is small enough

(smaller than a predefined threshold), the algorithill terminate.

157



Manipulate [¢i}

(R=—0 0+

/-x\ O @ O Q,1 C’” ‘“\ Build Evaluat
C_f \_/ Qz = 2 2 J < UL alwate | _ |

™ -
‘ nsing &

mede]

A= QO Q &

= 1

Figure 7.15 An illustration of 3D model building sbieme, from reference [44].

In Figure 7.15, the whole scheme of automatic 3RIehduilding is shown.Q, is the
mapping from thei™ training shape to a spherap, is the re-parameterization
function, andF is the symbol for the MEM cost function. This dgna similar to

reference [44].

In conclusion, MDL and MEM use similar shape partneation techniques. For
example, both parameterization methods using asile mapping technique to map
3D shapes to a unit sphere. However, in MEM, thgleais preserved during shape
mapping. Therefore, moving a point in the shape&eapte corresponding point on the
sphere will move coherently. For correspondenceimodation, MEM uses the steepest
descent algorithm and MDL uses the Genetic AlgaritRor initialization method, both
MDL and MEM start optimization from equal spacegitions. In the next sections, we
will perform some experiments on 3D artificial dsdts and real medical image datasets

to evaluate the performance of MDL and MEM quatitiedy. During the comparisons
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with MDL, we use an published MDL approach fromerehce [101] after personal

communications.

7.4 Experimental Results on 3D Datasets

This section presents the results of applying tHeMMalgorithm to one dataset of
artificial cubes and hippocampus. A quantitativaleation shows that the proposed
MEM method provides better model properties thanalternative MDL approach. In
the next few paragraphs, we show various graphstaBonformal Mapping results,
guantitative comparison results, and correspondgodets found by both MDL and

MEM.

7.4.1 Visualization of 3D Datasets

7.4.1.1 Visualizing Node Correspondence
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Figure 7.16 Colour Mapping method X axis represents index number and Y axis represés
colour space.

All our 3D datasets are saved by using more thtoasand surface points and during
experiments, either 642 or 2562 number of landmavks be used to identify the
correspondence points. For the purpose of makiagdinrespondence easier to see, we
will use a colour mapping technigue to ease thiblem. The datasets are saved in such
a format that points on the surface are indexethf@oto N-1 (whereN is the total
number of nodes on the surface). Therefore, iuigegstraightforward to use this index
as a parameter to map into the colour space. A brieoduction about this colour
mapping method is shown in Figure 7.16. As a reslllinodes on the original datasets
and sphere are indexed, and assigned with propeurc&ince the colour mapping is a

one-to-one mapping, the same colour will uniquelgniify corresponding points. An
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example of the format of files used for this viseaion provided in the Appendix
section. By using this method, we can effectivenitify the correspondence by finding

the same colour across the shapes.

7.4.1.2 Visualizing Shape Variations

After applying the new technique to datasets, guge important to ensure the quality
of the shape model visually. In this sense, sordenigue has to be utilized to show the
properties of the shape model vividly. In Activeapba Model, the first few shape model

variations of the model account for much of thepghanodel properties.

There are two ways to perform this particular visadion task. Firstly, we can perform
the visualization by showing the effect of movimg ffirst weighting component in the
range of [—3\//1_13\//1_1} We can generate new shapes by using the shapel.mod
Secondly, we can start from the mean shape, angnasach node with an arrow to

point out shape variations.

An example of this visualization effect is shownHFigure 7.17. On the right, it shows
the mean shape with blue arrows on each node; ereth it shows two amplified
views of the local structure. From this graph, va@ observe that the shape variations
captured by the first eigenvector are mainly lodada the upper tail and bottom right
corner. By using this visualization method, we oaffiectively detect the shape

difference between subjects.
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Active Shape Mode. The magnified images of some aeare also presented on the left. In this
example, 4002 nodes are used.

7.4.2 3D Experiments on Artificial Datasets

For validating our proposed MEM algorithm, we firgpply our method onto 3D
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artificial datasets. We are employing our algorithomto artificial datasets as
complementary results, because we are short oé langount of real medical image
datasets. The cuboids with different sizes, ortemtaand length ratios are quite easy to
generate in C++ code. Therefore, 20 cuboids arergesd automatically by choosing
different aspect ratios, orientation and size.iguFe 7.18, we show part of this artificial
dataset. There are in total 1002 nodes on eachtaa&present one cube surface, 642
landmarks are used for optimization. As has besoudsed previously, we first find the
direct Conformal Mapping between cuboids and umhese. We will show the
conformal mapping results on cuboids by using lmatloured cuboids and unit spheres
in Figure 7.19. From Figure 7.19, it can be sean dlatasets are mapped to unit spheres
successfully. In Figure 7.20, it can be seen thatdorners on cuboids with 90° angle
are very well preserved in Conformal Mapping. la Bigure 7.21, some of the datasets,
which have been processed by MEM are shown. Aglhencorrespondence points can

be identified by using unique colour.

The next step of our experiment is to compare ttopgsed MEM to a model built
using the MDL without one master example, whicharguably the best published
approach to defining the correspondence betwees ektclosed surface. This
comparison is based on the results of Generaliza#dility, Specificity, and
Compactness and is presented in Figure 7.22. Hiesetresults, we can see that MEM

achieved better Generalization Ability, Specificiiyd Similar Compactness.

The whole program is coded in C++ and run on a R&JC512M RAM laptop with
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platform VC 2005. The total computation time isduhand 4 minutes for MEM and 3
hours 23 minutes for MDL. We attribute the compotatefficiency of MEM to the
usage of gradient-based optimization strategy irVMBnother interesting observation
is made when we re-construct our shape directlynftbe processed datasets and
neglect the original shapes; we found that both Mibd MEM did not use corners as a
one of the correspondence points. This can beiseeigure 7.23. The reasons for this
effect are complicated. We attribute this problem bioth the ASM and finding
correspondence as a learning process. ASM inhgrentbduces some simplifications
and assumptions to shape variations, e.g. shapativas are composed by a linear
combination of variations. Actually, in some casay. what was observed in artificial
3D cuboids, corners or cuboids are nonlinearlyesponded to each other. Moreover,
automatic correspondence finding methods, such aBL Mand MEM find
correspondence in a learning process. The corrégpoe is achieved by optimizing a
pre-specified cost-function and the cost-functisnreélated to correspondence point’s
statistics. From this scheme, it can be seentiatorrespondence does not necessarily
relay on places with high curvatures such as cernére only promise that MEM and

MDL are trying to make is that final converged geiare corresponding to each other.
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Figure 7.18 Parts of the 3D artificial datasets arshown here It can be seen that each cube has
different aspect ratio and orientation.
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Figure 7.19Left: Original cuboids with colour. Right: Unit sph ere, with corresponding colour.
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Figure 7.20 A demonstration of angle preserving dung shape mapping.The content is same
with Figure 7.18, white cross identifies the cornerat the cuboids and their conformal
mappings. This graph demonstrates Conformal Mapping ability to preserve angles during

shape mapping.

167



Figure 7.21 MEM results of 12 out of 20 cuboids arshown in this figure, correspondence
points are identified with the same colour.
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Figure 7.22 From top to bottom: Generalization Abilty, Specificity, and CompactnessX-axis
represents number of modes used in optimization Yxds represents corresponding comparison
score.
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Figure 7.23 Left is correspondence found by MEM andight is from MDL results.

MEM

MDL

Percentage
Difference (%)

Generalization
Ability

Mean — Standarg
Deviation

)

23.81355932

29.90227222

22.67008711

Mean

24.7440678

30.7763452

21.72994428

Mean + Standarg

]

25.67457627

31.65041818

20.84899253

Deviation
Specificity Mean — Standard
. 30.58375304 34.10951863 10.89994521
Deviation
Mean 30.92185346 34.47968029 10.87994922
Mean + Standard
o 31.25995388 34.84984196 10.86038168
Deviation
Compactness Mean — Standard
o 28.75609433 27.5889462 4.14286017
Deviation
Mean 35.80726603 34.75246868 2.98979964

Mean + Standarg

i

Deviation

42.85843773

41.91599116

2.223421816

Table 7.1. A quantitative analysis on the three ctéria comparisons based on Area Under the
Curve. The smaller corresponding value is marked ibold character.

We perform the Area Under the Curve (AUC) to quatitiely calculate the differences
of MEM vs. MDL using the three criteria. The AUClwa is calculated for each criteria
of mean value, mean value minus standard deviamh mean value plus standard

|MDL - MEM|
“MDL + MEM

deviation. The percentage difference is calculate x200%.
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The results of AUC are presented in Table 7.1, eisenaller values are made in bold
characters. It can be seen that for Generaliz#timhty, MEM is better than MDL from
20.8% to 22.7%, for Specificity, MEM is better thstDL about 10.9% and MEM is
worse than MDL from 2.2% to 4.1% in CompactnessaiAgwe use ANOVA table to
test if results from MDL and MEM are from the sardestribution. Within all
parameterg-value is what we concern. If thevalue is near to zero, which means a
strong indication that the two groups are fromedight distributions. From Tables 7.2,
and 7.3, we can see that most of faealues are zero or close to zero, therefore the
statistical test rejects the hypothesis that sasnpte from the same mean. The MDL

and MEM comparisons on Generalization Ability ange@ficity are statistically

different.
ANOVA Table ANOVA Table
Source 55 df HS F Prob>F Source £5 df HE F Prob>F
Columns 1.84%e-006 1 1.34%:-006 £9.99 2.97832e-006 Columns 1.036276e-006 1 1.06276e-006 1639 0. 0002
Error 2,34314e-008 38 6. 186185e-008 Error Z.37679e-0056 38 6.2547Ze-008
Total 4.19214e-008 39 Total 3.43955e-008 29
Columns 1, 66464e-006 1 1, 66464e-0086 27.861 5.98%02e-006 Colunns 1. 08925e-008 I 1.06592%e~008 18.02 09,0001
Error 2.25147e-006 38 6.0302e-008 Exror 2.254B4e-006 38 5.9337%-008
Total 3.95611e-008 39 Total 3. 32415%e-008 ck ]
Columms 1.225e=008 1 1. 225e=008 2E.64 2.82122e=-008 Colunns 1.08Ed4le=-006 1 1.08241le=008 19 52 7.752584e=-008
Brror 2.05644e=006 38 E.41167e=008 Exror 2.09666e=006 33 5. 5175%e-008
Total 3.28144e-008 39 Toral 3.17907e-006 33
Columms 1.1628Le=008 1 1.1628Le=008 20.51 4.98E47e-008 Columns 1.0432%e=-008 1 1. 04%2%-008 24.5% 1.3332e-0058
Error 2.11273e=006 38 5.55983e-00% Brror L.58665e-006 33 4.1753%:-008
Total 2.27554e-0058 39 Total 2.62954e-006 33
Columns 1.09627e=-008 1L 1.0%827e=-00& 19.17 3.04189%e-005Columns 1.0304le-008 1 1.0304le-006 19,34 8, 53708e-00%5
Errer 2.17275e=008 38 E.71778e=-008 Error 2.02473e~008 38 5, 32825e-008
Total 3.26903e-006 39 Total 3.05514e-006 39
Columns  1.12238e-006 1 1.12238e-006 25.31  1.20474e-005 Colusns  1.036846-006 1  1.03684e-006 21.24  4.469556-008
Error  1.6850le-006 38 4.43422e-008 Brror  1.86489e-008 38 4 88129-008
Total 2.8073%-008 39 Toral 2.83173e-006 33

Columns  1.08241le-006 1 1.0824le-D06 23.87 1.8963e-005 (olumns  1.03684e-006 L 1.03834e=-006 Z20.5F  5.64603e-005

Brror  1.72317e-006 38  d.53465e-D0B Brror  1.91763e-006 38  §,04633a-008

Total  2.80556a-006 39 Toral  2.35447e-006 39

Columns 1.1088%e-006 1 1.1088%e=006 23.35 Z.23736a=-005 Columns 1.0304le-008 1 1.0204le-0086 21.39  4.25947e-00%
Error 1.80439e-006 38 4. 7484e-008 Error 1.83095e-00& 38 4.81823=-008

Total 2.91328e-008 38 Total 2.86136e-006 39

Columns 1.10Z224e-0086 1 1.10Z24e-006 17.64 0. 000z Coluans 1.03041e-006 1 1.03041e-006 22.91 £.58103e-0058
Error 2.3738%-006 38 6.24708e-008 Error 1.7090%e-006 38 4.49761e-008

Total 3476130006 39 Total 2.7385e-006 3%

Columns  1.06276e-006 1 1.06276e-006 18,62  0.0001
Brrox 2.16255e=006 38  5.70638e-008
Total 3.23141e-006 39

Table 7.2ANOVA table of the Generalization Ability on datases of 3D Cuboids.
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ANOVA Table ANOVA Table

Source 58 df M5 ¥ Prob»F Source 58 df H3 F Prob>F

Columns  0,00001 1 9.8e-006 5£.93 6.81677e-014 Columns 0.00002 1 2.1632e-005 39.4 4.21383e-010

Error 0,00034 1938  1.72143e-007 Errorxr 0.0011 1998 5.48973e-007

Total 0_00035 1999 Total 0.00112 1999

Coluans  0.00002 1 1.805e-005 31.08 2.80413e-002 Co Luniis 0. 00002 1 2 18405e-00E 48,26 £ 0297Ce-012

Errox 0.00116 1998  5.B06B5e-007

Toral 0.00118 1898 Erxox 0.0003 1958 4.52551e-007

2 v il . e Total 0.00093 1999

iolum! 0. 00002 1 l.EEHSejDOS 34.48  5.02842e-00% Col s 0. 00002 1 2. 1€37e-005 62.5 4.32987e-015
rror 0.00108 1938 £.40137e-007

Total 00011 1993 0.00063 1998 3.46111e-007

i 3 i) . . 0.00071 1999

Columns  0,00002 L -1UReB0bentOl: TMOZUES . T
AT 0.00035 1998  1.74612-007 0.00002 1 2.1632e-005 46.64  1.12974e-011
Total 0,00037  Llsss 0.00093 1998 4.63838e-007

_3‘. - e e s 0.00095 1999

Colusns  0,00002 1 1.B24058=005 62,03 5, 55112070015 = imm o m o mm oo
Errox 0.00089 1938  2.94064e-007 0.00002 1 Z.14245e-008 55.88 1.14686e-013
Total 0.00061 1933 0.00077 1398 3.83413e-007

== " e e g 0.00072 1999

Coluans  0.00002 1 1.9602e-005 46.55 1.181450°0l] ccccccccsscccssssssssssssssss=——— o

Brrox 0.00084 1958  4.21121e-007 0.00002 1 2.14245¢-005 35.41  3.14914e-002
Total 0.00085 1393 0.00121 1998  6.05071e-007
.............................................................. 0.00123 1999
Columns 0. 00002 L 2.1632e-005 49.47 T T T T T T T T T T
4.37288e-007 0.00002 1 2,.10125e-005 38.9 £.43693e-010
0.00108 1998  E.402074-007
o e 0.0011 1999
2.26848e-005  47.86 712264012 —--—--- - - - - —mee
4.76942e-007 Columns 0.00002 1 2.13624e-005 Z8.28 1.16951a=-007
Errox 0.00151 1998 7.55494e-007
........................................................ Total 0.00153 19939
2.35001a-005  85.37 O
2.76273w=007 Columns  0.00002 1 2.1218e-005 60.23 1.33227e-014
. e Exror 0.0007 1998  3.52287e-007
Total 0.00073 1999

2.2472¢-005 32.1 1.68095e-008
7.0017e-007

Table 7.3 ANOVA table of the Specificity on datasstof 3D Cuboids.
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Figure 7.24 A demonstration of linear and nonlinearshape variations. Left: shapes with
captured nonlinear variations (Red); Right: shapesvith linear variations (Green).

The reasons for correspondence points not lyinghencorners are quite complicated.
One of the reasons that correspondence points tdgeran the corners can be attributed
to the feature extraction method in ASM. In ASMagh variations are assumed to be a

combination of linear shape variations. In factnlhear variations may exist in
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datasets. For example, Figure 7.24 shows an exaofpienlinear shape variations in
the artificial datasets. We are using linear vara to approximate nonlinear shape
variations. This approximation in Active Shape Mod®ay contribute error during
correspondence optimization. Moreover, both MDL MM, are tools of minimizing
the properties of statistics. Direct shape infororgt for example curvature, is not
considered in these two approaches. ThereforegreiiEM or MDL does not

necessarily relay the correspondence points ondireers.

From the quantitative experiments Figure 7.22, we abserve that MEM is better in
the shape properties of Generalization Ability a8gdecificity. For Compactness
properties, MDL and MEM achieves similar scores.tégnms of computation time,
MEM is more than three times faster; this is du¢hi® steepest gradient optimization
method. This is only a simple example of using gL and MEM on atrtificial 3D
datasets; we perform one more experiment to dematashe algorithms ability on real

medical dataset. This experiment will be discussdtie next section.

7.4.3 3D Experiments on Hippocampus

The MEM is also performed on the 3D medical dataséthippocampus, which are
Magnetic Resonance Imaging (MRI) datasets segmémnteah expert. The datasets of
hippocampus are from Professor Styner [84], aftersgnal communication. These
datasets have been processed by Marching Cubeitlatgprso binary-segmented

hippocampus datasets have become a set of surbams Cartesian coordinates. The
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total 21 datasets are saved meta files, which are essentially the same as a
combination of ourpts and fce with an extra header file for image information. |
Appendix, a clip of thismetg .pts and fce files is shown for interested readers. In the
file .pts all the points on the surface are numbered ségllgnand the location
information is assigned to each location numbethinfile fce all the neighbourhood
information is provided, for example, it tells uish three points form a triangle face.
Parts of the hippocampus and Conformal Mappinglteawe shown in Figure 7.25 and
7.26, respectively. From Figure 7.25 we can obsé¢hat the shape differences are
mainly on the tails of hippocampus on both sidebis Tobservation can later be
confirmed by the shape eigenvectors captured bwé&@hape Model. From Figure
7.26, it can be seen that the mapping between bgppus and sphere can be identified

by the same colour.

The same machine and software platform as in teeiqus artificial datasets section
were used as well. In this the experiment, eachsgdtis represented by 1002 nodes and
2562 landmarks are used for optimization. Sinceargeusing more landmarks than the
number of nodes in the dataset, linear interpafati@s used in this experiment. The
computation time for MDL is 54 hours and 13 minytasd 46 hours and 12 minutes for
MEM. With the increase of computation complexitycan be seen that more time is
used for optimization. As discussed previously, peeform an experiment to compare
the proposed MEM to a model built using the MDLheitit one master example. Again,
this comparison is based on the results of Gemeatan Ability, Specificity and

Compactness measurement. These results are pioksantggure 7.27. From these
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results, which are similar to the results of ai#fl datasets section, we can see that
MEM is more general and specific than MDL model; MIBas similar Compactness as
MDL. As previously, we also perform ANOVA test oneferalization Ability, and
Specificity measurements. Generalization Abilitguis of this statistical test are shown
in Table 7.4. From the results, we can concludetti@Generalization Ability scores of
MDL and MEM are statistically different. The hypesis that the two group are drawn
from the same distribution is rejected. Result&NDVA test for Specificity are shown

in Table 7.5. The conclusion is the same as Geanratian Ability’s that the Specificity
score from MDL and MEM are statistically differeabhd drawn from two different

distribution.

For making visual impression, we show the shapeetes of MEM model by
presenting the mean shape (Figure 7.28) and theféw variations vectors (Figure
7.29). As discussed earlier in Visualization settwe use two approaches to represent
shape variations captured by Active Shape Modeih &gure 7.29 and 7.30. The first

three shape variations account for more than 999auadtions.
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Figure 7.25 12 out of 21 datasets of hippocampuseashown
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Figure 7.27 Top to bottom: Comparisons of General&tion Ability, Specificity, Compactness
metrics on the datasets of hippocampus. X-axis repsents number of shape modes used in
comparisons and Y-axis represents the correspondemscore.
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ANOVA Table ANOVA Table
Source 88 df [ [ Prob>F Source €5 df HE ¥ Prob>F
Columns  2.704e=006 1  2.704e-006 166.4 1.88738e-015 Coluwns £.450Z5e-006 1 2.45025e-006 138.33  3.11972e-014
Error €.175e-007 38  1.825e-008 Error 6.73075e-007 3% 1.77125e-008
Tetal  3.3215e-006 39 Total 3.12332e-005 29
R T ok e ST BT R e TR Colusns  2.20%e-006 1 2.20%-006 169.92  1.33227e-015
Error 4.75e-007 38 1.25e-008 Bezor 4.4 ind. Jf 1583000
fiisi  d09si-0bE a4 Total 2.70%e-006 39
B L e T T Colusns  2.209e-006 1 Z.209e-006 130,71 7.27196e-014
Error  2.61456e-007 32 9.812e-002 Kxzor, butueelil 98 1.bvesit
Total — 4.0B246e-D06 39 Tocal | EARLZEO06 3| .
Biliaie B oAShEGNE: 1 T ATAE SR ie AL Columns  2.39121e-005 1 2.33121e-006 151.53  7.B8258e-015
Error  3.44375e-007 38 9.0625e-009 Brror  5.996894-007 38 1.67808e-008
Total  2.77487e-006 33 Toswl 2.9%080a-006 %9
Columns 2 401e-006 1 2.40le-006 141.24  2,23706e-014 Coluuns 2.209e-006 1 2.20%-006 278.84 0
Error 6.46e-007 38 1.7Te-008 Error 3.01036e=007 3%  7.922¢=009
Toral  3.047e-006 39 Toral 2,.51004e-006 39
Columns  2.401e-006 1 2.40le-006 178.51 6. 66134e-016 Columns  2.80%e-006 1 Z2.205e-006  303.68 g
T S 111.-007 38 1.345.-008 Brror 3.515e-007 38 9.25e-009
Tl 2.5izie006 3 Teal 9605006 39
Colunns 7.401e-006 1  2.4016-006 15593  4.996e-015 g""“"‘" 3. lg:‘:g:; 3; : Y lig:ﬁ 280,08 9
Errar 5.84896e-007 38  1.5397e-008 T“:I 3‘&11‘_ e g% L
Total 2.985%e-006 39 e Eonae T
Columns 2.75625e-006 1 2.75625e=006 212.0% 0 Columns  3.04704e-008 1 3.04704e~-008 245.7% 0
Trror ._9‘:,°°} 28 1.3:'Wﬂ Error 4.636e-007 3% 1.22e-008
Total  3.250R8e-006 3% Toral ~ 5.510640-00f 39 )
Colunns Z.601e-008 1 Z.601le-008  240.55 o Columns  3.00304e-008 1 3.00304e-006  248.59 [}
Error 4.10875e-007 38  1.03125e-008 Error 4.530590-007 3&  1.20805e-008
Total  3.0L189e-006 39 Toral 3.4621e-006 39
Columns  2.3328%e-008 1 2.3328%e-006 1£8.% 1. 4432%e-015
Brror 5.24875e-007 38  1.38128e-003
Tetal 2.85777e-006 39
Columms 2.51001e-006 1 2.51001e-006 189.43  2.22045e-016
Brror 5.035e-007 38 1.325e-008
Total  3.01351e-006 39

Table 7.4 ANOVA table of the Generalization Abilityon datasets of 3D hippocampus.
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Table 7.5 ANOVA table of the Specificity on datasstof 3D hippocampus.
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From Tables 7.4 and 7.5 we can see that most gi-ttadues are zero or close to zero,

therefore ANOVA test showed that the MDL and MEMe adifferent in both

Generalization Ability and Specificity.

MEM

MDL

Percentage
Difference (%)

Generalization
Ability

Mean — Standar
Deviation

26.56703206

36.27255895

30.88984744

Mean

27.66764923

37.16663596

29.30235664

Mean + Standarg

]

Deviation

59.98375092

57.31890199

o 28.7682664 38.06071297 27.80963187
Deviation
Specificity Mean — Standard
. 32.04142336 40.5774635 10.89994521
Deviation
Mean 33.79881387 42.46532847 10.87994922
Mean + Standard
. 35.55620438 44.,35319343 10.86038168
Deviation
Compactness Mean — Standard

4.543544183

Mean

69.43375092

66.6853353

4.03825165

Mean + Standarg
Deviation

i

78.88375092

76.05176861

3.655691506

Table 7.6. A quantitative analysis on the three ctéria comparisons based on Area Under The
Curve. The smaller corresponding value is marked ifbold character.

We perform the Area Under the Curve (AUC) to quatitiely calculate the difference
between the three criteria, under MEM and MDL. FuC value is calculated for each
criteria of mean value, mean value minus standadation and mean value plus
standard deviation. The results of AUC are preskmdable 7.6, where smaller values
are made in bold characters. It can be seen tmaGémeralization Ability, MEM is

better than MDL from 27.8% to 30.9%, for SpeciffciMEM is better than MDL from
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10.86% to 10.90% and MEM is worse than MDL from?28.1 4.5% in Compactness.

Figure 7.28 This is an example mean shape drawn fro21 training sets.

-3.J4 &34

Figure 7.29 The first three modes of the MEM hippoampus model. Some of the shape
differences can be seen from the corners (or tailgf hippocampus.
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Figure 7.30 The first three modes of the MEM hippoampus model.In this approach, each
node is assigned with an arrow pointing the shapeaviation direction.
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In Figure 7.29, shapes are generated by choosgvtighting components (recall

Equation 2.8 about the ASM) frorﬁ—Sﬂ &/X} In the graph, three shape variations

are shown.

In Figure 7.30, it can be seen that each nodesigreesd with an arrow, pointing to the
direction captured by the Active Shape Model. Fieigure 7.30, the results show that
shape variations are congested in the left and sigle tail of the shape and very small
variations in the middle. This observation agreéth wur finding from the datasets,

which was concluded in the previous paragraph.

7.4.4 Conclusions on 3D Experiments and Discussion.

In this chapter, the limitations of the frameworded in 2D has been discussed which
demands the introduction of a 3D framework. Thaefthe MEM extension in 3D has
been discussed, and the MEM gradient in the 3D isaakso presented. For validating
the MEM method, we applied the proposed methodataseets of artificial cuboids and
hippocampus. From our direct observation, it can seen that MEM finds the
correspondence reasonably accurately in 3D cadegpeSvariations captured by the
Active Shape Model; agree with what we observethftbe training set that most shape
variations are congested on both sides of the de#la. Again, for quantitative
comparisons, measurements of Generalization Ap#ipecificity and Compactness are
performed. It can be seen that the quantitativepasisons show significant difference

between the proposed MEM and MDL model. The AUQultesshow that the MEM
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offers better Generalization Ability and Specificithan MDL on both 3D datasets.
Moreover, the MEM has slightly worse Compactnesantithe MDL. However,

Compactness is an application-based criterion. lecant publication by Davies [65],
they only use the criteria of Generalization Ailand Specificity for assessment of
shape model properties. According to the experipzoth MDL and MEM can use the
first three shape variations to cover more than @9%l variations, which is more than

enough for most of the applications.

The 3D optimization algorithm takes much longemntirathe 2D case due to increase of
complexity (one more dimension and more nodes an dtrface) even when a
lower-level language (C++) is used (recall that 2fe code is built in Matlab). In the
3D case, MEM is a bit faster than MDL, due to thefinement of shape
parameterization and re-parameterization methodther interesting observation is
that during the experiments on cuboids, cornersiatdocated as corresponding points
by both MDL and MEM. We argued that this is causeanly by two reasons. Firstly, if
the variations are nonlinear, linear variationsouiseASM will introduce some error. In
this case, errors may be represented as missingrsoiSecondly and more importantly,
as a method of finding corresponding points isaarimg process, both MDL and MEM
do not necessarily find points, which have distisbable features such as shape

corners with high curvatures.

In the end, we conclude that the proposed MEM aasuzcessfully extended into 3D

scenarios.
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Chapter 8 Applications of Using MEM & MDL for

Classification

In this chapter, we will present, in terms of amplagation, some results on how to use
the proposed automatic correspondence finding i#hgoy in order to perform
classification on genetic separated subjects. kamele, face profiles can be easily
separated by their gender. In this chapter, weopmdd a similar experiment, which
was also introduced in [38] by Thodberg. During theeriment, a number of face
profile photos were first collected. Manual or au#dic face segmentation was
performed to extract the face profile contours.SEnface profiles were used as an input
to the automatic correspondence finding algorithmthis experiment the facial profiles
were considered as a 2D open curve with flexiblé paints problem. Normally, we
will first set the number of correspondence poimsich should be found during
optimization. After optimization, on each set ofcda profiles, a number of
correspondence points are located. An Active Sihapeel (ASM) can be easily built
from these points. As we recall from previous ckhegpteach shape profile is identified
by concatenating landmark coordinates. Then errorinmization is performed on
reducing possible errors due to translation, rotasind scaling. After applying Principal
Component Analysis to the shape covariance matrigxtract shape variations, each
face profile is rewritten as a combination of mesimape and shape variations
multiplying weighting vector, since all the proslare using the same mean shape and

the same set of shape variations. For simplicaéigheprofile can be identified by the
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weighting vectorb (please recall Equation 2.8) on the shape vanstid herefore, by
using classification methods, such as Logistic Begjon [100] on the ASM weighting
vector b, a gender prediction model can be generated. itn ékperiment, since the
gender of each profile is known, leave-one-out dadlon can be incorporated to
evaluate the performance of the prediction moddltae classification accuracy can be
easily estimated. In this chapter, comparisons \wertormed between the classification
accuracy from direct human observers, and shapesinndlt from MDL, MEM, and

manual landmarked results.

The paragraphs below will introduce the detailsnethodology used in the experiments,
results, and conclusions. We will first start froine preparation of the dataset, then, the
details of the classification algorithm. A detailedmparison between the MDL, MEM

and manual land marking is shown. In the end, welcale our experiments.

8.1 Introduction of Datasets

We collected datasets of 131 facial profiles, inchh64 are male and 67 are female.
The datasets are collected by using a Digital Carnteercollect pictures of the author’s
friends and their friends. These people are alh€se and aged from 20 to 30. From
personal communication, they all claim that thegt dot have relatives from outside
China for the last three generations; thereforecareclaim that these datasets belong to
subjects of Chinese extraction. As in the experisiém the previous chapters about

facial profiles, the shape profiles have to be nadlgilsegmented from digital pictures
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before further processing. We demonstrate the segmen result by showing two
segmented graphs in Figure 8.1. In this figure aderprofile photo and a female profile
photo are shown. On them, red lines are manuadlgaal on the profiles in order to

extract the facial boundaries.

T
=N

Figure 8.1 This graph shows manual segmentation anmale profile photo and a female profile

photo. The red line is the segmentation result.

The manual segmenting scheme is simply placingtpan the boundary from forehead
to chin area. The red line is reconstructed bylmepnterpolation algorithm based on
the placed points. Figure 8.2 shows the points ararlised in manual segmentation. It
can be seen that the black circles/dots are theuatigrplaced points, the face contour
and the red curve is reconstructed based on thies& bircles by using 2D spline
interpolation. For manual segmenting the datas#isiemtly and quickly, different
manual point placing schemes are used to maketlsatdghe interpolated 2D curve is

correct. For example, facial contours with highvetuare, such as nose, are marked
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carefully with more points, and places where lantifegeems to be flat, such as the chin
and forehead are marked with fewer points. DuringLMor MEM optimization, the
points along the curve needed to be moved freeljntbthe correspondence between
each other. Since the curve is reconstructed froistieg manually placed points, if a
new point needs to be established between exipngs, linear interpolation will be

used to find a new point between nearest two exgjgipints.

Figure 8.2 This graph shows the points placed on ¢hface contours during manual
segmentation. The red contours are the same as imgkire 8.1.
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After performing manual segmentation to all 13lidhprofile photos, we now have all
the contours information. We show part of the segateon results in Figure 8.3, where
the first row is composed of female subjects, d@ldecond row is composed of male

subjects.

Figure 8.3 This graph shows twelve of the segmenteeikamples from 131 facial profiles
collected.Faces in the first row are female and at the bottormow are male.

Compared with female subjects, we can see thaindde subjects tend to have larger
nose, lips are bigger and men’s eyes positionegateds we discussed with several
experiments participants, we concluded that théysé this information to judge a

profile’s gender.
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8.2 Classification Method

As have been discussed in previous chapters, b&h &hd MEM can be used to find
correspondence points across 2D shapes contouatitally. In the experiment, we
perform both technique to the datasets of 131 nihnsegmented facial profiles. After
correspondence landmarks are found among shapése Rhape Models (ASM) are
constructed from both MDL'’s results and MEM'’s résuRfter ASM is built, each shape
iIs made by two components, which are mean shap¢hancesult of multiplying shape
variations and their weighting components. For shene ASM, the mean shape and
shape variations are standard. The only differdreteveen each shape is its weighting
components/vector. We can therefore use the weightiector as an input to the
classification method to explore the differencewssn two groups with different
gender. In our case, we are going to find the wifiee between the facial profiles
between male and female. In this chapter, we parfongistic Regression (LR) [100]
on the weighting component/vector. LR (sometimdiedahe logistic model or logit
model) is used for prediction of the probabilityaafcurrence of an event by fitting data
to a logistic curve. In our case, the probabilityocurrence will be the subject’s gender,

which is either male or female. A simple logistiree is shown in Equation 8.1.

Curve( ) = 8.1)

1+e™
Wheret is the curve's parameter. We choose Logistic Regpa as our classification
method, for its simplicity and easy usage for prgdn within two natural categories.

More information about Logistic Regression, is pded in reference [100].
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A leave-one-out cross-validation of the predictmadel is performed. For example, we
have 131 datasets; we build correspondence pointssing MEM, MDL or manual
method. After correspondence points are found, aetivd Shape Model can be built
accordingly. Since the gender of each subject leas lknown, we can use the known
information to train our Logistic Regression motlaked on 130 datasets, and make a
prediction of the remaining dataset. A predictidnttee model’'s gender will be given
under the rule that: 1)(malg =0, p(femalg¢=0, and 2) p(malg+ [ female=1.
Here, p stands for the probability of the subject beinglenar female. In the
validation, the assumption will be rejected if theobability is lower than 0.5. For
example, let p(male be the probability of the subject being a man. réfuee, if
p(malg is smaller than 0.5, the prediction indicates thatsample under test is more

likely to be a woman and vice versa.

For measuring accuracy of our classification raswtve use overall classification

accuracy, Sensitivity and Specificity. Please beeddhat the Specificity used in this
paragraph is different from the Specificity Abilitgrm used in the previous chapters,
which are used for comparisons of different coroesience points. Since the ground
truth is known for each subject. The overall clxsaiion accuracy is simply the results
of number of correct classified cases divides nundfetotal cases. Sensitivity (also

called recall rate in some fields) measures thegmton of actual positive cases, which
are correctly identified as such (e.g. the pergmiaf male subjects who are correctly
identified as being male). Specificity measuresptaportion of negatives cases which

are correctly identified (e.g. the percentage ahdke subjects who are correctly
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identified as being female). A theoretical, optimalediction can achieve 100%
Sensitivity (i.e. predict all people from the mai®up as male) and 100% Specificity
(i.e. not predict anyone from the female group abejn In our case, Sensitivity is the
classification accuracy within male groups, andcHjmity is the classification accuracy

within female groups.

In addition, we also asked 15 observers to guessgdnder of the facial profiles
independently. As we have known the gender of thgests, the overall classification
accuracy, sensitivity and specificity can also bsilg calculated. For representing the
overall accuracy for the whole 15 individual obsgsy we use the mean Overall

Accuracy, Sensitivity, Specificity and their varats among all observers.

8.3 Experimental results

Before presenting the accuracy of each model'sopmidnce, we show some of the
correspondence landmarks results achieved by MBILMEM in Figures 8.4 and 8.5,

respectively.
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Figure 8.4 This graph shows the correspondence pasfound by MDL. The correspondence
can be identified by the same colour.
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After finding the correspondence points among sbawe then build the ASM by using

PCA. The mean shape from MDL and MEM correspondeguaets and the captured

shape variations are represented in Figure 8.6.
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Figure 8.6 On the first row, the first three subjets are shape variations captured by MDL and

the last three subjects show are shape variationgptured by MEM. On the bottom row the
contour shows the mean shape from MDL and MEM. Samas previous figures, the wiskers

represent the shape variations.

After building the ASM, we use each shape’s weigitvector as an input to the
Logistic Regression to perform gender prediction. this section, we give the
comparison results between the four studies. Amthege four studies, three are
automatic prediction methods and one is based mttdnuman observation. For the

direct human observation test, we invited 15 olmsrto guess the gender of the facial
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profiles independently. As the gender of each fgaé known, we can calculate the
Classification Accuracy, Sensitivity and Specifycfior each observer’'s guess. Since
there are multiple observers, we use the mean \@aldestandard deviation to represent
the direct observers’ gender prediction abilityr Floe automatic methods, we used
correspondence points found by manually method, Mibd MEM to build ASM.

Randomly select 130 datasets to train Logistic Begon and make gender prediction
on the remaining subject. The overall classifiaa@@curacy by four methods and their
standard deviation among the 15 evaluations andsthigstic P-value for automatic

methods as recorded are shown the Table 8.1:

P-value Overall classification accuracy
Manual marks 0.03 68%
MDL marks 0.00003 83%
MEM marks 0.00003 88%
Direct human guessing - 66+ 7%

Table 8.1 This table shows the scores of differentethods. In the second column, the value is
the confidence level, the third column shows the evall classification accuracy.

From Table 8.1, it is interesting to observe tlnat mmodel created by MDL and MEM
methods gave prediction of the gender more accuinaie the manual labelled model
and direct human observing. A very small P-valueamsea very high certainty of the
classification accuracy estimation. Since all theaRies are very small, our overall
classification accuracy can be statistically trdsietween the MDL and MEM models,
MEM outperforms MDL by 5%. During the experimertt,is also observed that it is

quite important to include the chin area to guagargt good performance, which agrees
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with the findings of reference [38]. If we excluttee chin area, the model by manual
landmarks, MDL and MEM model’s correction ratio Malll degrade to about 50%.
Other than that, we found that the forehead arealss very important in the
performance of the model. This is actually quiteeiesting finding, since that in our
previous finding in the facial contours that théfetence between female and male are
in the eye, lip and nose areas. Maybe that is dni#heo reasons that human direct
observer are lower than machine’s automatic priegiatesults. Machine uses all the
information in the datasets whereas a human olisenlg picks up the most relevant
information he or she believes to be relevant. Addally, different individuals all
agreed that they mainly use the curvature as witier prediction. This is due to
recognition that in China, female faces have mtat landforms and male faces are
more popped out and full landforms. The landforffedence can also be observed from
Figure 8.3. Another interesting finding by the atvees is that some of the
good-looking female and handsome male subjectsnare likely to be miss-predicted
by only looking at their facial profiles and therediction probability is about 0.4.
Therefore, the more “beautiful” faces are more Ingd with features from both male

subjects and female subjects.

The Sensitivity and Specificity results are showrnTable 8.2. From this table, we can
observe that MEM marks achieves the highest seo&ensitivity, which means MEM
marks classification is the most accurate in malgexts and MEM marks also achieves
the highest score in Specificity, which means MEMTrks classification is the most

accurate in the female subjects. One interestisgmation on this part of results is that
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the direct human observation is more accurate thanual marks classification in

Specificity, and less accurate in Sensitivity.

Sensitivity Specificity
Manual marks 68.75% 67.16%
MDL marks 81.25% 85.07%
MEM marks 85.94% 89.55%
Direct human guessing 62.5% 15% 70.15% + 6%

Table 8.2 This table shows Sensitivity and Speciftg of the four classication results. From this
table, it can be seen that the MEM marks based clagication achieves the highest scores on

both Sensiticy and Specificity.

Truth: Female Female Female Male Male Male

MEM: P(female)=0.12 0.34 064 p(male)=0.65 013 053
MDL: P(female)=0.15 0.52 0.01 p(male)=0.02 0.14 0.33
Manual: P{female)=0.31 0.26 0.41 p(male)=0.37 019 0.29

Table 8.3 This graph shows some of the wrong predion results made by MEM, MDL and
manual model. In these examples, manual results madvrong prediction on all six examples;
MEM had three correct guess whereas MDL had only om correct guess.

Table 8.3 shows some of the results, whose geradeb&en wrongly predicted by most
of the observers and also the automatic predictiodels. From this table, the ground

truth is that the first three examples are femaktthe last three examples are male. For
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the model built from manual results, since the pholity in all is lower than 0.5, the
predictions were wrong for all six cases. For mduel from MEM, the prediction was
correct for the third, fourth and sixth case. Faydel built from MDL, the prediction

was correct for only the second case.

8.4 Conclusions

In this chapter, we demonstrated one of the appmies of our proposed MEM method,
which is using the automatic found correspondermetp to build Active Shape Model
(ASM), and use this model’s parameters as an inpuhe classification method to
perform gender prediction on facial contours. le #xperiments, we also perform
prediction accuracy comparisons between four differgender prediction methods.
Three of them are automatic methods, which aregu#&i®&M built from manual

landmarks, MDL found landmarks and MEM found landksaThe fourth method is by
inviting various people to participate direct guegsbased on observing the facial
contours. The overall classification accuracy rssghow that the ASM built from

landmarks found by MEM and MDL are the first tiegrfprmers and the model built
from MEM landmarks can provide 5% more accuratémedgion than MDL. Direct

human observing and model built from manual landware in the second tier with
accuracy 66% and 68% respectively. For Sensitithiy,performance from best to worst
is MEM marks, MDL marks, manual marks and directesfvation. For Specificity, the

performance from best to worst is MEM marks, MDLrksa direct observation and
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manual marks.

The conclusion is that using computer to perforassification of profiles is relatively
more accurate than direct human guessing. We atierithis reason to the fact that
machines are actually using all the input informatsuch as forehead, eye, nose, lip,
chin, etc, but human observer only focus on loctdrmation such as eye and lip shape
without considering the whole picture. Another meing finding is that, we pick up
some of the wrong prediction picture made by MDId &MEM based classification.
Most of the observers agree that their wrong ptedi€aces seem to be more handsome
or pretty than the correct predicted ones. It lotik for machines, these category of
faces are involved with features from both malejetib and female subjects. When
using automatic methods found correspondence torperclassification, MEM found
correspondence can provide 5% more accurate oveladkification accuracy than

MDL found correspondence points.
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Chapter 9 Conclusions and Future Work

9.1 Contributions

In the previous chapters, we have presented a reawefvork of finding the surface
correspondence points across either 2D or 3D dataséomatically. In this section, we

will summarize the conclusions and directions fdufe research work.

The main contributions of this thesis are listedadlews:

1) A new objective function, which provides a measureant of model utility

A Minimum Entropy based objective function is dexvto compose the cost-function.
Unlike MDL where, the total cost function is simpidded up directly, MEM has
different weights for each Entropy component.

2) The gradient of the MEM cost function is derived fo a faster convergence

Based on the results of SVD products on the shapariance matrix, the gradient of
the MEM cost function can be derived successfilyusing this gradient, the Steepest
Descent optimization algorithm can be incorporat€dmpared with the original
simplex approach in MDL, the new gradient methogka&sonably faster.

3) A more shape feature preserving shape parameterizanh and
re-parameterization method

Unlike the simplified version of spherical harmaigsed by Davies, we use conformal
mapping as our 3D shape parameterization methocbrdmg to references [52], [53],

this mapping technique can preserve more shapemat®mn and minimize angle
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distortion. A more efficient re-parameterization thue is used, which allows new
kernel to be added without disturbing other landear

4) The framework is applicable to both 2D and 3D d@asets

The scheme for both 2D and 3D implementation of M&lgbrithm is provided. This
framework has been successfully applied to sev&lbabnd 3D datasets. In addition
comparisons against the MDL algorithm based onativie metrics we performed both
on 2D and 3D, on different datasets and scenarios.

5) Solving the “Pile Up” problem

This well reported problem is inherently solved llye replacement of MDL
cost-function to MEM cost-function. In both 2D aBD scenarios, MDL runs into “Pile
Up” several times, however, MEM did not encountas fproblem at all, since MEM
favours a distributed correspondence, and MDL fav@aucongested correspondence.
6) Using MEM to perform an automatic classification scheme building and
perform comparisons with other methods

| used MEM, MDL, and manually labelled landmarkstba facial contours to build up
a gender classifier. The comparison is performesvéen these three classifiers and
direct human observation on a large dataset ofalfadgata. Overall classification
accuracy, sensitivity and specificity are used hé&ree results showed that the MEM’s

classifier outperform other methods in all threaleations.
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9.2 Future Work

Although the proposed MEM has been successfullyiegppo 2D and 3D datasets and
it has been shown that MEM preserves better shapeegies than MDL does, the
proposed MEM algorithm is not perfect yet. There atill some limitations of the
approach to automatic shape modelling; we presemtesfuture research directions

here.

9.2.1 Discrimination Analysis

In chapter 8 we presented preliminary 2D discrimoraanalysis results, it is quite
straightforward to think about extending the cutrechnique to 3D cases. The MEM
model can be used as a basis for exploring difterenn shape between normal and
abnormal objects. By doing this analysis, we candiate the technical superiority into
real practical applications. In medical image pssogg, many datasets exist in 3D
format and 3D information can give a more direcasugement of potential illness. For
example, in Davies’s thesis [22], he suggests shaipe information provides better
discrimination of schizophrenia and normal subjettian volume measurements. The
discrimination objective can be pursued by consingache MEM model on the training
set consisting with both schizophrenia subjeis&'ﬁ(}) and normal subjectsX SN).
After that, a classification method, such as LagiBegression used in Chapter 8, can
be used on the parameters consisted of shape wgjgitmponents. In Davies’s thesis,

he simply uses Linear Discriminate Analysis (LDA)dlassify these two groups. The
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discrimination direction can be found at the same1 Figure 9.1 shows the results of
the LDA analysis results on 56 schizophrenia dédaaad 26 normal datasets from
reference [22]. It can be seen from the graphtti@schizophrenic patients will be most
likely to have a hippocampus with longer and thimads. From left to right, the graph

shows the shape changes from normal to schizomhsbapes.

Figure 9.1 The model was built for visualizing theshape difference between Normal subjects
and Schizophrenic subjects. In the graph, “-* indiates Normal and “+” indicates
Schizophrenic.

The accuracy of the MEM model can be justified rfgrming Leave-One-Out

analysis. The pseudo code below, shows how to pertiois analysis.

For shape example =1...n,
1) MEM is performed on the training set witrexcluded
2) Shape parameters are separated into two groups

3) LDAis performed to find the separating vector
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4) The excluded example is mapped to discriminati@csp

5) Go to step one, if this is not the last example

More details and results about this LDA analysie discussed in reference [22].
Another interesting future direction about the Bimenation Analysis is trying to use
other classification or regression method rathenthnear decimation method, e.g.
Support Vector Machines [67], [68], Discriminatidxnalysis by using SVM can be

found in [69], [70].

Essentially, we are planning to find the connecti@mtween shapes and biology. For
example, shapes of brain may indicate gender; shapé&ippocampus may indicate
some potential illness. Moreover, there is no gdbrath for measuring the accuracy of
correspondence found by different approaches. Iy @ a good idea to use the
automatic found correspondence points to buildeggshmodel, therefore test the shape
model’s ability in some applications. Testing thedal’s ability in application may be a
more intuitive way to measure the model correspooeeaccuracy, rather than using the

three comparison criteria.

9.2.2 More Datasets

As has been discussed in the introduction andatitee review, the automatic shape
modelling is an important technique, which has troapplications. Besides

discrimination analysis on the datasets of hea#thg unhealthy hippocampus, Brain
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modelling can be another good application.

Brain modelling is directly related to Neuroimagiagd Human Brain Mapping, as
brain can be segmented into different functionatibpes each playing a different role.
Therefore, it can be quite helpful for a physictanknow the corresponding zone or
points between a patient brain and brain atlaseample of the brain atlas is shown in

Figure 9.2.

Figure 9.2 A brain atlas exampledifferent colour represent different functionality zone.

The approach for tackling this problem is simplatagets are segmented and classified
by an expert. Therefore, when a new example (padiataset) joins the datasets, MEM
will be performed and will find the correspondingimts between the new coming
dataset and prepared datasets. In this way, thespamding zone will be found. There

is some similar work on this brain surface corregfgmce finding problem. Figure 9.3,
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is from reference [48], where the author found 68esponding points across datasets.

Figure 9.3 From top to bottom, it shows different iews of brain. Left: Atlas surface
hand-labelled 69 points; Right: Correspondence pois found in [48].

9.2.3 MEM with Appearance Information

As reported in reference [16], shape informatiosdmetimes not sufficient for finding
the correspondence an ASM, especially when theeshegntain considerable variations.
Fortunately, we can incorporate appearance infoomahto the current MEM model

and form a MEM appearance model.

Different from ASM, the model is parameterized Igmg both shape coordinates and

gray level information of the landmarks.

X=X Y 2 % ¥ o b bee ) (9.9
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Where x,y,z are landmark coordinates iX,Y, Z direction respectively andis

the intensity information on the landmarks.

According to reference [16], with the help of thgpaarance information, shape model
can provide better properties, for example segnientaccuracy. In this sense, we are
hoping the MEM appearance model can convey bettedemproperties than the
original MEM. Some of the preliminary results abdMiDL appearance model appeared
in [71], [72]. In reference [71], the basic theampout MDL and MDL appearance
model was introduced. In paper [72], the authorasgnted work of facial recognition
by using MDL appearance model. The results dematestrthat with the appearance

information the MDL model can find correspondeno@fs more accurately.

9.2.4 MEM with Arbitrary Topology Structure

It has been shown in our 3D work section that tHeMVican be applied to shapes with
genus zero topology. In other words, any shape gptiere topology can be modelled
by MEM automatically. Therefore, it is quite straifiprward to ask if we can model
shapes with arbitrary topology. For example, diaght is an important structure, which
divides the human trunk to chest and abdomen. Inynagpplications, e.g. liver/heart
segmentation, it will be of great help if the pwmsit of diaphragm can be found.
However, in terms of intensity, there is little fdiience between diaphragm, bottom of
heart and top of liver. Other researchers in refeee[73] have tried to use Active

Appearance Model to segment the diaphragm. Howévermanual landmark placing
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makes the method difficult to use in practice. Bgarporating the proposed MEM, we

can ease this problem. In order to model diaphragghave to refine our framework.

We suggest using the framework below for modelthgpes like diaphragm, which can

be considered as open-shapes.

Scheme for modelling open-surface shape

1) Pre-process datasets: centring, roughly aligningesats

2) Rough initial landmarks: initial landmarks can beughly placed by algorithms like
ICP

3) Measure MEM cost function: MEM is calculated irstbtep

4) Re-parameterization: Move landmarks in shape space

5) Stop criteria: finish optimization when convergemcachieved

Comparing this approach with our original approaitiere are some differences: 1)
Shapes are not parameterized by a sphere anyrherefdre optimization is performed
directly in shape space. 2) For the same reas@bsdénce of parameterization, ICP is

used for initial landmarks placement.

The advantage of this approach is that it can msig@bes with open surface. However,

a suitable re-parameterization has to be develtpedpe with different surfaces.
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9.2.5 Shapes with Non-Linear Variations

One of the essential goals of Active Shape Modébigxtract shape variations from
aligned landmarks cloud. A standard technique tmhsvariations extraction is using
Principal Component Analysis (PCA). PCA assumed thaxiations are linear in
Euclidean vector space, which is insufficient ameffficient on datasets with non-linear
variations and these non-linear variations are comim medical datasets. To some
extent, the non-linear variation problem can bevesblby approximations using a
combination of linear components; however, theafdenear components increases the
dimensionality of the model and allows for non-daBhapes [82]. Therefore, this
approximation error remains in MDL and MEM approaahd sometimes can influence
the results. Algorithms presented in [80], [81] @dneen developed to complement this
approximation error in PCA. In this section, we goeng to discuss the possibility of a
nonlinear approach, which incorporates the nonfi&A with finding correspondence
in a learning process. Preliminary results are shavhich are based on the comparison
between PCA MDL and Nonlinear PCA MDL. Again, compans were performed by

evaluating the Generalization Ability, Specificapd Compactness.

9.2.5.1 Introduction of Nonlinear PCA

The idea of nonlinear PCA is quite intuitive. PCande effectively performed on a set
of observations that are linear. When variatiomsraot linear [75], they will be mapped

to a higher dimension where shape variations aaendmear. PCA can then be applied
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in the higher dimensional space. A simple illustratof this mapping from lower

dimension to higher dimension is in Figure 9.4.

Lower Dimension Higher Dimension

Figure 9.4 The graph shows the process of mappindné original shape vector to a higher
dimension, nonlinear variations can be mapped tordiear variations at the same time. HereH
denotes this mapping process.

More precisely, PCA is going to be performed in linear higher dimensional space
N
[45, 76]. Given a set of aligneld shape vectorEx , We are going to decouple the

i=1

nonlinear correlations through diagonalising tleevariance matrix. For example:
_1S T
A—NZH(xi)H(x) 9.2
i=1

Same as Figure 9.4H() is a nonlinear mapping function which projects thput
shape vectors from input space to feature spaceetouple the covariance matix

we have to solve the Eigen problem in Equation 9.3:

Ap=Ap 9.3
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Where A is the eigenvalue, arfélis a matrix where each column is the eigenvedtor o
the matrixA.

If we multiply p on each side of Equation 9.2, we will get Equafigh
19 .
Ap:NZ(H(Xi)p)H(Xi) 99
i=1

Therefore, there must be coefficientsso that

N
p=> GH(X) 9.5
i=1

If we combine Equation 9.2, 9.3 and 9.5 togethemiiefind that:

N

Y GHOOHON) = Y oY (HOOHOOHCOH(RD) 06

i=1
This equation provides a clue that the previoustimeed eigenproblem can be solved
by dot products of mapped shape vectors in highemkion. Since computing such
dot product in high dimensional space is still exgpee, Support Vector Machine (SVM)
[83] can be used to ease this problem.
We can define aN x N matrix S, wher&, =H(X)H(x), therefore, Equation 9.6 can

be rewritten as Equation 9.7:
NAP=SP (9.7

Where P=[p; p,;... o]  (MATLAB notation), is the eigenvector.
We adopt the Gaussian Kernel to model the m&ras in Equation 9.8:

[x-y*
S(x y) = é_?) (9.9

Wheree is the base of natural logarithm, amd is the standard deviation. As we are

discussing the shape model in nonlinear cases,illvérat discuss the weighting vector
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(Please recall what we defined it in the previomgdr cases in Equation 2.8). The
weighting componenb of a shape vectorx can then be extracted by projecting

H(x)on each column of eigenvector matfX as in Equation 9.9, werg, is the

weighting component.
N
b=PH(x) =), a(H(X) H( X) (9.9
i=1

Again, this can also be solved by using a dot pcofhom Gaussian Kernel. However,
the nonlinear process discussed previously carepeesented differently by giving a
specific exponential mapping and its reverségarithmic mapping, which was
developed in Principal Geodesic Analysis [8Ekponentialmapping will be used as
H mapping andogarithmic mapping will be the inverse oH mapping. In reference
[81], Geodesics are used extensively, to catchatrans in high dimensional space.

Given a set of shapex,x,,...,% and a fixed mean shapg on a complete,

connected manifol!, the definition of variations will be given by:
o’ =E[d(u, %) (9.10

Where d means the Riemann distance aBkdis the mathematic notation for
“Expectation”. We can see that the variations efdiata are equal to the expected value
of the square Riemannian distance from the intimsean. By using the Exponential

Map and Log Map concepts, the Equation 9.10 caeWwadtten as in Equation 9.11.
13 13 2
0 == d(g %) =3 [log, (x)] (9.1
i=1 i=1

The projection of one vector to another is alsaiitive, which is defined as a

minimization of distance process. Although therenasguarantee that such projection
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exists, the authors of reference [81] argued thatnga small enough neighbourhoods
around the mean shape, the unique shape can beechs¥de adopt this nonlinear
approach and combine it with the existing MDL ammim. The purpose of this
technique combination is trying to find if the nmmar shape variations extraction
method will somehow improve our correspondenceifigdalgorithm. In the next

section, we will present our preliminary experinamesults on this approach.

9.2.5.2 Experiments on Nonlinear MDL

In order to validate our proposed algorithm, oupeskments are conducted on the
dataset of facial contours, which were used in2DBework section. The same datasets
were also used in the section of solving the “Big problem, where the original MDL

met the “Pile Up” problem.

It can be seen from Figure 9.5 that by using thelinear MDL optimization the
algorithm did not meet the “Pile Up” problem. Alinidmarks are placed in a seemingly
same manner. In Figure 9.6, it can be seen thatdkefunction stabilized after 7000

steps in optimization. Again, we show the movenoémach node in Figure 9.7
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Figure 9.5 Results of nonlinear MDL analysis of faial contours.
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Figure 9.6 Results of performance of cost functionX-axis represents number of steps and
Y-axis represents value of cost function.
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Figure 9.7 Movement of nine nodes are shown herBach graph gives the movement of the
node in 22 examples represented by different coloutX coordinate is step number and Y
coordinate is node value. All nodes start to movedm parameter 0.5 and stabilize around the
15" step.

9.2.5.3 Conclusions

In this section, our preliminary results on usingnimear analysis to find
correspondence are discussed. By mapping shapervdato a higher dimension,
nonlinear shape variations can become linear indimaensional space. Therefore, PCA
and MDL can be applied in this higher dimensiororfrour experimental results, we
can see that the proposed nonlinear MDL can findespondence across datasets
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automatically. It can also be observed from Figukethat, by using nonlinear PCA to
replace linear PCA, MDL did not meet the “Pile Uprbblem on the datasets of facial
profiles. Another interesting preliminary resulttigat, compared with results on using

linear MDL, nonlinear method can find correspondemuich faster.

9.3 Final Conclusions

In this chapter, we presented the conclusions of cantributions to the areas of
automatic Active Shape Model building, especialhe t‘Correspondence Problem”.
Rather than using Description Length as a measureafecost-function, we proposed
using Entropy as an alternative. Besides that, mpgsed using a proper weighting for
energy component extracted from each eigen-shag@rvé€ompared with the MDL

approach, the newly proposed MEM can have beti@pesiproperties in the criteria of
Generalization Ability and Specificity and also danin the criterion of Compactness.
With the derivation from Single Value DecompositioNlEM’s gradient can be

computed efficiently. Therefore, MEM method incoring the Steepest Descent
approach can run faster than MDL's approach. ME8b ahows great potential to deal
with the “Pile UP” problem, which is encounteredNtDL. The proposed MEM is so

flexible that it can be applied to both 2D and 3fersarios. In terms of applications, we
demonstrate the capability of using MEM to find respondence points across 2D
facial contours and therefore build up gender di@assautomatically. The comparison

with other automatic classification schmes shoved the MEM based classifier shows
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better performance in terms of overall classifmataccuracy, sensitivity and specificity.
We also listed some future work directions in tbimpter. | am hoping that with the
help of this thesis, the automatic Active Shape ®&lothuilding problem (i.e.

correspondence problem) can, to some extent, beedsabr making some progress

towards the perfect solution.
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Appendix

Data Format

This appendix section shows the datasets formdtishvare used in the thesis. They are
metag pts, fce vector and visualization.

Metafile is a common data format used in Insight Segaiéon & Registration Toolkit

(ITK www.itk.org).

Table Al. Meta
bj ect Type
NDims = 3
Nbj ects = 1
bj ect Type
NDims = 3
ID=20
Transformvatrix =1 00010001
Ofset =000

CenterOf Rotation = 0 0 0

El ement Spacing =1 1 1

Poi nt Type = MET_FLOAT

Poi nt Dat aType = MET_DOUBLE

Cel | Dat aType = MET_DOUBLE

NCel | Types = 1

PointDDm=1Dx vy ...

NPoi nts = 4002

Points =

0 -10.9759 1.50363 -1.73291

1 12.036 0.184908 -3. 7455

2 -10.9527 1.55506 4.44425

3 12.098 0.294071 5. 49359

4 2.00945 8.81335 -1.50159

Scene

Mesh

3999 -23.8896 -5.50267 -2.19734
4000 -23.9489 -5.67883 -2.4453
4001 -23.8785 -5.77109 -2.63706
Cel | Type = TR
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NCel I s = 8000
Cells =

12 0 31

582 31 32
582 12 31
13 12 582
583 32 33
583 582 32
584 582 583
584 13 582

~N O o W N PP O

7994 275 4000 3999
7995 276 4000 275
7996 276 4001 4000
7997 277 4001 276
7998 277 543 4001
7999 11 543 277

It can be seen that the number of celld. and number of pointsN,) have the

relations as follows:

N,=2N_ -4 (A1)

Table A2. pts
15. 3607 14. 5341 22. 7496

13. 3707 36. 1425 12. 7825
15.4711 11. 7889 15. 1863

13. 8812 35. 2222 8.36011
22.5363 25. 9905 16. 9296
23. 6575 23. 0942 12. 8139
11. 6803 21.1842 16. 7248

The pts file is composed by point coordinates. Each liseai 3D coordinate for a

landmark and number of rows is equal to numberoaitp.
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Table A3. fce
12 0 21
28221 22
28212 21
13 12 282
28322 23
283 282 22

284 282 283
284 13 282
14 13 284
28523 24

The fce file shows the relations between points. For examhe first line of sample

data shows that the 20" and 2f'form a triangle surface.

Table A4 Visualization
NUVBER _COF PO NTS = 1002
DIMENSION = 1

TYPE = Scal ar

0. 000000
0. 000999

0. 001998

1. 000000

From the first point to the end point, each posnassigned with a value from 0 to 1.

Table A5 Variations Vector
NUMBER _COF PO NTS = 1002
DI MENSI ON = 3
TYPE = Vector
0. 024348 0. 000863 -0. 006797
- 0. 028662 -0. 003137 0. 009808
0. 026247 - 0. 002523 -0. 000842
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- 0. 029640 -0.000341 0. 003859

- 0. 000846 -0.000448 - 0. 004895
0. 001895 -0. 001639 -0. 003297

Each node is assigned with a vector. This vectorbeawith length 1.
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Independent Component Analysis Based Active Shapeddel

with Spatial Relations for Finding Correspondence

Zihua Su, Tryphon Lambrou, Andrew Todd-Pokropek

Department of Medical Physics & Bioengineering, Wmsity College London,
Malet Place Engineering Building, Gower Street, LamdVC1E 6BT, U.K.

Abstract. Statistical shape models use Principal Componeratiysis (PCA) to describe the shape
variations. However, PCA has the restriction tha thput data must be drawn from a Gaussian
distribution, and is only able to describe globacamposition. In recent years, Independent
Component Analysis (ICA) has become a popular diteréor shape decomposition. Due to the local
variations that ICA represents, the final optimalule usually turns out to be an invalid shapehis t
paper, we will investigate the details of the ICAM\SWith the consideration of the influence from
neighbourhood points by using Markov Random FieldRf@)lI we overcome this drawback
introduced by ICA. Our initial results show thatr quroposed method offers a better rate in obtaining
a valid shape. From this, we can conclude thaMRé& based ICA model provides improved results

to the Bayesian based ICA model currently used.

1 Introduction

Geometric shape information plays a key role in yngmputer vision and image processing applications
especially in medical image analysis where manyaamigal structures and organs can be identified and
classified in terms of their unique shapes. Theespondence is such a critical thing that usualines
before Procrustes alignment.

The advantage of Active Shape Model (ASM) is thatsies experiences from training data to judge the
correspondence and shape outline. In recent y€a#shhs been introduced into ASM for its excellent
performance on giving more accurate local variatiand no restrictions on data set. Actually, ICA ha
become a more general data description methodRisk does. By using the Bayesian frame work [1],
we can cast our problem into a Maximum a Posté&iabability (MAP) work. The final result shape is
the optimal minimization. The problem is by usif@A your optimization method will face more local
peaks than PCA does. Therefore, the result is filkety to be trapped in invalid shapes. We noteat th
some work has been done for eliminating this effBgtadding more artificial training set Wang e{H|
make their shape model more rigid and more globalsome extent, they solve the problem of invalid
shape, but that makes it harder to capture locahtians. By using MRF theory [2], our method
successfully conquers this drawback. We also nua¢ some other approach has been made.Hy

Davies et a[3].
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2 Method
2.1 ICA-Based Active Shape Model

ICA is a more general description of data formamntfPCA, since PCA can only represent the orthogonal
condition. An example is shown in Figure 1. PCAuiegs the data to be Gaussian distributed and ist mo
of cases that does not hold [4]. In addition, 10Reg a very convenient advantage, which PCA can not
easily have, that the joint probability of all tbemponents is equal to the product of every compise
probability.

P(X) = P(X)P(Xy)... P(X,) @

In our proposed method we use similar ranking &ligor to that presented in [5]. After that, we sélbe
first t components to cover 98% of all variations.

Figure 1. An example of PCA (left) and ICA (right), as we cae sICA finds the real distribution format but PCA

does not.

Since we know that finding the maximum negentropgalion is equivalent to finding a representation
which mutual information is minimized and negentrap natural measure of non-Gaussianity. Here we
propose a Gaussian mixture model for the ICA dgresipression. In this mixture model we are combing
M parameterised densities and giving each one erhth weight. A frequently used algorithm for this
optimization problem is the Expectation Maximizati@&M) algorithm [4]. EM is an iterative method tha
finds the maximum by choosing a new guess to maerthe lower bound. Some of the optimization
results from the real training sets are shown gufés 2 and 3.
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Figure 2. Gaussian Mixture estimated by EM. Figure 3. Intermediate steps of the EM algorithm.

2.2 Markov Random Field Regularization

Since ASM was developed, research has been caotietbn its parameter optimization. Different
methods have been used in order to compose olgdatictions. Among these methods, Bayesian frame
work is widely employed due to its usage of prinowledge. However, lack of consideration in relasio
between parameters makes the final optimal shapa afvalid. Using ICA to substitute PCA makes this
even worse. Wang, et al [1] has tried to add sdgie artificial variations to the eigenvectors take the
shape changes more global and reasonable. TtEente extent, solves the problem, but makes the mode
harder to capture local variations that often eixigiractical cases. A natural way to incorporatpagtial
correlations into Bayesian process is to use MRR& psori model. Thus, we follow the four successiv
stages of the Bayesian paradigm: 1) Constructiora gbrior probability distributionp(d) for the

deformation field D matching the template shafsefrom training data to source shapB,. 2)

Formulation of an observation mog#y|d) that describes the distribution of the obedrshaped Y given
any particular realization of the prior distributio3) Using Bayes theorem to combine the prior and
observation model into the posterior distributiof) Drawing inference based on the posterior
distribution.

At this point we provide some definitions from MRReory in order to describe the probability
distribution on a spatial arrangement of pointsigNbourhood system and cliques are the most impbrta

definition in MRF theory. Given a graph of n contegt sitesS ={S1}i”:l, a neighbourhood system
N ={N,,sS}is any collection of subsets of S for whichsi] N, and i) O N, < SON,,

then N, are the neighbours of s. A clique c is a subsesites S for which every pair of sites is

neighbour. Let all cliques be denoted by C. For @IC we assume that we have a family of

potential functionV_.We may now define an energy function of any giwemfiguration ofd i.e.
u(d)= z «c V. -This leads to the definition of Gibbs measure. Gitehs measure induced by energy

function U (d) is
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p(d)zle(—u(d)/r) @

where, Z is the partition function and T is a paetan referred to as temperature. The Gibbs measure
maximizes entropy (uncertainty) among all distribog with the same expected energy. The temperature
controls the “peaking” of the density function; mally we define it as 1 for simplicity. The nornztig
constant may be impossible to obtain due to thélpro of dimensionality but often we need only ratio

of probabilities and the constant omitted. A théioed result called Hammersley-Clifford gives the
relation between MRF and Gibbs random fields aatestthat D is a Markov random field with respect

to N if p(d) is a Gibbs distribution with respect ¥ [7][8]. So, we need to specify potentials that

induce the Gibbs measure in order to encompass ptBperties oD on the graph. More details are
givenin [2].

2.3 Prior Distributions

We construct energy function based on differencetvéen neighbouring sites. We put this in a
multivariate case then we have the general exmnesdienergy governing the site-priors

U () = ;Hda -, ©

where, ||||p is the p-normp=2 in the 2 D case, anaﬂi represents the multivariate displacement of the
ith site.

With p=2 the energy function induces a Gaussian prior @ dbéformation fields. Neglecting
regions with strong surface dynamics the local rojzi@tion becomes concave and the maximum
likelihood estimate of the displacement at title site is taken as the mean of the neighbouring

displacements. Given the statistical models (ICAYASnd the shape paramete&= (alaz....at)T,

and pose parameters: scale s, rotatidn transportationT,, T . The combined pose and shape
y

parameter vector to be determined is representékebfpllowing equation.

P=(56.T,.T,a,a,...a)" 4

2.4 Observation Models

The observation modely|d) describes the conditional distribution of tieserved data Y. By specifying
an observation model we may favour a mapping trete® correspondence between regions of similar
boundary properties. We propose only using the @fgemation in the input image, which is denoted a

E here. The edge image E is assumed to consisteobiothe deformed templatégporrupted by additive
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white zero mean Gaussian noise with standard dewia®

no 1-6. E=t +n. This leads to (similar as in

[9):

N M
1
Uob :;mZ:l E(X(p,n)')’(p’ n))kma_z— ®)

where,k the template magnitude at any point which is agglito be a constant and is chosen to be the
maximum boundary responge is the number of marks on the boundary.

The posterior equation is given by

pd]y) OexpEU ., /T) (6)

where, U, ., =aUg. + @—-a)U,,, in which aD[O:l] weights the sensitivities of different parts.

When applying simulated annealing the posteritinieed to the prior and the observation model by

p(d|y) O (p(y|d))p(d))"" (7)

3. Results and Discussion

In our experiment, a collection of 28 slices offeliént brain MRI datasets was used, in which thrpu®
callosum were labelled manually. On each imagelaB8marks were labelled. Since we did not have a
large data set, a leave-one-out experiment is pagd, by repeatedly training the shape model onf27
the images and testing it on the remaining imade. Start position is selected by differing from thean
shape, either on X or Y coordinates by 10 pixelsoiparison is made between ICA based Bayesian
model and our proposed MRF based method. In Figuiecan be seen that our result shows the new
shape model finds the boundary with correspondemma® reasonably accurately and the result is not
sensitive to the start position.
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Figure 4. Three of the results: Bayesian ICA (left with snuit), Bayesian PCA(middle with small dot and MRF
(right with large dot). We can see that MRF achselvetter performance.

In order to evaluate the two methods accuratelycaleulate the overall displacement of searchegesha
to the manually labelled shape (Gold Standardeémh test image. The distance of two shapes ipatkfi
as the sum of all absolute distances between gmmneing points. We calculate MRFASM (our proposed
method) and BAYEASM (original ASM). Then we calcigdhe improvement (m)

m = (BAYEASM- MRFASM)/BAYEASM ®)

It is shown in Figure 5. The x- coordinate is thddx of the test images, and the y-coordinatesis it
corresponding percentage improvement value. Wesearnfrom the figure that our method works better
on all images. The points within the circle reprasthe cases where the Bayesian ASM converged.
Comparing the equations provided in [1] and equaii®6) of our methods, we can find that MRF
introduces a stronger prior distribution by consitg spatial relation between neighbour points. Tike

of this term is actually smoothing the cost funetthat can be the reason of the advantages.

Bayesian PCA with improved [CA Bayesian ICA with Improved ICA
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Figure 5. Shape to shape percentage distance differencéetidn is index of images; Y direction is percage of

improvement of ASM.

4. Conclusion

By using MRF, we give more restrictive relationgvien parameters to make our ICA-based model
more easily converge onto a valid shape. Our Imégaults show that our proposed metldfdrs a better
rate in obtaining a valid and accurate shaperom this, we can conclude that the MRF based t@#lel
provides improved results to the Bayesian based nilel currently used. Further work will include a
larger dataset for the 2D case, as well as extgrttimtechnique into 3D, and different organs.
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