
 1 

                                                                           

 

 

 

 
Statistical Shape Modelling: Automatic 

Shape Model Building 

 

 

Zihua Su 

 

 

Submitted to the University College London for the Degree of                  

Doctor of Philosophy 

 

 

 

 

 

Department of Medical Physics and Bioengineering 

University College London 

          2011 

 



 2 

Declaration 

 

I (Zihua Su), confirm that the work presented in this thesis is my own. Where 

information has been derived from other sources, I confirm that this has been indicated 

in the thesis. 

 

 
 
 

Signature:



 3 

Table of Contents 
Declaration........................................................................................................................................... 2 

Table of Contents ................................................................................................................................. 3 

List of Figures ...................................................................................................................................... 6 

List of Tables........................................................................................................................................ 9 

Abstract .............................................................................................................................................. 10 

Acknowledgements............................................................................................................................ 12 

Chapter 1 Introduction ....................................................................................................................... 13 

1.1 Model Based Shape Segmentation............................................................................................ 15 

1.2 Shape Model for Morphological Analysis ................................................................................ 18 

1.3 Shape Model of Surface-based Group Registration.................................................................. 20 

1.4 Evaluations Methods ................................................................................................................ 21 

1.5 Conclusions and Contributions................................................................................................. 22 

1.6 Thesis Organization .................................................................................................................. 24 

Chapter 2 Deformable Models ........................................................................................................... 25 

2.1 Snakes....................................................................................................................................... 25 

2.2 Thin-Plate Splines..................................................................................................................... 26 

2.3 Statistical Shape Models........................................................................................................... 28 

2.4 Physical Models........................................................................................................................ 30 

2.5 Group Registration.................................................................................................................... 32 

2.6 Point Correspondence by Using Flow Field ............................................................................. 33 

2.7 Conclusions............................................................................................................................... 35 

Chapter 3 Building Statistical Shape Models..................................................................................... 37 

3.1 Shape Parameterization............................................................................................................. 37 

3.2 Procrustes Analysis ................................................................................................................... 37 

3.3 Statistical Analysis in Active Shape Modelling ........................................................................ 39 

3.4 Performance of Active Shape Model ........................................................................................ 41 

3.5 Conclusions............................................................................................................................... 43 

Chapter 4 Solving the Correspondence Models ................................................................................. 44 

4.1 Comparison Criteria.................................................................................................................. 45 

4.1.1 Generalization Ability ....................................................................................................... 46 

4.1.2 Specificity ......................................................................................................................... 48 

4.1.3 Compactness ..................................................................................................................... 49 

4.2 Manual Landmark Placing........................................................................................................ 50 

4.3 Iterative Closest Point Algorithm ............................................................................................. 51 

4.4 Shape Matching-based Correspondence................................................................................... 52 

4.5 Shape Properties-based Correspondence .................................................................................. 54 

4.6 Finding Correspondence in a Learning Process........................................................................ 56 

4.7 Minimum Description Length Approach.................................................................................. 59 

4.7.1 Correspondence and Statistics........................................................................................... 60 

4.7.2 “Pile Up” Problem............................................................................................................. 64 

4.8 Conclusions............................................................................................................................... 67 

Chapter 5 A 2D Minimum Entropy Approach.................................................................................... 71 

5.1 2D Shape Parameterization and Correspondence Manipulation............................................... 72 

5.1.1 A Piecewise-Linear Representation of Re-Parameterization............................................. 75 



 4 

5.1.2 A Recursive Definition of Re-Parameterization................................................................ 76 

5.2 An Entropy Based Objective Function ..................................................................................... 77 

5.2.1 Previous Work ................................................................................................................... 78 

5.2.2 An Entropy Based Objective Function.............................................................................. 82 

5.3 Optimization Strategy............................................................................................................... 84 

5.3.1 Introduction of SVD.......................................................................................................... 87 

5.3.2 Connection between PCA and SVD in the Application of ASM....................................... 88 

5.3.3 Derive a Gradient from the MEM Cost Function.............................................................. 88 

5.3.4 Gradient Descent Optimization......................................................................................... 90 

5.3.5 Scheme of Optimizing MEM ............................................................................................ 92 

5.4 Conclusions............................................................................................................................... 93 

Chapter 6 Experiments and Results in 2D.......................................................................................... 96 

6.1 Experiments on Closed Curves................................................................................................. 96 

6.2 Experiments on Open Curve with Fixed Ends........................................................................ 112 

6.3 Experiments on Open Curves with Free Ends ........................................................................ 121 

6.4 Experiments on Improved Control of “Pile Up”..................................................................... 130 

6.5 Conclusions of the Experiments ............................................................................................. 135 

Chapter 7 A 3D Minimum Entropy Approach and Experiment Results........................................... 137 

7.1 Discussion on 2D Work .......................................................................................................... 137 

7.2 Limitations of 2D MEM and MDL......................................................................................... 138 

7.3 MEM on 3D............................................................................................................................ 142 

7.3.1 Surface Extraction........................................................................................................... 143 

7.3.2 Shape Parameterization................................................................................................... 145 

7.3.3 A Continuous Parameterization....................................................................................... 150 

7.3.4 Shape Re-Parameterization ............................................................................................. 152 

7.3.5 Initial Parameterization ................................................................................................... 155 

7.3.6 MEM in 3D ..................................................................................................................... 156 

7.3.7 Optimization Scheme ...................................................................................................... 157 

7.4 Experimental Results on 3D Datasets..................................................................................... 159 

7.4.1 Visualization of 3D Datasets ........................................................................................... 159 

7.4.2 3D Experiments on Artificial Datasets............................................................................ 162 

7.4.3 3D Experiments on Hippocampus................................................................................... 173 

7.4.4 Conclusions on 3D Experiments and Discussion............................................................ 183 

Chapter 8 Applications of Using MEM & MDL for Classification ................................................. 185 

8.1 Introduction of Datasets.......................................................................................................... 186 

8.2 Classification Method............................................................................................................. 190 

8.3 Experimental results ............................................................................................................... 192 

8.4 Conclusions............................................................................................................................. 199 

Chapter 9 Conclusions and Future Work.......................................................................................... 201 

9.1 Contributions .......................................................................................................................... 201 

9.2 Future Work ............................................................................................................................ 203 

9.2.1 Discrimination Analysis .................................................................................................. 203 

9.2.2 More Datasets.................................................................................................................. 205 

9.2.3 MEM with Appearance Information ............................................................................... 207 

9.2.4 MEM with Arbitrary Topology Structure........................................................................ 208 

9.2.5 Shapes with Non-Linear Variations................................................................................. 210 



 5 

9.2.5.1 Introduction of Nonlinear PCA.................................................................................... 210 

9.2.5.2 Experiments on Nonlinear MDL.................................................................................. 214 

9.2.5.3 Conclusions.................................................................................................................. 216 

9.3 Final Conclusions ................................................................................................................... 217 

Appendix.......................................................................................................................................... 219 

Data Format .................................................................................................................................. 219 

References........................................................................................................................................ 223 

Publication List ................................................................................................................................ 231 

Publication Samples......................................................................................................................... 232 



 6 

List of Figures                     

Figure 1.1 Six hand outlines are shown here...................................................................................... 14 

Figure 1.2 Top, left to right: images with Gaussian noise added with SNR 5.0, 2.5, 0.5................... 17 

Figure 1.3 This graph shows a segmentation example performed by using Active Shape Model ..... 18 

Figure 1.4 The shape variation discriminates between hippocampus shape ...................................... 20 

Figure 3.1 22 facial profiles are marked by an expert. ....................................................................... 39 

Figure 3.2 The training set of silhouettes. .......................................................................................... 41 

Figure 3.3 From left to right, this graph shows the effect of moving................................................. 42 

Figure 4.1 Shown is an example of  “Corresopondence Problem”. ................................................. 45 

Figure 4.2 This graph is a brief and vivid introduction of the concept Generalization ability and 

Specificity........................................................................................................................................... 46 

Figure 4.3 Here is an example of labelled brain MR image from Cootes’s ....................................... 51 

Figure 4.4 An example of using ICP to roughly register two shapes is shown. ................................. 52 

Figure 4.5 An example of result by applying Wang et al’s algorithm to a set of hippocampus ......... 53 

Figure 4.6 Here is an example of using PCA and ICA to extract the underlying distribution............ 54 

Figure 4.7 Shown is the mean shape with red marks ......................................................................... 57 

Figure 4.8 This is a demonstration of wrong correspondence............................................................ 60 

Figure 4.9 This is a demonstration of correct correspondence........................................................... 60 

Figure 4.10 A comparison between optimal results and results from MDL....................................... 66 

Figure 4.11 A comparison between manual results and MDL results. ............................................... 67 

Figure 5.1 The node placement method is shown here...................................................................... 73 

Figure 5.2 On the left, it shows the parameterization and re-parameterization function. .................. 74 

Figure 5.3 Seven points are used to describe the re-parameterization function. ................................ 75 

Figure 5.4 These three graphs show the recursive representation of re-parameterization on an open 

curve................................................................................................................................................... 77 

Figure 5.5 This graph shows the process of the steepest gradient optimization................................. 91 

Figure 5.6 This graph is a brief scheme of optimization used in MEM algorithm............................. 93 

Figure 6.1 24 Contours of metacarpals, with different orientations, sizes and shapes....................... 97 

Figure 6.2 24 contours of metacarpals with 8 nodes on them, landmarks are found by MEM.......... 98 

Figure 6.3 24 contours of metacarpals with 8 nodes on them, landmarks are found by MDL........... 98 

Figure 6.4 Shown is the process of node value changing during the experiment on metacarpals...... 99 

Figure 6.5 A demonstration of the output of the cost-function......................................................... 100 

Figure 6.6 Shown is the mean shape with red marks ....................................................................... 101 

Figure 6.7 Generalization Ability comparison on closed curve. ...................................................... 101 

Figure 6.8 Specificity comparison on closed curve. ........................................................................ 102 

Figure 6.9 Compactness comparisons on closed curve.................................................................... 102 

Figure 6.10 Graph shows the 8 landmarks found by our MEM algorithm on the dataset of 15 flying 

birds.................................................................................................................................................. 106 

Figure 6.11 A demonstration of output of cost-function during optimization. ................................. 107 

Figure 6.12 Shown is the process of node value changing during the experiment on flying birds. . 108 

Figure 6.13 Graph shows the effect of first 3 shape variations. ....................................................... 109 

Figure 6.14 Graph shows the 8 landmarks found by our MEM algorithm on the dataset of 20 Mickey 

Mouse like cartoons. ........................................................................................................................ 110 

Figure 6.15 Graph shows the performance of cost function. ........................................................... 110 

Figure 6.16 Graph shows the process of node value changing during the experiment on Mickey 



 7 

Mouse like cartoon............................................................................................................................111 

Figure 6.17 Graph shows the effect of first three shape modes. .......................................................111 

Figure 6.18 Examples of 32 contours of femurs taken from different patients. ............................... 113 

Figure 6.19 Results after optimization by MEM.............................................................................. 114 

Figure 6.20 Results after optimization by MDL. ............................................................................. 114 

Figure 6.21 A demonstration of node movement during optimization............................................. 115 

Figure 6.22 A demonstration of output of cost-function. ................................................................. 116 

Figure 6.23 Shown is the mean shape with red marks ..................................................................... 116 

Figure 6.24 Generalization Ability comparisons on open curve with fixed ends............................. 117 

Figure 6.25 Specificity comparisons on open curve with fixed ends............................................... 118 

Figure 6.26 Compactness comparisons on open curve with fixed ends........................................... 118 

Figure 6.27 Results after applying MEM on open curve with free ends.......................................... 122 

Figure 6.28 Results after applying MDL on open curve with free ends........................................... 122 

Figure 6.29 This figure shows nine nodes’ movement during optimization. ................................... 124 

Figure 6.30 Cost function performance during optimization ........................................................... 125 

Figure 6.31 Shows the mean shape with red marks ......................................................................... 125 

Figure 6.32 Generalization Ability comparison on open curve with free ends. ............................... 126 

Figure 6.33 Specificity comparison on open curve with free ends. ................................................. 126 

Figure 6.34 Compactness comparisons on open curve with free ends............................................. 127 

Figure 6.35 22 datasets of silhouettes contours are shown here....................................................... 131 

Figure 6.36 Results of MDL analysis of silhouettes contours.......................................................... 132 

Figure 6.37 Results of MEM analysis of silhouettes contours......................................................... 133 

Figure 6.38 Performance of the MEM cost-function is shown here ................................................ 133 

Figure 6.39 The changes of node value during optimization is shown in the graph. ....................... 134 

Figure 6.40 The changes of node value during optimization is shown in the graph. ....................... 135 

Figure 7.1 Correspondence points found by MEM are shown in this graph.................................... 139 

Figure 7.2 Correspondence points found by MDL........................................................................... 140 

Figure 7.3 Coloured round masks are used to emphasize the differences between corresponding 

structures. ......................................................................................................................................... 141 

Figure 7.4 The definition of voxel/cube is shown in this graph. ...................................................... 144 

Figure 7.5 The cube is cut by object surface on yellow points, red point is in the background....... 144 

Figure 7.6 This is an example of 3D human brain data.................................................................... 146 

Figure 7.7 This shows a magnified display of a brain surface constructed...................................... 146 

Figure 7.8 A demonstration of mapping between shape and sphere ................................................ 147 

Figure 7.9 This graph shows mapping and inverse mapping between shape space and spherical space.

.......................................................................................................................................................... 147 

Figure 7.10 The colour coded correspondence is shown in this figure. ........................................... 149 

Figure 7.11 How a new point is inserted into an existing triangle ................................................... 151 

Figure 7.12 This graph shows how the sphere is re-parameterized.................................................. 153 

Figure 7.13 An example of kernels on unit sphere........................................................................... 154 

Figure 7.14 An initial shape re-parameterization is shown on the unit sphere................................. 155 

Figure 7.15 An illustration of 3D model building scheme, from reference [44]. ............................. 158 

Figure 7.16 Colour Mapping method............................................................................................... 160 

Figure 7.17 An example of the mean shape with the first shape variation vector............................ 162 

Figure 7.18 Parts of the 3D artificial datasets are shown here. ........................................................ 165 

Figure 7.19 Left: Original cuboids with colour. Right: Unit sphere, with corresponding colour..... 166 



 8 

Figure 7.20 A demonstration of angle preserving during shape mapping. ....................................... 167 

Figure 7.21 MEM results of 12 out of 20 cuboids are shown in this figure,.................................... 168 

Figure 7.22 From top to bottom: Generalization Ability, Specificity, and Compactness. ................ 169 

Figure 7.23 Left is correspondence found by MEM and right is from MDL results........................ 170 

Figure 7.24 A demonstration of linear and nonlinear shape variations. ........................................... 172 

Figure 7.25 12 out of 21 datasets of hippocampus are shown.......................................................... 176 

Figure 7.26 6 datasets and Conformal Mapping results are shown.................................................. 177 

Figure 7.27 Top to bottom: Comparisons of Generalization Ability, Specificity, Compactness ...... 178 

Figure 7.28 This is an example mean shape drawn from 21 training sets........................................ 181 

Figure 7.29 The first three modes of the MEM hippocampus model............................................... 181 

Figure 7.30 The first three modes of the MEM hippocampus model............................................... 182 

Figure 8.1 This graph shows manual segmentation on a male profile photo and a female profile 

photo................................................................................................................................................. 187 

Figure 8.2 This graph shows the points placed on the face contours during manual segmentation. The 

red contours are the same as in Figure 8.1. ...................................................................................... 188 

Figure 8.3 This graph shows twelve of the segmented examples from 131 facial profiles collected.

.......................................................................................................................................................... 189 

Figure 8.4 This graph shows the correspondence points found by MDL......................................... 193 

Figure 8.5 This graph shows the correspondence points found by MEM........................................ 194 

Figure 8.6 On the first row, the first three subjects .......................................................................... 195 

Figure 9.1 The model was built for visualizing the shape difference between Normal subjects and 

Schizophrenic subjects. .................................................................................................................... 204 

Figure 9.2 A brain atlas example...................................................................................................... 206 

Figure 9.3 From top to bottom, it shows different views of brain.................................................... 207 

Figure 9.4 The graph shows the process of mapping the original shape vector to a higher............. 211 

Figure 9.5 Results of nonlinear MDL analysis of facial contours.................................................... 215 

Figure 9.6 Results of performance of cost function......................................................................... 215 

Figure 9.7 Movement of nine nodes are shown here........................................................................ 216 



 9 

List of Tables  

 

Table 6.1. A quantitative analysis on the three criteria comparisons based on Area Under the 

Curve. The smaller corresponding value is marked in bold character...................................... 103 

Table 6.2. ANOVA table of the Generalization Ability on datasets of closed curves................ 105 

Table 6.3. ANOVA table of the Specificity on datasets of closed curves.................................... 105 

Table 6.4. A quantitative analysis on the three criteria comparisons based on Area Under The 

Curve. The smaller corresponding value is marked in bold character...................................... 119 

Table 6.5 ANOVA table of the Generalization Ability on datasets of open curves with fixed ends.

.......................................................................................................................................................... 120 

Table 6.6 ANOVA table of the Specificity on datasets of open curves with fixed ends............. 121 

Table 6.7. A quantitative analysis on the three criteria comparisons based on Area Under the 

Curve. The smaller corresponding value is marked in bold character...................................... 127 

Table 6.8 ANOVA table of the Generalization Ability on datasets of open curves with free ends.

.......................................................................................................................................................... 129 

Table 6.9 ANOVA table of the Specificity on datasets of open curves with free ends............... 130 

Table 7.1. A quantitative analysis on the three criteria comparisons based on Area Under the 

Curve. The smaller corresponding value is marked in bold character...................................... 170 

Table 7.2 ANOVA table of the Generalization Ability on datasets of 3D Cuboids.................... 171 

Table 7.3 ANOVA table of the Specificity on datasets of 3D Cuboids........................................ 172 

Table 7.4 ANOVA table of the Generalization Ability on datasets of 3D hippocampus........... 179 

Table 7.5 ANOVA table of the Specificity on datasets of 3D hippocampus............................... 179 

Table 7.6. A quantitative analysis on the three criteria comparisons based on Area Under The 

Curve. The smaller corresponding value is marked in bold character...................................... 180 

Table 8.1 This table shows the scores of different methods........................................................ 196 

Table 8.2 This table shows Sensitivity and Specificity of the four classication results............. 198 

Table 8.3 This graph shows some of the wrong prediction results made by MEM, MDL and 

manual model................................................................................................................................. 198 



 10 

Abstract 

 

Statistical Shape Models (SSM) have wide applications in image segmentation, surface 

registration and morphometry. This thesis deals with an important issue in SSM, which 

is establishing correspondence between a set of shape surfaces on either 2D or 3D. 

Current methods involve either manual annotation of the data (current ‘gold standard’); 

or establishing correspondences by using segmentation or registration algorithms; or 

using an information technique, Minimum Description Length (MDL), as an objective 

function that measures the utility of a model (the state-of-the-art). This thesis presents in 

principle another framework for establishing correspondences completely automatically 

by treating it as a learning process. Shannon theory is used extensively to develop an 

objective function, which measures the performance of a model along each eigenvector 

direction, and a proper weighting is automatically calculated for each energy component. 

Correspondence finding can then be treated as optimizing the objective function. An 

efficient optimization method is also incorporated by deriving the gradient of the cost 

function. Experimental results on various data are presented on both 2D and 3D. In the 

end, a quantitative evaluation between the proposed algorithm and MDL shows that the 

proposed model has better Generalization Ability, Specificity and similar Compactness. 

It also shows a good potential ability to solve the so-called “Pile Up” problem that 

exists in MDL. In terms of application, I used the proposed algorithm to help build a 

facial contour classifier. First, correspondence points across facial contours are found 

automatically and classifiers are trained by using the correspondence points found by 

the MDL, proposed method and direct human observer. These classification schemes 
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are then used to perform gender prediction on facial contours. The final conclusion for 

the experiments is that MEM found correspondence points built classification scheme 

conveys a relatively more accurate gender prediction result.  

     

Although, we have explored the potential of our proposed method to some extent, this is 

not the end of the research for this topic. The future work is also clearly stated which 

includes more validations on various 3D datasets; discrimination analysis between 

normal and abnormal subjects could be the direct application for the proposed algorithm, 

extension to model-building using appearance information, etc.  
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Chapter 1 Introduction 

 

This PhD thesis deals with a fundamental issue in Statistical Shape Models (SSM), 

which is the “Correspondence Problem”. In previous approaches of using SSM, 

researchers [1] [13] have been using manual marking correspondences to facilitate this 

procedure. However, this subjective and error-prone manual work is against the spirit of 

image processing which is pursuing an automatic fashion. Recently, Minimum 

Description Length (MDL) [2] has emerged as the state-of-the-art approach to find 

correspondence points across datasets automatically. However, due to the pitfall of the 

MDL cost function, the original cost function often conveys wrong results, which have 

some of the landmarks congested or overlapped on one location. This behaviour is 

reported in several references [2], [32], [38], [49], and is named as “Pile Up” problem. 

Therefore, this drawback of the cost function will be the main issue discussed in the 

next few chapters. The author of MDL also proposed three objective metrics in order to 

evaluate automatic correspondence finding methods from different researchers. We will 

use those three metrics as the main evaluation methods to compare our proposed 

method with MDL. 

 

In the scope of the thesis, we are aiming to develop a new framework of established 

correspondence across datasets automatically. The new framework should hold some 

desired features: 

1) Automatic, no human inference is needed; 
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2) Flexible, the methods can work on both 2D and 3D datasets; 

3) Robust, the proposed algorithm should have good potential to deal with complex 

shapes, in which case the state-of-the-art algorithm encounters “Pile Up” problem; 

4) Better, by using the same accepted metrics, the new proposed method should convey 

better results compared with the state-of-the-art algorithm. 

 

In this thesis, “correspondence” is referred to the meaningful anatomy correspondence 

points. An illustration of correspondence is shown in Figure 1.1 

 

Figure 1.1 Six hand outlines are shown here, the “correspondence” in the thesis is interpreted 

as anatomy correspondence. For example, in this graph, fingertips of different hands are 

corresponding to each other. The correspondences are identified by using the same colour. 

 

Applications of using SSM are vast. For example, the work can deal with image 

segmentation, registration, and shape modelling. This work can also be applied to both 

2D and 3D, by using different shape parameterization schemes. The aim of the proposed 
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work is to find an optimal automatic Statistical Shape Model building method, which 

can help the shape model achieve better performance in the applications we just 

mentioned. In this sense, we will introduce the applications of SSM in the next 

paragraphs, to Image Segmentation, Morphological Analysis, and Image Registration. 

 

1.1 Model Based Shape Segmentation 

 

In computer vision, segmentation refers to the process of partitioning a digital 

image into multiple segments (sets of pixels or voxels). The goal of segmentation is to 

simplify and/or change the representation of an image into something that is more 

meaningful and easier to analyze. Image segmentation is typically used to locate objects 

and boundaries (lines, curves, etc.) in images. More precisely, image segmentation is the 

process of assigning a label to every pixel in an image so that pixels with the same label 

share certain visual characteristics. Segmentation is also an important procedure for 

future image processing. For example, identifying and/or evaluating anatomical areas of 

interest, pre-processing for image registration, preparation for analysis with respect to 

functional metrics, preparation for surface extraction. 

 

Segmentation can be performed manually by drawing along the area of interest by an 

expert. However, in practice, we will not use this method since it is prone to operator 

bias, fatigue, and is time-consuming. Although manual segmentation is recognized as 

the gold standard, Davies et al have shown that it will not always hold right under some 
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evaluation properties [2] due to the operator’s bias, and making an algorithm run in an 

automatic manner is the ultimate goal for image processing. 

 

Some low level methods, such as edge detection and region growing (for example 

snakes) will often be trapped in an invalid, incomplete and erroneous shape. They will 

perform even worse when parts of the boundary are missing. An additional remedy has 

to be performed for ensuring a valid shape. Shape constrains are often used for this 

purpose. For example, in 2D cases, researchers often make the shape contour first order 

or second order smooth. In the bottom of Figure 1.2, Canny Edge Detector (CED) is 

used to capture ROIs, which are hidden in the noise background. The key point for CED 

algorithm is that a Gaussian convolution is applied before edge detection. The 

convolution performs as a low pass filtering so that all the high frequency information is 

recognized as non-edge information. By designing a suitable low pass filter, the ideal 

edge information can be easily found by an edge detection method. From the 

segmentation results, we can see that ROI is still mixed with noise. Therefore, there is 

no guarantee for good quality segmentation. In addition, prior knowledge such as the 

cut off frequency for the low pass filter is hard to estimate. 
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Figure 1.2 Top, left to right: images with Gaussian noise added with SNR 5.0, 2.5, 0.5 (with 

each shows the final contour found by ASM); Bottom, left to right: corresponding contour 

found by Canny edge detector [3]. This graph is from Reference [26]. 

 

A promising approach is to segment shapes using a priori information or knowledge. 

For example, properties of shape such as shape variations, position, scale, and rotation. 

Bearing this information in mind, we can achieve a resultant shape that looks the closest 

to valid shape(s) in the training set. This becomes useful in blurred or incomplete data, 

see Figure 1.2. 

 

Another example of model-based segmentation is shown in Figure 1.3. Active Shape 

Model (ASM) is used for this particular task [99]. Statistical Shape Model based 

segmentation [37, 61] uses information from both edges from images and prior 

information of shapes. For example, the new shape segmented by ASM will look like 

the ones in the training set. Therefore, in the segmentation task, even though parts of the 

shape boundary is mixed in the image noise, a proper segmentation result can still be 
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achieved. 

 

 

Figure 1.3 This graph shows a segmentation example performed by using Active Shape Model, 

which is from reference [99]. Left: a DXA image shows the spine from the seventh thoracic 

vertebra (T7) to the fourth lumbar vertebra (L4). Right: the segmentation achieved by using 

the Active Shape Model. 

 

1.2 Shape Model for Morphological Analysis  

 

Morphology comes from the calssical Greek concept morphé, meaning shape or form. 
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Morphology is the study of similarities and differences in the anatomy of organisms. 

Within this thesis, there are two major concepts of Morphological Studies:  

1. Studies on homologous structures within the same group. For example, datasets 

collected from the same subject but in different time, it is quite useful to 

analyze shape changes within time.  

2. Studies on homologous structures between groups with same genetic but 

different characteristics. In medical imaging, brain is an interesting subject, 

which attracted many researchers. One of the reasons is that, as an example, the 

structure of hippocampus is related with many illnesses. It is useful to identify 

the shape difference between subjects with illness and control/normal subjects 

[22], since it will become easier to identify and/or predict subjects with illness.    

 

Morphology can have a direct application in the study of shape, which will be presented 

in this thesis. An example of morphological analysis is the study on hippocampus shape 

of healthy and schizophrenic patients [4] as in Figure 1.4. By using the Minimum 

Description Length algorithm proposed in [44], ASM can be used as a classification tool 

in examining the difference between the control subjects and a new dataset. 
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Figure 1.4 The shape variation discriminates between hippocampus shape of a group of 

healthy (-) and schizophrenic (+) patients. This graph is from [44]. 

      

Different approaches have been implemented for morphological studies, many of which 

are only applicable to sets of manually annotated landmarks. Although some automatic 

methods exist, they have their advantages and disadvantages. We wish to develop a new 

automatic algorithm, which can keep their excellence and reduce or get rid off the 

disadvantages of the previous automatic methods. 

 

1.3 Shape Model of Surface-based Group Registration  

 

Registration is the process of alignment of medical imaging data, usually for the 

purpose of comparisons or measurement [5]. The registration technique can be used in a 

broad range of applications. For example: image guided surgery, analysis of function 

images, characterization of normal and abnormal anatomical variability, detection of 
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change in disease stages over time, visualization of multimodality data and atlas 

guidance for anatomical interpretation. Many previous algorithms rely heavily on 

landmarks that have been placed during scan or surface features like pixel intensity, 

curvatures. However, sometimes there are no locatable anatomical landmarks available. 

We want to build a framework that can find these landmarks or features automatically, 

so surfaces can be registered easily by using these landmarks. 

 

1.4 Evaluations Methods 

 

Validation is a very important process of checking whether the newly built model 

satisfies certain criteria, and compares the results with the ones from other models. 

Therefore, in the thesis, we have to compare our model with models built by other 

researchers. In 2D, most researchers compare the optimal results with manual 

landmarks, which is the so-called “Gold Standard”. However, this process is subjective 

and error prone. Moreover, it becomes almost impossible to mark data in 3D cases, 

where landmarks with high curvatures are rare. Fortunately, there are some general 

accepted approaches for evaluating different algorithms, namely Generalization Ability, 

Specificity and Compactness [22].   

 

Briefly, Generalization Ability of a model measures its capability to represent unseen 

instances of the class of the object modelled. Specificity is the ability to measure 

whether the model can generate instances of the object that are close to those in the 
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training set. Finally, Compactness is the ability to use fewer parameters to cover more 

shape instances in the training sets. Therefore, we can adopt these three approaches to 

measure the performance. More details about these three evaluation criteria will be 

presented in section 4.1.   

 

1.5 Conclusions and Contributions 

 

The main contributions of this thesis are listed as follows: 

1) A new objective function, which provides a measurement of model utility 

Different from the previous MDL approach, we propose using a new entropy 

measurement of model utility to find the correspondence points. During experiments, 

we discovered that there are some good features in our proposed approach compared 

with MDL approach.   

2) The gradient of the MEM cost function is derived for a faster convergence 

In this thesis, I also discuss the problem of deriving the gradient of the cost-function. 

With the help of gradient information, some more sophisticated optimization method 

can be used in the algorithm. Compared with optimizing the cost-function with Simplex, 

steepest gradient optimization method can achieve stabilization faster. 

3) A more shape feature preserving shape parameterization and 

re-parameterization method 

Unlike the simplified version of spherical harmonics used in the MDL approach by 

Davies, we use conformal mapping as our 3D shape parameterization method. If 
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moving a point on the shape in the original shape space, the point in the corresponding 

sphere will move in the coherent direction. A more efficient re-parameterization method 

is used, unlike MDL approach, a local kernel is used therefore, a new kernel can be 

added without disturbing other landmarks. 

4) The framework is applicable to both 2D and 3D datasets 

The proposed algorithm does not have restriction on the dimensionality of the datasets; 

therefore, it can be flexibly applied to both 2D and 3D. 

5) Comparisons with MDL algorithm based on objective metrics 

Comparisons between MDL and the proposed method are performed on different 

datasets and different scenarios, both for 2D and 3D. In 2D, closed shapes, open shapes, 

and shapes with and/or without free ends are examined. In 3D, both artificial cuboids 

and real medical image datasets are used.  

6) Using MEM method to perform automatic classification and make comparisons 

with similar schemes built by other methods 

Classifiers are constructed by using correspondence points found by MEM, MDL and 

human manual landmark placing. These three schemes, together with direct human 

guessing, are performed on facial contours to perform gender prediction. The 

conclusion is that the MEM can help automatic building classification and make 

classification accuracy on the datasets tested relatively more accurate than the other 

three methods. 

7) Solving the “Pile Up” problem 

In the MDL approach, there is a well known “Pile Up” problem. When the problem 

happens all the points or parts of the points will pile up at some area. This is 
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intrinsically wrong behaviour since that a points is found in the existing points and 

should not be overlapped with other points. This well reported problem is effectively 

eliminated by using the MEM cost-function.  

 

1.6 Thesis Organization 

 

The thesis will be organized as follows: 

Chapter 2 Deformable Models. 

Chapter 3 Building Statistical Shape Models. 

Chapter 4 Solving the Correspondence Models. 

Chapter 5 A 2D Minimum Entropy Approach. 

Chapter 6 Experiments and Results in 2D 

Chapter 7 A 3D Minimum Entropy Approach and Experiment Results  

Chapter 8 Applications of Using MEM & MDL for Classification  

Chapter 9 Conclusions and Future Work 
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Chapter 2 Deformable Models 

 

In this chapter, we will describe briefly the available literature on the topics, which are 

relevant to this work. Over the years, a number of different approaches have been 

developed for deformable models.  

 

2.1 Snakes 

 

The use of deformable models in image segmentation became popular when Kass et al 

[6] created the ‘Snakes’. They describe an active contour model (so-called ‘snake’), that 

deforms inside of an image forming an ideal contour. The snake is driven by a 

combination of forces: an image force, an internal force and an external force. 

 

The internal energy represents the smoothing forces on the curve, and the image forces 

represent the image-derived forces that contain the curve to take the shape of the feature. 

The image force attains a minimum when the snake matches an image contour. The 

snake converges when the forces achieve equilibrium. 

 

The problem with the snake’s original version was that if the initial curve was not close 

enough to an edge, it had difficulty in being attracted to the optimal edge. In addition, 

the curves in the original snake had a tendency to shrink on themselves. To improve the 

convergence properties, dynamic programming can be used for energy minimization [7]. 
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This also allows the objective function to include hard local constraints. Some 

robustness to the problem of finding a good initial guess was achieved by the addition 

of an extra force, which made the contour have a more dynamic behaviour. In another 

paper [8], the curve was considered to be a balloon that was being inflated. From an 

initial oriented curve, an extra pressure force was added, which pushed the curve out as 

if air was being introduced inside the closed contour. Model-based snakes [9] allow 

deformations based on a template model, but take its shape information into account 

only in a very limited and general way.    

  

2.2 Thin-Plate Splines 

 

Mathematically, a thin-plate spline ),( yxf  is a smooth function, which interpolates a 

surface that is fixed at the landmark points iP  at a specific heightih . If one imagines 

this surface as a thin metal plate, then this plate will take a shape in which it is least bent. 

Bending energy is defined here as the integral over 2R of the squares of the second 

derivatives,  

( )[ ] ( )∫∫ ++=
2

222 2,
R

yyxyxx dxdyfffyxfI  (2.1) 

Bookstein [10] proposed this method. The solution for bending energy function is given 

by a solution of linear equations. In below we will discuss some implementation details 

of the Thin Plate Splines (TPS) algorithm. For example, there are two sets of points, 

which are corresponding to each other on different plates and each has n points. 
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The TPS weights x and a can be obtained from solving the linear system: 
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Once the above linear system is solved, the coordinates along z-axis can be interpolated 

from: 

[ ] [ ]1 2 3 1 2
1

( , ) ( , , )
n

i i i
i

z x y a a x a y wU c c x y
=

= + + + −∑  (2.6) 

With bending energy given by: 

T
bF w Kw=  (2.7) 

 

The problem for this method is that a large number of homologous pairs of anatomic 
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point landmarks should be set. So this method becomes difficult when there are not 

enough true landmark points that can be accurately marked. Landmarks are typically 

needed throughout the image because local changes to the spline have global effects. 

These landmarks must be reliable and robust, because the thin-plate spline forces these 

points exactly into correspondence. Also, while the transformation has interesting 

statistical properties, especially in terms of decomposing the warp, it can result in 

impossible wrappings. For example, the space can fold over itself, resulting in a 

non-homeomorphic warping, when the geometry is particularly warped. This technique 

is intended primarily as a method for the statistical comparison of shape through the 

location of homologous landmarks, and not as a general technique for image warping 

[11]. 

 

2.3 Statistical Shape Models 

 

Statistical models try to capture the actual patterns of variability found in a class of 

objects, rather than making arbitrary assumptions. In this section, we will present a brief 

review of the Statistical Shape Models technique. 

 

In 1989, Staib and Duncan [12] used a Fourier decomposition to form an orthogonal 

shape basis for a set of contours. Normalization is performed to achieve invariance to 

similarity transformations and starting point. The Fourier coefficients are recorded over 

the training set and modelled using a set of distributions. New examples are generated 
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by sampling independently from the distributions and reconstructing the shape. In 

practice, different coefficients are often correlated over the training set, so independent 

sampling from the individual distributions can lead to invalid examples, which means 

that the new example is not like any other in the training set. In addition, there may be 

important information in the boundary over a large range of frequencies, leading to a 

non-compact model. 

 

In 1995, Cootes, et al [13，33] constructed the “Point Distribution Models (PDM)” from 

training sets of 2D boundaries. Given a set of labelled training examples, Procrustes 

Analysis [14] is first applied to minimize the sum of squared distances to the mean of 

the set. The aligned training set forms a cloud in the two dimensional space. Then, they 

used Principal Component Analysis (PCA) [15] to pick up the main axes of the cloud, 

and model the first few, which count for the majority of the variations. The shape model 

is then: 

PbXX +=  (2.8) 

WhereX is the mean of the aligned training examples, P is a matrix whose columns are 

unit vectors along the principal axes of the cloud, and b is a n2  element vector of 

shape parameters with n  is the number of points used in the examples. New shapes are 

generated by sampling independently from the distribution along each axis and 

reconstructing using the principal vectors. In most cases, Cartesian coordinates are 

sufficient, but in cases where parts of shapes can rotate, it may be useful to use angular 

coordinates instead [66].   
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In 1998, Cootes, et al [16] created a more powerful tool, the Active Appearance Model 

(AAM), which is a generalization of the widely used ASM approach. Rather than using 

only the shape contour coordinates, AAM uses all the information including the 

intensities in the image region covered by the target object. The model is generated by 

combining a model of shape variation with a model of the appearance variations from 

the training set. To build a model of the grey level appearance, they wrap each example 

images so that its control points match the mean shape. For reducing the global lighting 

variations, the grey information is filtered out by normalizing the examples. Again, PCA 

is applied to the normalized data; a new model can be obtained: 

  

g gg g P b= +  (2.9) 

Whereg is the mean moralized grey level vector, gP is a set of orthogonal modes of 

variation and gb is a set of grey level parameters. 

The shape and appearance of any example can thus be summarized by the vectors b  

and gb . For each example, the new shape vector is composed by: 

( )

( )

T

T
g g

W b WP x x

b P g g

 − 
=     −   

 (2.10) 

 

2.4 Physical Models 

 

First, there is no true physical model for deformation between individuals, for example, 

one individual's anatomical structure does not literally result from the deformation of 

another individual. Researchers use analogous physical models to enforce topological 
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properties on the deformation. Without them, the results could be almost completely 

arbitrary. 

 

Broit et al developed the Fluid model [17], which is based on the theory of elasticity 

developing restoring forces, which are proportional to the deformed distance. The basic 

idea for this method is that it simulates the physical deformation of fluid except for the 

smallest deformations. Such elastic transformations prevent the atlas from being fully 

deformed into the shape of the study. This slight flaw is overcome by the viscous fluid 

method [18], which allows the restoring forces to relax over time. For viscous fluids, the 

viscosity depends on the relevant velocity and scale length of the flow and the viscosity 

is the reciprocal of the Reynolds number.  

 

The linear elastic model is based on Hooke’s law. The loading modulus and unloading 

modulus are the same for the model. The restoring force holding the template together 

grows proportionately with the displacement from the original configuration of the atlas. 

The force is proportional to the displacement. Pentland and Sclaroff [19], and Nastar 

and Ayache [20] describe a method of building shape models from a prototype 

represented by a set of nodes attached to each other by springs. The mass of each node 

and the stiffness of each spring are specified by two matrices. These matrices are used 

to solve a generalized eigenproblem to obtain the ‘modes of vibration’ of the structure. 

 

Therefore, Physical models try to give more intuitive shape variations, but the resulting 

shape is often “invalid”， which means the new generated shape does not look like what 
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it should do. This is due to the fact that shape variations are not from prior knowledge of 

training set but from simulations of physical world. Therefore, this physical deformation 

does not necessarily result in a valid shape.   

 

2.5 Group Registration 

 

Image registration is not directly related to deformable models. However, since 

registration can result in a deformable model indirectly, for example, in references [102], 

[103], the authors used registration to find correspondence points of internal organs and 

use these correspondence points to construct a deformable model to analyze the 

functionality of the organs. Therefore, we will discuss the basic ideas behind 

registration algorithms. Image registration is the process of establishing point-by-point 

correspondence between two or more images of a scene. This process is very important 

in medical image processing. Many algorithms exist to solve this difficult problem. A 

good survey can be found in [56]. This family of algorithms are mainly composed of 

two parts: one is transformation and the other one is a metric for local matching.  

 

In simple cases, the transform class [ ] [ ]( ), ,x y x y′ ′ = Γ can be defined by a set of 

parameters such as translation, angle of rotation, scale etc. A simple representation of 

rotation, scale and translation in 2D is shown below.   
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θ θ
θ θ

′ −
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′
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Where parameter θ  is the rotation angle; xt and yt are translations along x and y 

direction; a is the scale factor. It may be a linear affine transformation or a non-linear 

transformation. Shape deformation can also be represented by B-splines coefficients on 

a regular grid. The details on B-spline registration can be found in reference [57]. The 

physical model we mentioned in the previous paragraph can also be used as a 

deformation method.    

 

The metric or body force encourage images to move and fit better to each other. Options 

for the metrics can be information theoretic measures e.g. mutual information, sum of 

squared difference or template intensity difference etc. 

 

Based on the discussions above, many algorithms [58], [77], [78] have been proposed 

and published. For example, in [58], Crum et al, uses partial differential equations to 

model the properties of viscous water as a driving force.   

 

2.6 Point Correspondence by Using Flow Field  

 

Another big family of finding correspondence methods, is by using flow field theory to 

identify point correspondence between images. The shape correspondence can thus be 

achieved by defining a shape contour explicitly on one image. In this family of point 

correspondence, Optical Flow (OF) [89] and Particle Velocity Imaging (PIV) [90] 

showed good performance. These two algorithms were originally used to recover 
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motion filed between images taken as times series, for example see references [91], [92], 

[93]. The difference between OF and PIV is that PIV simulates the nature of fluid 

physics. The PIV assumes that the fluid is in a tunnel (boundary condition) and the 

volume of the fluid is uncompressible (constrains). On the other hand, OF simulates the 

human instinct that motion is brought by and identified by motion of light. Therefore, 

the basic rule for OF is that the intensity between corresponding points should hold 

constant. However there are two main problems in OF and PIV methods. First, the 

intensity constancy will not always hold, even though Brox et al [94] have proposed 

using both intensity and intensity gradient as a remedy method, which he called 

“highest accuracy of method”. However, the method seems to be quite sensitive to the 

weighting components that can force the results to be very random. Therefore, in order 

to cope with one particular application, the method has to be previously trained on some 

prepared samples. Moreover, in order to suppress the aperture problem, some extra 

constrain components, such as isotropic, anisotropic or bilateral filter, has to be 

incorporated. In this way, the method becomes more sensitive to weighting. In addition, 

the algorithm may not recover the motion field on edge areas; therefore, it is not a good 

option for performing shape analysis. In order to use this particular model, the 

weighting component has to be trained using the training set. Since our goal is to 

recover the correspondence field between segmented shape contours, we will not 

discuss more details about image correspondence.       
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2.7 Conclusions  

  

Although each approach has its own distinguishing advantages and application 

conditions, the Active Shape Model (ASM) of Cootes et al have shown some good 

properties, which other algorithms do not have. For example: 1) Without using prior 

information of the shape, other methods or algorithms often results in a invalid shape 

which does not look like genetically the same as examples in the training set. 2) Unlike 

ASM, which have explicitly incorporated correspondence points into training set for use, 

other methods do not use and define the correspondence directly in the algorithm.  

 

Despite of the advantages in the ASM, the critical difficulties in ASM on how to 

construct the correct correspondences across datasets automatically are not well 

explored. An ill-defined correspondence can result in ill alignment, so that a new shape 

represented by the model will turn out to be invalid and will not look like shapes in the 

training set. In practice, manual annotation can solve this problem. However, this time 

consuming and tedious work is very subjective and error prone. It may be possible for 

an expert to mark 2D datasets, but it becomes mission impossible in 3D. Therefore, an 

automatic correspondence building method becomes so demanding. This PhD thesis 

will discuss some of the relevant review work on how to find correspondence points 

automatically in 2D and 3D cases, and propose a new framework for solving the 

automatic correspondence-finding problem. 

 

The new proposed method is to some extent parallel to and at the same time quite 
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different from the current state-of-the-art algorithm Minimum Description Length 

(MDL) [2]. The similarity exists in the way that both the new proposed approach and 

MDL are using a “learning” process to find the optimal correspondence across the 

datasets. For example, the correspondence is found through optimizing the predefined 

cost function. The properties of the correspondence have already been predefined in the 

cost function. Therefore, optimizing the cost function will be equal to find the optimal 

correspondence given the current condition/datasets. There are two main differences 

between the proposed method and MDL. Firstly, the proposed method uses Entropy 

rather than Description Length as the main metric to measure the utilities of the Active 

Shape Model. Secondly, the new proposed method chooses an automatic calculated 

weighting component for each energy component rather than just summing them up as 

MDL does. In order to investigate the potential ability of the new proposed model, a 

quantitative analysis was conducted between our proposed model and the 

state-of-the-art model by using some generally accepted metrics, which will be 

disclosed in the next few chapters. 
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Chapter 3 Building Statistical Shape Models 

3.1 Shape Parameterization 

 

Statistical Shape Models can be extracted from a set of n shapes. Each example object is 

marked with a fixed number of landmarks in Cartesian coordinates ( ii yx ,  ni K3,2,1= ), 

each of which marks a particular point on the object, which we call correspondence 

points. Then, the shape is represented by concatenating all the node coordinates into one 

single vector. The 2D case example of the shape vector is in Equation 3.1 and the 

extension to 3D is quite straightforward as in Equation 3.2. 

 

( )T
nn yxyxx ,,,, 11 K=  (3.1) 

( )T
nnn zyxzyxx ,,,,,, 111 K=  (3.2) 

 

The training examples are aligned into a common co-ordinate frame by using Procrustes 

Alignment [14] to reduce correspondence error introduced by rotation, translation and 

scaling. Shape error is directly measured by the absolute distance between 

corresponding points. 

 

3.2 Procrustes Analysis 

 

In this section, we will give out some details about the frequently used Procrustes 
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Analysis (PA) algorithm [14]. The PA algorithm has many forms; the Generalized 

Orthogonal Procrustes Analysis (GPA) is the most useful one. After landmarks are 

placed, GPA is used to filter out the effects from location, scale and rotation, and retain 

geometrical information. A general description of this algorithm is shown here: 

 

1) Select one example from the training set as the target shape. (i.e. the first shape 

in the set is taken as the approximate mean shape)  

2) Align the shapes with reference to the target one 

a. Calculate the centroid of each shape 

b. Move all centroids to the origin 

c. Normalize each shape to unit size 

d. Rotate each shape to the newest approximate mean shape 

3) Calculate the new approximate mean from roughly aligned shapes 

4) Go back to step 2, if mean shapes from step 2 and 3 are different 

5) The end (shapes are aligned ) 

     

Centroid is achieved by calculating the mean of all landmarks on each shape. In here, 

we will discuss the rotation in 3-dimension case. Given a point with coordinate vector 

[x, y, z], the rotation will be attained by multiplying this vector with rotation matrix.  

Rotation with angle a about x-axis is: 

1 0 0

0 cos( ) sin( )

0 sin( ) cos( )

a a

a a

 
 − 
  

 (3.3) 

Rotation with angle b about y-axis is: 
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Rotation with angle c about z-axis is: 

( ) sin( ) 0

sin( ) cos( ) 0

0 0 1

cos c c

c c

− 
 
 
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 (3.5) 

Then, the rotation about a general axis can be achieved by a combination of the above 

rotations about x-axis, y-axis and z-axis.  

An example of 2D Procrustes Analysis on datasets of facial profiles are shown in Figure 

3.1.  

 
Figure 3.1 22 facial profiles are marked by an expert. They are aligned by using Procrustes 

Analysis. The corresponding landmarks can be identified by the same colour.   

 

3.3 Statistical Analysis in Active Shape Modelling 

 

The main contribution for the active shape modelling is achieved by Cootes et al [40]. 
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They made an assumption that shape vectors x have a Gaussian distribution for the 

training set. We can build a linear model as follows 

Pbxx +=  (3.6) 

Where, x is the mean shape, P  is the orthogonal shape variations matrix, and b  is 

the weighting shape vector. 

The approach will be explained in details here. First, the mean shape can be calculated 

using Equation 3.7, where sn  is the number of samples. Shape vector is composed by 

concatenating landmark coordinates into a single vector.  

∑
=

=
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i
i

s

x
n

x
1

1
 (3.7) 

Then the normalized covariance matrix will be calculated from: 

( )( )
1

1 sn
T

i i
s

D x x x x
n

= − −∑  (3.8) 

At last, eigenvalue (mλ ) and eigenvector (p) will be extracted from matrix D  

mmm pDp λ=  (3.9) 

The eigenvalues are ranked naturally in a descending order according to their values. 

The eigenvector represents the directional variations for ASM and the normalised 

corresponding eigenvalue shows the proportion of variations is undergoing along this 

eigenvector. Normally, we choose the first M eigenvector to cover enough variations 

(say 98%). 

It is calculated by Equation 3.10. 
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Where pN , is the total number of shape variations captured by PCA and iλ  is the thi   

eigenvalue from the shape covariance matrix. 

 

3.4 Performance of Active Shape Model 

 

An example of performance of ASM is shown here. We use a training set of 22 

silhouettes of faces as in Figure 3.2. 

 

 
Figure 3.2 The training set of silhouettes. 

 

These examples are taken by a digital camera. An expert segmented and marked these 
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datasets by hands. (The datasets are from Thodberg after personal communication; these 

datasets are also used in reference [38]). From the description above, it can be 

concluded that by adjusting the weighting parameter in Equation 3.6., we can see the 

effect of different variations captured from training set (Figure 3.3).  

 

 
Figure 3.3 From left to right, this graph shows the effect of moving the first three weighting 

components independently. The shapes show that mean shape minus 
mλ3 , mean shape 

and mean shape plus 
mλ3 . M is the order of the weighting component. 

 

Therefore, the new shape we want to match to, can be generated by selecting different 

values of { mb }. We only select { mb } in the interval of [ mm λλ 3,3− ] for generating a 

valid shape. The probability distribution for this { mb } is assumed to be a Gaussian 

shape m

m

m

b

m
b

eP λ

πλ
2

)( 2

2

1 −
= . Figure 3.3 shows the first three modes of variation by 

independently varying the values of the first three shape parameters, (mb , m=1, 2, 3) in 

equation (3.6), by mλ3± . In this shape model, 65 marks are used and 7 modes can 

capture 98% of the variation of the training set (Equation 3.10). 
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3.5 Conclusions 

 

In this chapter, we introduced the technique details of statistical shape model. The main 

idea behind Active Shape Model is to use Principal Component Analysis (PCA) to 

derive shape variations from training sets. Firstly, shape is represented by concatenated 

shape coordinates. After Procrustes Alignment shape difference introduced by 

translation, rotation and scaling has been removed. Therefore, after applying PCA to the 

shape covariance matrix, the shape variation distribution can be extracted easily. Finally, 

the new shape can be represented by using a mean shape plus shape variations with 

weighting component. From Figure 3.3, we can observe that the Active Shape Model 

can capture the true shape variations from the training set. However, the essential 

problem of using this technique is how to establish correspondence points automatically. 

Traditionally, manual labeling has been employed to tackle this problem. However, it is 

quite error prone, subjective and time consuming. Manual labeling on 3D datasets may 

take weeks to accomplish. Therefore, it is within the spirit of Computer Science to 

derive an automatic technique to find correspondence points automatically. In the next 

chapter, we will discuss in detail solving this correspondence problem.                
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Chapter 4 Solving the Correspondence Models 

 

Point correspondence is a fundamental problem in using Active Shape Model to solve 

image processing problem. It is thus a critical problem, which can also be related to 

many medical imaging applications. For example, the whole work for registration either 

pair-wise or group-wise is finding the correspondence on either the surface or the 

interior of the object. With the correct correspondence, we can register different images 

from different modalities or different time acquisitions. Since information gained from 

different images in the clinical track of events can usually offer complementary nature. 

For segmentation problems, it is quite easy to solve; if we know the correspondence 

points and can construct a Shape Model. Normally, when the boundary is blurred or 

mixed with other tissue or organ, Shape Model can offer a better solution. In reference 

[59], readers can find some segmentation results by using Active Shape Model. 

 

In this chapter, several approaches for solving this correspondence problem will be 

discussed. Especially, the last one (Minimum Description Length approach), which 

builds the correspondence in a learning process, has shown many advantages over other 

algorithms. Therefore, MDL will be the main target for comparison with our proposed 

method. Before introducing the techniques in literature, we start from some neutral and 

general accepted comparison criteria, which can be utilized to evaluate the performance 

of different techniques. 
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Figure 4.1 Shown is an example of  “Corresopondence Problem”. The correspondence points 

are identified by using the same colour. These images are from reference [100].   

  

4.1 Comparison Criteria    

 

In the development of Statistical Shape Modelling Methods, due to lack of general 

accepted ground truth, it is very important for different researchers to have an objective 

basis for comparing different approaches. For example, in Figure 4.1, authors in 

reference [100] have found some correspondence results across shapes. The 

correspondence is identified by the same colour. However, just from subjective 

evaluation, it is quite difficult to evaluate the correspondence’s correctness. In this 

section, we will describe the ‘benchmark’ comparison criteria, which were first 

introduced in Davies’s paper [44].  

 

The following paragraphs will describe three properties of an ideal model: 

Generalization Ability, Specificity and Compactness. All measures described allow 
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meaningful comparisons between different models constructed from the same training 

set. Figure 4.2 will illustrate the notion of Generalization Ability and Specificity. On the 

left is the example of training sets. In the middle, the blue shows a kind of shape model, 

which can capture parts of the pentacle accurately, but not the whole pentacle. Therefore, 

the middle model is specific but not general. On the right, it shows another shape model 

which can cover all the shape examples in the training set but the shape model does not 

look like a pentacle. Therefore, the right model is general but not specific. 

 
Figure 4.2 This graph is a brief and vivid introduction of the concept Generalization ability 

and Specificity. Red is training set and blue is sample set generated from model’s probability 

distribution function.   

 

4.1.1 Generalization Ability 

 

The generalization ability (G) measures a model’s ability to represent unseen instances 

of the class of object. This is a fundamental property as the goal of building a model is 
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to fit the model to a new example. If a model is over-fitted to the training set, it will be 

unable to generalize to unseen examples. 

 

A leave-one-out reconstruction can be used to measure the ability of each model from 

the training set. It means that a model is built using all but one member of the training 

set and then fitted to the one member excluded previously. The error with which the 

model can describe the unseen example is measured and the process is repeated until all 

examples are tested. The approximation error representing this generalization ability can 

be the averaged error over the complete set of examples. 

 

The pseudo code below represents the whole process: the Generalization Ability is 

measured as a function of the number of shape parameters M, used in the 

reconstructions, N is the number of dataset members: 

 

For M=1…N-2 
  For i=1…N 

       Build the ASM model from the training set, with ix  removed; 

       Reconstruct the unseen shape using M shape parameters: 

m
i

m
i

M
mii bPxMx 1)( =∑+=′  

       Calculate the sum of squares approximation error: 

                 
22 )()( MxxM iii ′−=ε   

       Calculate the mean squared error: 

                 2
1

1
( ) ( )sn

i iG M M
N

ε== ∑  

  End of i 
End of M 
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The set of correspondences used to build the models and to calculate the approximation 

error between the model and each excluded example should be obtained independently. 

Unfortunately, this would make some of the experiments impractical. In practice, the 

correspondence is obtained by considering all of the training shapes that have been used. 

This action will tend to overestimate the absolute error, but allow an unbiased 

comparison of different models.  

 

Therefore, for comparison of two models A  and B , if )()( MGMG BA ≤  for all M or  

for a given M, we can conclude that the Generalization Ability of method A  is better 

than that of B. 

 

In order to evaluate the significance of differences when using different M, we estimate 

the likely error in )(MG . The standard error of )(MG , which is derived from the 

sampling distribution for a mean is given by [104]: 

1
)( −

=
s

MG
n

σσ  (4.1) 

Where σ  is the sample standard deviation of )(MG , and M  is the number of 

modes/shape variations used in the evaluation. 

 

4.1.2 Specificity 

 

Specificity (S) measures a model’s ability to generate instances of the object class that 

are similar to those in the training set. It will be spontaneous to evaluate this ability by 
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generating a population of instances using the model and comparing them to the 

members of the training set. We define this measure (as a function of M, where M is the 

number of shape variations/mode used in the measurement) as: 

2

1

)(
1

)( ∑
=

′−=
N

j
jj xMx

N
MS  (4.2) 

Where jx  are shape examples generated by the model (by choosing values of b in 

ASM in the range over the training set randomly) and jx′  is the nearest member in the 

training set to jx . Therefore, if )()( MSMS BA ≤  for all M or a given M, A is more 

specific. The standard error of )(MS  is defined as:  

1
)( −

=
N

MS

σσ  (4.3) 

Where σ , is the sample standard deviation of )(MS , N is the number of samples (in 

our experiment 10000=N ), and M  is the number of shape variations/modes used in 

this evaluation. 

  

4.1.3 Compactness 

 

Compactness (C) measures a model’s ability that uses as few parameters as possible to 

cover the same variance. It is helpful to calculate this ability as a plot of cumulative 

variance: 

∑
=

=
M

m

mMC
1

)( λ  (4.4) 
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Where mλ  is the thm  largest eigenvalue and C(M) is the cumulative variance of the 

thM  mode. If )()( MCMC BA ≤  is true for all shape modes or some of the shape modes, 

A is more compact. 

As for Generalization Ability and Specificity, the likely error in C(M) is also given. The 

standard deviation of the sampling distribution of the variance of the thm node is given 

as: 

m

sn
m λσ λ

2=  (4.5) 

where mλ  is the thm  largest eigenvalue of the covariance matrix. The standard error 

of C(M) will be defined as: 

∑
=

=
M

m

m

s
MC n1

)(

2 λσ  (4.6) 

where M is the number of shape variations/modes used. 

 

4.2 Manual Landmark Placing 

 

The first Active Shape Model was built by Cootes et al [21]. In this approach, they built 

correspondence by manual landmark placing on hand shape outlines. Although manual 

annotation has been accepted as a ground truth and the Shape Model built by these 

points also often lead to a valid shape, there is no guarantee for good performance 

because it is subjective, and error-prone. Manual landmark placing is also a very time 

consuming process. In some 3D cases, it may take a month for a specialist to mark these 

datasets. Another disadvantage can be seen from Davies’s paper [22]. In this paper, the 
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so-called ground truth has been verified that it will not always show desired properties. 

According to the results of reference [22], Minimum Description Length (MDL) 

outperformed the “Ground Truth” in the metric of Generalization ability, Specificity and 

Compactness. In Figure 4.3, shows a set of manually placed landmarks on MR image. 

 
Figure 4.3 Here is an example of labelled brain MR image from Cootes’s (reference [16]) 

website. 

 

4.3 Iterative Closest Point Algorithm 

 

Iterative closest point (ICP) is a straightforward registration algorithm to find 

correspondences where shapes are close to each other when shapes are roughly aligned. 

Besl et al [24] describe this method as a way to register a pair of shapes and define 

correspondences between them. An initial correspondence is established by finding the 

closest points between shapes and an initial transformation is also defined. An iterative 

procedure is then adopted for finding the convergence to a local minimum. The cost 

function for this convergence is defined by the squared distance between shapes. Finally, 
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the best solution is selected from results starting from different initial positions. In 

Figure 4.4, shows the results of two curve registered by ICP. 

 

 

Figure 4.4 An example of using ICP to roughly register two shapes is shown. 

 

The correspondence solution for this kind of method is straightforward and simple to 

implement. However, it is quite arbitrary to claim correspondence after shapes are 

roughly aligned. Therefore, it is unacceptable to say that correspondence is defined by 

the closest distance.  

 

4.4 Shape Matching-based Correspondence 

 

Stalib et al [25] applied flexible constraints on deformable shape, in the form of a 

probabilistic deformable model, to the problem of segmenting 2D shapes and finding 

correspondence. The parametric model is based on the elliptic Fourier decomposition of 

the boundary. Probability distributions on the parameters of the representation bias the 

model to a particular overall shape while allowing for deformations. Boundary finding 

is formulated as an optimization problem of maximizing a posterior objective function. 
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The problem for this algorithm is that when the training set is limited, the final 

segmented shape will be unlike any shape from training set (bad Generalization 

Ability).   

 

Figure 4.5 An example of result by applying Wang et al’s algorithm to a set of hippocampus. 

Details please see [26]).   

 

Wang et al [26] overcame this problem by adding on a purposely trained matrix onto the 

covariance matrix from training set. In this way, the shape variations become more 

global and rigid. However, this global variation is often objective and not subjective to 

the datasets. 

 

In reference [27], Su et al used Independent Component Analysis (ICA) [63] to capture 

shape variations, they claimed that by using ICA, more local and accurate boundaries 

can be detected. A Markov Random Fields [86, 87, 88] based cost function was used to 

facilitate the relations between points, and final optimal segmentation results can be 

achieved in maximizing the posterior probability fashion [85]. In Figure 4.5, we show a 

demonstration of difference between ICA and PCA. From Figure 4.6, it can be seen that 

PCA assumes that distributions are normal to each other; ICA can capture real 

undergoing distributions which are not orthogonal to each other. 
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Figure 4.6 Here is an example of using PCA and ICA to extract the underlying distribution  

from a cluster of datasets. On the left, red arrows show the distribution found by PCA and on 

the right shows the distribution found by ICA. 

 

Although compared with Wang’s [26] results, Su’s [27] results were improved in terms 

of accuracy, the essential problem of automatic landmark placing is not solved. Since, 

during experiments, they used training datasets marked by an expert and 

correspondence is achieved only when they use trained ASM to segment a new dataset. 

 

4.5 Shape Properties-based Correspondence 

 

Another intuitive approach to establish correspondence is to use similar local shape 

features. Curvature is the most often used criterion. For example, such an approach is 

established by Varun et al [28]. In the paper, a shape descriptor based on curvature 

distribution along a geodesic neighbourhood is used. Thresholds of the curvature are 

adopted to make the descriptor more robust against non-rigid shape deformation. Once 

the descriptor is computed for every point or feature vertex of two shapes to be matched, 
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a one-to-one correspondence can be built. The advantage for this technique is that it can 

achieve correspondence relevantly quicker. Moreover, this algorithm is based on a very 

intuitive way of people’s general idea about the world. Therefore, it can solve some 

simple shapes with distinguish features, like buildings with sharp corners, etc. However, 

for medical images, it is always not that simple. Since, medical images are involved 

with normal organs with smooth surface (e.g. liver) or abnormal organs with random 

appeared curvatures (e.g. tumour). Therefore, it is still not ideal for solving the finding 

correspondence problem by using curvatures.  

 

Hill et al [29] built a framework for automatic landmark identification. It employs a 

binary tree of corresponding pairs of shapes to generate landmarks automatically on 

each set of example shapes. The correspondence algorithm locates a matching pair of 

sparse polygonal approximations, one for each of a pair of boundary by minimizing a 

cost function using a greedy algorithm. The greedy algorithm produces a set of points 

that lie on regions of high curvature. The cost function expresses the dissimilarity in 

both the shape and representation error (with respect to the defining boundary) of the 

sparse polygons. Therefore, minimizing the cost function will convey the 

correspondence. The method, however, allows invalid correspondences between the 

examples. Nevertheless, this pitfall has been overcome by flattening the surface before 

establishing correspondence, which is using an angel preserving technique to map a 

shape to a sphere. Although some results can be achieved automatically, the 

correspondence is still in a completely arbitrary manner, since different correspondence 

can be achieved according to the same theory. All in all, using the curvature to build up 
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the initial correspondence set may also jeopardise the solidity of correspondence. 

 

4.6 Finding Correspondence in a Learning Process  

 

The state-of-the-art technique for finding correspondence, so far, is to treat 

correspondence as an optimization problem and find correspondences by optimizing an 

explicit objective function. This will actually allow good properties according to the 

criteria for building the cost function. 

 

Different authors [24, 31, 36,] have proposed using the trace of the model covariance as 

the objective function. 

∑=
m

m
TraceFunction λ  (4.7) 

where }{ mλ  are the eigenvalues of the covariance matrix. By minimizing this function, 

landmarks are moved towards the mean, directly minimizing the total variance of the 

model. Therefore, it is the same as the Compactness (C metric) measure. An example of 

using this technique can be seen from Figure 4.8. From Figure 4.7, we can see that the 

standard deviation has been decreased. As discussed in Davies [35], this model 

preferred a model with equal spaced landmarks and it is sensitive to initialization 

positions. The other problem is that although a compact model can be guaranteed, its 

Compactness is also overestimated such that the proposed model scored less on 

Generalization ability and Specificity than Minimum Description Length [35]. Although 

the trace-model can use less parameters, however the model’s bad Generalization and 
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Specificity is not ideal.  

 

  

Figure 4.7 Shown is the mean shape with red marks, the whiskers starting from the marks 

indicate three standard deviation of the first two principal components. Left: The model 

is built from equal spaced initialization. Right: The model is built with traces of shape 

covariance matrix. 

 

Hill et al [30] adopt a curvature matching dynamic programming algorithm to obtain an 

initial correspondence and then optimize an objective function for the final 

correspondence. The objective function is the trace of the model covariance matrix plus 

a correction term that penalizes points for moving off the original shape boundary. 

1

n

Trace ii
i

Function a ε
=

= +∑  (4.8) 

Where in Equation 4.8, if the shape covariance matrix is A, the cost-function is the sum 

of the elements on the main diagonal of A plus a correction term. Though some of the 

plausible results have been achieved, there is some potential drawback in this algorithm. 

Points can be moved off the boundary due to bad reconstructions. Several other authors 

also reported using trace of model as objective function to find correspondence points as 

in [24], [36], [62]. 
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The determinant of the model covariance matrix as an objective function, is adopted by 

Kotcheff et al in reference [31]. The cost-function is shown in Equation 4.9. 

log( )m
Det

m

Function λ=∑  (4.9) 

Where }{ mλ are the mth eigenvalues of the covariance matrix. Similar to the previous 

cost function based on trace of the covariance matrix, this cost function effectively 

measures and minimizes the volume spanning in the variation space but still it favours a 

compact model. Moreover, it achieves a meaningless minimum when any eigenvalue 

approaches zero. To overcome this problem, Kotcheff et al add a small constantε , and 

then the cost function becomes: 

log( )m
Det

m

Function λ ε= +∑  (4.10) 

They argue that an appropriate value of ε  can be estimated from the noise on the 

training shapes. 

 

Kotcheff’s model [31] will actually lead this model to a more compact one. The 

problem for Kotcheff’s work is that it degenerates minima and thus requires an arbitrary 

parameter to keep it well defined. The arbitrary parameter will affect the convergence 

properties of the model. Correspondences are using a piecewise-linear function. Strong 

constraints have been used on the re-parameterization functions to make sure the final 

converged shape is valid. However, this shape re-parameterization can not be extended 

into 3D easily. Though a genetic algorithm (GA) has been used to optimize the 

objective function by manipulating the parameterization function, it is still relatively 

slow. Normally it takes a day to run the whole algorithm on 2D and can not cope with 
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complex objects or large datasets. Although, the Minimum Description Length (MDL) 

also cast the finding correspondence problem in a learning process, since MDL is our 

main target for comparison, the background theory of this algorithm is in the next 

section. 

 

4.7 Minimum Description Length Approach  

 

Most recently, the Minimum Description Length (MDL) has become the state-of-the-art 

approach for solving the correspondence problem. The first paper using MDL as an 

objective function to solve correspondence problem is published by Davies et al [23]. 

This very first paper publication about MDL model soon attracted a lot of attention to 

this field [32], [49], although the algorithm is still quite hard to duplicate and implement. 

In addition, Davies quantitatively demonstrated that MDL has better performance than 

Hill’s et al [30] and Kotcheff’s model [31]. In reference [49], the author provided a 

simpler form of the MDL cost function and the gradient of the cost function, which 

makes the algorithm easier to implement. Although, some improvements have been 

made to the MDL approach, the model is not flawless yet. As have been reported by 

Davies in [23] and also Thodberg in [32], the cost function will be trapped in a 

meaningless local minimum, when parts of the landmarks will be trapped in a one place. 

We will introduce the MDL theory by first discussing the rationale behind it. 
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4.7.1 Correspondence and Statistics 

 
Figure 4.8 This is a demonstration of wrong correspondence. On the top row it shows the dataset 

with manual marks. Correspondence is achieved by placing nodes with the same colour. Bottom 

row left: A new shape generated by the Shape Model, which was constructed from the datasets. It 

can be seen that due to the wrong correspondence, the new generated shape does not look like any 

example in the dataset. Bottom row right: The statistics in feature space is formed as an elliptical 

shape. 

 

Figure 4.9 This is a demonstration of correct correspondence. On the top row, it shows the dataset 

with manual marks. Again, correspondence is identified by the same colour. Bottom row left: A new 

shape generated by the Shape Model, which was constructed from the datasets. It can be seen that 

with right correspondence, the new generated shape share the same genus with dataset. Bottom row 

right: The statistics in feature space is formed as a line. 
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Statistics is often used to describe the properties of group behaviour. Therefore, it is 

straightforward to think about finding correspondence as manipulating its statistics. In 

Figures 4.8 and 4.9, a demonstration of a plausible connection between right 

correspondence and statistics is shown. It can be seen from the above figures that, with 

correct correspondence points marked on the training set, the shape space will become 

more “compact” and orderly. Therefore, varying correspondence will be “equal” to 

varying statistics. 

 

Davies et.al. use an information based function to describe the information amount used 

to represent this shape model parameters and data. The “best” model, which defines the 

correspondence, is characterized as the one that minimizes the description length of the 

training set, arguing that this leads to models with good properties. They argue that the 

simplest description of the training set will interpolate and/or extrapolate best. The 

notion of the ‘simplest description’ is formalized by Minimum Description Length 

(MDL), which is from the Shannon Coding codeword length [39]: 

pnlengthDescriptio 2log−= bits or pln− nats (4.11) 

The basic idea is to minimize the length of a message required to transmit a full 

description of the training set, using the model to encode the data. The whole cost 

function is based on the measurement of two parts: the first part is the information 

needed to describe the encoded model, which includes the mean shape and the shape 

modes; the second is the information for the training shapes, which is the ip  from the 

model Probability Density Function (PDF). Since, the information to describe the mean 

shape X  and the eigenvector can be assumed to be constant for a given training set, 



 62 

thus only information needed to describe training shapes will be calculated. 

The term of “Description Length (DL)” is defined as follows: for example, a set of 

possible events {i} with probabilities {ip }, thus, the codeword description length of 

event {i} is equal to iplog− . The whole training set of shapes will be encoded in this 

way which includes Encoded Model (mean shape, model modes etc) and each training 

shape ( ip  from model probability distribution function). It is quite reasonable to 

assume that information amount for describing the mean shape and modes is assumed to 

be constant for a given training set, thus only the second term will be calculated. 

Therefore, the total cost function is simply the sum of the descriptions for all weighting 

variables as in Equation 4.12. 

∑= DLTotalDL  (4.12) 

For example, when all the shapes are roughly marked. An Active Shape Model can be 

built according to the coordinates of these landmarks. Each shape can then be 

constructed by the mean shape, shape variations and weighting vector (recall Equation 

2.8, PbXX += ). As have been discussed in previous chapters, each component in the 

weighting vector can be assumed to comply with a Gaussian distribution. Therefore, the 

Description Length for each component of each weighting vector can be easily 

calculated by the definition of Description Length and the total Description Length is 

sum of Description Length of components in each weighting vector. 

 

Thodberg [38] and Ericsson [49] improve this MDL technique and derive a new form of 

the final description length such as: 
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Description Length = ∑ mL  

                )/log(1 cutmmL λλ+=  for cutm λλ ≥  

                cutmmL λλ /=          for cutm λλ <  

(4.13) 

This cost function has the property that it tends to zero when all eigenvalues tend to 

zero and both mL  and mm ddL λ/  are first order derivative continuous at the cut-off 

cutλ . In other words, when mλ  falls below cutλ , the benefit of decreasing it further is 

no longer logarithmic, but levels off and reaches a minimum one unit below the 

transition point. A mode with eigenvalue cutλ  contributes on average a variance of 

Ncut /λ  per mark, and since the rms radius of the aligned shapes is N/1 , the mode 

contributes a standard deviation per rms radius of cutcut λσ = . So cutλ  can be 

evaluated by cutσ  that is defined by the noise level of the training set. 

 

In summary, MDL cost function is based on the assumption that all shape variations are 

independent and equally weighted for each other. Each shape variation is normal to each 

other but they are not independent to each other. For example, in the N dimensional 

space, given (N-1) shape variations we can use the rule that the sum of all squared shape 

variations is equal to one to calculate the remaining shape variation. What is more, in 

reality, the assumption “might” work for some applications, however when the training 

set is loose or the covariance matrix is ill defined, the assumption will not hold right. 

For example, the shape variations with smaller eigenvalue will most likely to be blurred 

with noise. This may be one of the main reasons why researchers use the first few 

eigenvector to construct the shape model. We therefore suggest using automatic 

calculated statistical weights for each energy component, which will be discussed later.   
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4.7.2 “Pile Up” Problem 

 

The results shown by Davies [35] were encouraging, and soon attracted a lot of 

attention. However, it has drawbacks. The problem is the reported “Pile Up” problem 

[22], [32]. The problem is a situation when all or parts of the landmarks in the Active 

Shape Model piled up in some locations and fail in conveying a reasonable 

correspondence shape model. This is due to the fact that the optimal MDL result is a 

local minimum, which has to be near to the initial position. It is quite straightforward to 

realize that when all landmarks pile up into one point, the cost function of MDL will 

achieve global minimum. This problem happens quite often when the landforms of 

shapes are complicated [32]. 

 

In Davies’s thesis [22], he suggested a possible solution in avoiding this “Pile Up” 

problem. He suggested using the single master example method. In the optimization 

method, one of the shapes in the training set is set to be fixed. For this particular 

example, the landmarks have been marked and used as a reference shape. Therefore, 

this shape will influence other shapes. What was hoped is that the solution will 

somehow relate to the result with the accuracy of the first master shape. However, 

applying this manual reference shape is against the sprit of automatic shape modelling. 

Other researchers [32] have reported that this method of a single fixed master example 

is not sufficient to keep the whole set in place. For example, the free endpoints of open 

curves can drift systematically to one side or the other, neglecting the master example. 

Another example is in closed curve, if we have a large dataset, say 100, the statistical 
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weight of the majority can outweigh the single master example and gain of the run-away 

exceeds the cost of a single outlier easily.  

 

Another solution to this problem is a programming technique that we can reinitialize 

parameters until the right optimal result is found. For example, if one initialization 

parameterization meets the “Pile Up”, another initialization can be used until no 

problem is met. However, we need observer interference to select the correct 

correspondence result, which otherwise can lead the algorithm into an arbitrary and 

subjective manner, and the results will be prone to error as well. Therefore, several 

credible results will be achieved according to different initialization and it is hard to 

justify which one holds the right correspondence. 

 

Hans [32] has reported that using a curvature based external function or a node penalty 

can avoid this “Pile Up” problem. Therefore, the cost function is now composed of 

using both MDL and an external term. The theory is that this external cost function will 

favour some areas (for example, areas with high/low local curvature) so that it will trap 

landmarks and limit the landmark’s moving ability into a small area. However, the “Pile 

Up” problem might be solved in this way. Adding an external cost function changes the 

correspondence problem back to an arbitrary manner. Furthermore, in complex cases, 

where high curvature is present (for example, face profiles), the external term may be 

overweighed. Whereas is an organ like the liver there is lack of change on the surface. 

The MDL term can overwhelm the curvature term easily. Therefore, in practice 

weighting those two terms in different circumstances will be a very hard problem. 
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The “Pile Up” problem can be imagined clearly as the points that run away from the 

correct positions and pile up in some locations; therefore, the shape model fails in 

describing the rest of the shapes and in reaching a smaller description length than the 

optimal correct one. The reason for Minimum Description Length’s misbehaviour is 

quite complex. However, we can attribute this to the drawback of Description Length. 

For example, if all the points on the shapes fall into one point, it will attain minimum, 

which is actually a global minimum. Here, we perform an experiment regarding to this 

“Pile Up” problem.  

 

Twenty-four artificial datasets as the ones used in Figures 4.8 and 4.9 were generated. 

The shapes are rectangles with a bump moving from the left to right. Since the ground 

truth of datasets is known, we can make a comparison between the ground truth and the 

MDL results. From Figure 4.10, it can be observed that the MDL results are different 

from the ground truth. We therefore calculate the MDL output for both ground truth 

position and the MDL converged position. In the ground truth position, the MDL output 

is 20.135 and for the converged position the MDL cost function output is 18.591.    

 

 

Figure 4.10 A comparison between optimal results and results from MDL. The top row shows 

the optimal results; the bottom row, shows the MDL results. 
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Another experiment is performed on the datasets of human face profiles. We compare 

the MDL converged results and some of the manual landmarked results as in Figure 

4.11. 

 

 
Figure 4.11 A comparison between manual results and MDL results. On the top it shows the 

manual landmarks results; On the bottom, it shows the MDL results. 

 

It can be seen that some of the points in the chin area piled up. The MDL cost function 

output for both cases: manual results is 29.43 and the MDL result is 27.6643. 

 

4.8 Conclusions 

 

Based on the knowledge offered by reviewing the published literature on finding 

correspondence across shapes, we can see that some promising results have been 

achieved, although they suffer from a number of problems. For example, the manual 

landmark placing is too error prone and time consuming, especially in 3D cases; ICP 
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registration provides a quick way to find correspondence where shapes are close to each 

other. However, close in distance does not necessarily mean that they are corresponding 

to each other. By giving different initialization positions, several converged results can 

be found and there is no evidence shown how to pick up the correct correspondence 

from these convergence results. For shape matching based algorithm, the essential 

problem of how to automatically find correspondence points across datasets is not 

solved. Therefore, it is still a segmentation technique. Correspondence points will be 

achieved in the same time, when a new shape is segmented by using an Active Shape 

Model constructed from manually marked datasets. For shape properties based 

techniques, it can be seen that for a soft organ, such as liver, there are no obvious shape 

properties to model. Davies et al [35] showed the most appealing and intuitive solution 

to tackle the correspondence problem so far. They find the correspondence across the 

datasets in a learning process. The objective cost function is based on information 

theory which mainly measures the utilities (Description Length) used for one model. 

They argued that the model, which has the smallest Description Length, would hold the 

correspondence. However, problems have been reported by Thodberg [38] and Davies 

[35], that due to a small pitfall of the cost function, shapes will “Pile Up” from the right 

correspondence and pile up in some areas. Davies [35] suggested using one marked 

example to influence other examples in the training set. In theory, given a large dataset, 

one single marked example is not enough to influence the rest of the examples. 

Thodberg [38] suggested using external cost function as a solution to original MDL cost 

function to constrain the moving ability of nodes during optimization. The cost function 

can be extracted from shape properties such as curvature. Then again, this external cost 
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function becomes hard to define according to different landforms of datasets. Therefore, 

it allows different correspondence to be achieved given different weights to the cost 

function. 

 

As a result, a new method that can have the good correspondence properties and do not 

suffer the problem of “Pile Up” without using external energy function is required. In 

term of good correspondence properties, we are referring to the performance of Active 

Shape Model constructed from the automated identified correspondence landmarks. 

This performance evaluation can be achieved by common accepted measurements, for 

example the Generalization Ability, Specificity and Compactness. These three criteria 

have been used by many other researchers in [95] [96] [97] [98]. Due to lack of ground 

truth, researchers often use manual marked results to evaluate the performance of 

different methods. However, these manual results are quite subjective, and dependent on 

user’s experience. Different users may conclude different manual results. Rather than 

trying to retrieve the ground truth, the three comparison methods evaluate the 

performance of the model from a different perspective, which evaluates the properties 

of the shape model built from correspondence points found by different algorithms. In 

validations, all these three estimates are measuring the error quantity of the 

corresponding ability. Something we should keep in mind is that, for example in 

Generalization Ability, the smaller Generalization Ability value is, the more general the 

model is. Within those three criteria, Generalization Ability and Specificity are more 

important, since in most of the cases, researchers care more about the performance of a 

model rather than how many parameters were used. For example, if model A with 12 



 70 

parameters and model B with 10 parameters can represent same variations, which 

means )()( BCAC > , but if )()(),()( BSASBGAG << , in general case, we will still 

choose model A. Another possible approach to evaluate different algorithms is to cast 

the constructed shaped model in a real medical image application such as image 

segmentation or shape classification/recognition. 

 

The following chapters will describe our new proposed method, which is also based on 

information theory and group-wise optimization that can hopefully deal with the 

limitations of both Davies’s and Thodberg’s paper to solve the “Pile Up” problem. 
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Chapter 5 A 2D Minimum Entropy Approach 

 

This chapter will provide a brief description of our proposed approach, which builds 

correspondences in a learning process and in a group-wise manner. We also note that a 

pair-wise method exists in literature [60]. In this chapter, we will focus on 2D cases, and 

discussion on 3D will be in later chapters.  

 

Our goal is to develop a method for solving the problem of finding correspondence 

automatically and solving problems left by the original MDL approach, for example the 

“Pile Up” problem. We also treat the correspondence problem, as a part of shape leaning 

process, by doing this the desired properties will be achieved, in terms of Generalization 

Ability, Specificity and Compactness. This approach will involve several steps in the 

framework, such as surface/shape parameterization, manipulating correspondence, 

efficient optimization, an objective function to optimize and criteria to evaluate the 

performance of the objective function. Among these steps, the objective function is 

essential. We seek an objective function that has the following properties:  

(1) Achieve comparable or better score in the three evaluation criteria compared 

with “the state-of-the-art” method; 

(2) Guarantee that the optimal result offers valid correspondences as an example: 

Solve the “Pile Up problem”; 

(3) Applicable to both 2D and 3 D; 

(4) Efficient to optimize: achieving convergence status in a relevant shorter time  
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compared with “the state-of-the-art” method 

 

This chapter is organized as follows:  

Section 5.1 will focus on the technique used for shape parameterization and 

correspondence manipulation in 2D. Details of correspondence manipulation will be 

further presented in sections 5.1.1 and 5.1.2, respectively. 

Section 5.2 will discuss our method of composing a cost function and some of the 

relevant work. 

Section 5.3 will give the optimization strategy in 2D cases. 

Section 5.4 a brief conclusion will be drawn. 

 

5.1 2D Shape Parameterization and Correspondence 

Manipulation 

 

Many approaches have been developed for surface or boundary parameterization in the 

literature. The proposed approach should guarantee that only valid correspondences 

would be achieved during optimization. Intuitively, one plausible way is that we can put 

a number of points along the boundary and move them respectively. It is, however, very 

hard to converge to valid correspondence locations and also inefficient. A specified 

order of points must exist to make sure of the points correspondence. This will become 

an even more difficult problem in 3D cases. In 2D cases, we use the normalised shape 

length to parameterize landmarks; therefore, from start-landmark to end-landmark, the 
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parameter runs from zero to one. A hierarchical way is adopted here for shape 

parameterization. This approach acts similarly to a multi-resolution approach. The 

figure below shows the method which is used to place nodes along a 2D shape. Figure 

5.1 gives the demonstration of placing landmarks along a 2D shape. 

 
Figure 5.1 The node placement method is shown here. Nodes are numbered from 0 to 8 with 

four levels. First level is blue, which include node 0 and 8. Second level is in between blue 

nodes (parents nodes), which is node 4. Third level is black, which are node 2 and 6. Fourth 

level is red, which are nodes 1, 3, 5 and 7. 

 

The advantage of this hierarchical node placement is that optimization can be performed 

to a specified level, which is defined by the accuracy requirement of the particular 

application. 

 

For correspondence manipulation, one approach proposed by Kotcheff and Taylor [31] 

is very promising. They use re-parameterization to manipulate correspondence along 

curves or surface. Each node is defined by a monotonously increasing parameter (u), in 

the case of N landmarks u has values { N
NNN

*
1

,,2*
1

,
1

K }. A different 

re-parameterization function )(uiΦ  is defined for each shape )(uSi , with a diagonal 

line as the re-parameterization function for the equal-spaced case. Both u and )(uiΦ  

will be in the range of zero to one and of monotonic increase. For a valid 

correspondence, this objective function has to be diffeomorphic, which means folds or 
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tears of shapes are not allowed. An example of this shape re-parameterization is shown 

in Figure 5.2 on corpus callosum data. By defining different curve scenarios, we can 

have different marks allocated along the boundary. In closed curve case, the last point is 

identical to the first point on the boundary. The )(uiΦ  value for the last point should 

be assigned to be equal to )0(iΦ . On the contrary, in open curve case the first point is 

different from the last point on the boundary. Therefore, the optimization problem can 

be sorted out by looking for the correct mapping curve to represent the correct 

correspondence. 

 

 
Figure 5.2 On the left, it shows the parameterization and re-parameterization function. 

The dilute blue is equally spaced on U coordinate representing function parameter. The y 

direction represents the normalized corresponding curve length. On the right is an outline 

of corpus callosum segmented from brain data. The curve length is calculated from the 

black dote. It can be seen that the red dotes are extracted from the dashed line and the 

green dotes are from the dilute blue curve. 

 

Floater and Hormann [34] have investigated several different representations of shapes. 

Here we will use a recursive, piecewise-linear representation that is related to and 

extends the work of Kotcheff and Taylor [31], which is detailed in the next section.  
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5.1.1 A Piecewise-Linear Representation of Re-Param eterization 

 

Kotcheff and Taylor used a piecewise-linear representation for re-parameterization 

functionΦ . In 2D case, a set of nodes {ip } are defined and placed along the function 

Φ  curve, linear interpolation is used to evaluate values between nodes. An example 

can be seen from Figure 5.3. A linear function defined by nodes { ip } will be used to 

approximately estimate functionΦ . 

,
)()(

)()()(
1

1

ii

ii
ii uu

uu
uuuu

−
Φ−Φ−+Φ=Φ

+

+  1+≤≤ ii uuu  (5.1) 

Where iu  and )( iuΦ are function parameters standing for the path-length 

parameterization and re-parameterization of node ip  respectively. 

The diffeomorphic properties of the function means that both iu  and )( iuΦ  must be 

monotonically increasing: 

1)()()()(0 11 ≤Φ≤Φ≤Φ≤Φ≤ + nii uuuu KK , 

10 11 ≤≤≤≤≤≤ + nii uuuu KK  

(5.2) 

 

 
Figure 5.3 Seven points are used to describe the re-parameterization function. Each node 

can be moved along the curve and a linear function will be used to approximate the curve. 
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5.1.2 A Recursive Definition of Re-Parameterization  

 

A more efficient and recursive algorithm is extended by Davies [35]. We are seeking a 

set of 12 +L  marks on each curve to represent the shape. For closed shapes, the start 

and end points (number 0 andL2 ) are identical and there are only L2  points on each 

shape. The hierarchical method to define points will be described as follows: the 

position of new node (say, level i+1 and i is an integer between 1 and L-1) is coded as 

its fractional distance ijκ  between its two parent nodes (level i) ip  and jp . So ijκ  

lies in the range of [0, 1] where it achieves 0 if it is placed on its left parent and 1 if it is 

placed on the right parent. For a closed curve with 65 marks, we specify on the first 

level the coordinates of mark 0 and 32 by their absolute arc length position. On the 

second level, mark 16 and 48 are specified by parameters between 0 and 1. For example 

mark 16 can be anywhere on the curve between mark 0 and 32, corresponding to the 

extremes 0 and 1. On the third level the marks 8, 24, 40 and 56 are specified in between 

already fixed marks. This is continued until level six so that all marks are placed. A 

clear example can be seen in Figure 5.4. 

 

In Figure 5.4b, 00Κ  is the fractional distance between origin and end. Figure 5.4c (i.e. 

level two): two other points are inserted, 2002 Κ≠Κ . It shows an example of how to 

place 5 points of 3 levels on an open curve. 

 

As the representation of re-parameterization is performed in a hierarchical manner, it 

allows optimization performed up to a specific level and makes the points of remaining 
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levels inserted in the middle of parents points. The optimization details will be revealed 

in section 5.3.  

 

 
(a) 

 
(b) 

 

(c) 

Figure 5.4 These three graphs show the 

recursive representation of re-parameterization 

on an open curve. The circles represent parents 

nodes and squares represent son nodes. The 

brackets show the range that each node can be 

allowed to move around. (a) level zero: a node 

is first placed as an origin and end for its child 

node. (b) level one: another point is placed 

between the origin and end of the curve; it 

achieves zero when it approaches the origin and 

one when it approaches the end. 

 

5.2 An Entropy Based Objective Function 

 

The essential property of an objective function is that it has a guaranteed minimum or 

maximum. By finding this optimal result, correspondence can be achieved at the same 

time. This section will give a glimpse of the previous work on the subject of finding 

correspondence in a learning process. Then we will represent our proposed entropy 

based objective function, which is from another branch of information theory. 
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5.2.1 Previous Work 

5.2.1.1 A Minimum Description Length Approach 

 

Davies et al [35] developed an information theory based approach for building the cost 

function. Moreover, they have shown that their Minimum Description Length model has 

better performance than the previous two models. They argued that the simplest 

description of the training set will interpolate and/or extrapolate best. The notion of the 

‘simplest description’ is formalized by Minimum Description Length (MDL), which is 

by the Shannon Coding codeword length [39]: 

pnlengthDescriptio 2log−= bits or pln− nats (5.3) 

The basic idea is to minimize the length of a message required to transmit a full 

description of the training set, using the model to encode the data. The whole cost 

function is based on the measurement of two parts: the first part is the information 

needed to describe the encoded model, which includes the mean shape and the shape 

modes; the second is the information for the training shapes, which is the ip  from the 

model Probability Density Function (PDF). Since the information to describe the mean 

shape X  and the eigenvector can be assumed constant for a given training set, only 

information needed to describe training shapes will be calculated. 

 

After coding the parameters and data, a very complicated form is achieved, which is 

very hard to manipulate and understand. Therefore, Thodberg [38] and Ericsson [49] 

improve this technique and derive a new form of the final description length like: 
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Description Length = ∑ mL  

                )/log(1 cutmmL λλ+=  for cutm λλ ≥  

                cutmmL λλ /=          for cutm λλ <  

(5.4) 

This cost function has the property that it tends to zero when all eigenvalues tend to 

zero and both mL and mm ddL λ/  are first order derivative continuous at the cut-off 

cutλ . In other words, when mλ  falls below cutλ , the benefit of decreasing it further is 

no longer logarithm, but levels off and reaches a minimum one unit below the transition 

point. A mode with eigenvalue cutλ  contributes on average a variance of Ncut /λ  per 

mark, and since the rms radius of the aligned shapes is N/1 , the mode contributes a 

standard deviation per rms radius of cutcut λσ = . So cutλ  can be evaluated by cutσ  

that is defined by the noise level of the training set. 

 

In summary, MDL has become a benchmark for automatic shape model building. It 

achieves better values of the three evaluation properties than the previous models; 

however it still has some problems, which have not been totally clarified, one is the 

so-called “Pile Up” problem. 

 

5.2.1.2 Solution for the Pile Up Problem 

 

Some methods have been proposed to stop the “Pile Up” effect. One way to avoid this 

undesirable effect is by selecting a single shape as a master example (introduced by the 

MDL author Davies in [23]). The master example is the one that all points on the shape 

have been manually placed by an expert and these points are not allowed to move 
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during optimization. This method is trying to make the master influence the behaviour 

of the other datasets. In this way, the MDL author is hoping that the points will not pile 

up in some locations. However, in some cases, a single fixed master is not sufficient to 

keep the whole set in place. For example, the MDL algorithm will be run on 100 

datasets. One is selected as the master example; the other 99 datasets will be optimized 

by MDL. During optimization, the statistical weight of 99 datasets will overweight the 

only one master example easily. In this case, the “Pile Up” problem could happen. In 

another example, the free endpoints of the open curves, points can drift systematically 

to one side or the other easily; Thodberg reported this in [38]. 

 

Another remedy for the “Pile Up” problem is to add a stabilizing term to the MDL cost, 

which was introduced by Thodberg [38]. Instead of fixing the node parameters of the 

master example, he used a node cost instead: 

∑ −= 22arg /)( TaaNodeCost ett
i

average
i  (5.5) 

Where ett
ia arg  and average

ia  representing parameters of target and average shapes. As 

defined previously, the parameter a is the parameter which defines the node’s absolute 

position between existing nodes. 2
1
T

 is a weighting component for the external 

energy component. Therefore, if the average drifts e.g. T =0.05 sway from the target, 

one unit of cost function value is added to the cost. 

 

Rich shape information such as curvature plays an important role in image processing, 

therefore it is straightforward to use it as a complementary component to the existing 

MDL cost function: 
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,11 −+ −= iii rrt 2
11 /ˆ)2( iiiiii ttrrrNc −−= −+π  (5.6) 

Where ir  is the 2D-vector of points i, it  is the tangent of the shape contour, and it̂  is 

the normal of the shape contour. From the expression of this equation, it can be seen 

that curvature expression is independent of the pose of the shape and it is one for a 

circle. The curvatures ic  are then convolved with a Gaussian filter. The smoothed 

curvature value at mark i of the rth example is denoted as irCu . For open curves, the 

curvature can not be computed at the ends, and close to the ends it also becomes quite 

noisy due to the smearing. Therefore, curvature near the ends is not calculated. 

 

The following extra term added to the MDL cost function is constructed to measure the 

compactness of the curvature description of the set: 

∑ −=
ri

mean
iir CuCu

sN
ostCurvatureC

,

2)(
11ϑ  

∑=
r

ir
mean
i Cu

s
Cu

1
 

(5.7) 

Here, s is the number of the shapes, and ϑ  is the weighing factor for this term. The 

curvature cost is independent of the resolution, as the other terms in the cost function. 

 

The proposed method of adding an external term such as node penalty or curvature cost 

can solve the “run-away” problem by force, however this external cost-function can 

lead the method to an arbitrary solution. For example, different weights on external 

energy function can result in different correspondences and different local extremes. 

Nothing has been revealed on how to evaluate these weighting parameters. The ideal 
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approach is fixing the ill posed cost function problem inherently, rather than using outer 

force to constrain its behaviour. In the next section, we will discuss the proposed 

approach, which also used an information theory to model the shape but has shown 

better performance than MDL approach.   

 

5.2.2 An Entropy Based Objective Function 

 

We seek a principled basis for choosing an objective function to describe the training 

shapes that will directly favour models with good correspondence performance and 

strong ability to fight the “run-away” problem. In order to achieve these good properties, 

we try to consider Entropy [39] as a basis to form an objective function. 

 

It can be useful to think of finding correspondence as trying to maximize the amount of 

shared information in all images in datasets, in a group-wise manner. In a qualitative 

sense, we may say that if shapes with correct correspondence are correctly aligned, then 

the mutual information between the shapes will be maximized. Therefore, less 

information will be needed to describe the shape model. On the other hand, if the 

correspondence is poor, shapes will be out of alignment, in which case, we will have 

duplicated and redundant versions of information from shapes. Therefore, more 

information will be needed for describing the shape model. Bearing this in mind, 

finding correspondence can be thought of as reducing the amount of information in the 

combined images, which suggests the use of a measurement of information as a 
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criterion. The most commonly used measurement of information in signal and image 

processing is the Shannon-Wiener entropy measure H [39] 

1

log( )
n

i i
i

H p p
=

= −∑  (5.8) 

H is the average information supplied by a set of n symbols whose probabilities are 

given by 1 2 3, , , np p p pK . One of the desirable properties of Entropy is that it will have a 

maximum value if all symbols have equal probability of occurring, which is the case 

when a stack of points pile up into one location and “Pile Up” happens and MDL 

achieves a meaningless minimum. Although the difference between the equations of 

Entropy and Description looks trivial, this observation can solve the so-called “Pile Up” 

problem inherently. The Entropy based Energy cost function has the ability to fight the 

“Pile Up” problem. 

 

In finding correspondence, we have several shapes nAAA ,,, 21 K  to align. We therefore 

have probabilities of weighting components from this training set. Joint entropy 

measures the amount of information we have in the several combined images [39]. The 

concept of joint entropy can be understood using the assumption that the probability 

distribution for every weighting component in the Active Shape Model (ASM) [40] is a 

zero centred Gaussian distribution. So for thi  weight ib  on thj  component 

jib

j

i ep
λ

πλ
2/2

2

1 −=
 

(5.9) 

Where iλ  is the thj  eigenvalue. 
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In general, there are two main differences between MDL and the proposed Minimum 

Entropy Model (MEM) in the way of composing the cost function. Firstly, Entropy is 

used as an alternative of Description Length for information quantity measurement, 

since, Entropy has important physical implications as the amount of “disorder” of a 

system. We are arguing that, the system is ordered when the points are corresponding to 

each other. Secondly, as we can see both MDL and MEM approaches are using PCA to 

extract shape variations and the probabilities we use are based on these variations. In 

PCA analysis, we normally use the eigenvalue to denote the degree of shape variations. 

Therefore, it is quite straightforward to think that shape variations should be treated 

differently in measurement, and shape variations with larger eigenvalue should be more 

appreciated. In this sense, we propose a method of composing our cost function as a 

combination of entropy with different assigned weights. We choose iλ  as weight for 

each iH , since iλ  is the natural expression of statistical weight of each mode. 

∑
=

=
t

j
jj HonCostfuncti

1

λ
 

(5.10) 

Where jλ  is the thj eigenvalue, jH is the thj Entropy derived from 

{ }j
m

j
i

jj bbbb ,,,,, 21 KK . The parameter b was defined in Equation 2.8, which are 

weighting parameters for Active Shape Model,t  is the number of eigenvectors used, as 

well as the number of weighting components used in the shape model. 

 

5.3 Optimization Strategy 

 

Instead of the Genetic Algorithm (GA) used in Davies’s paper [35], Thodberg [38] 
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proposed a local iterative optimization method, which has been used in many 

applications [41, 42, 43]. Compared with Davies’s approach, this local search algorithm 

is easier to implement and understand. Since after personal communication, Thodberg 

[38] provided his code and datasets for us to evaluate our proposed algorithm. We are 

going to discuss more details about Thodberg’s optimization method below. 

 

For example, an Active Shape Model uses 32 landmarks on each shape, but 

optimization is performed up to the third level (8 landmarks). The other landmarks are 

set equally spaced between the existing landmarks. All the landmarks are first placed 

along the boundary according to ascending level. An initial step-length, which is 

decided by the accuracy the experiment needs, is associated with each node. The step 

length controls the changes of landmark position parameter K , which was defined 

earlier in paragraph 5.1.2. Please recall that the parameter K  runs from zero to one, 

which controls the landmark run from left to right of the parent landmarks. 

 

In our experiment, Thodberg’s approach uses 0.01 as initial step length for MDL 

algorithm and it will decrease automatically by the algorithm. Below, a pseudo code is 

provided about the MDL optimization procedure. In this optimization scheme, the 

whole training set is roughly Procrustes aligned, then PCA is applied to the aligned 

shapes, after computing the MDL cost, each node is probed 6 times to find a 

cost-function value in the downhill direction. The algorithm runs sequentially for each 

control node, and will stop after 40 passes. We empirically found that this number of 

passes is enough to help the algorithm find the optimal solution.   
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A: For Passes=1…40 
B:  For Node=1…8 
C:    For Step=1…6 
D:      For Example=1…N (N is the total number of examples) 
          Probe + and – directions 
          Re-compute mark locations of each example 
          Do Procrustes to set 
          Do PCA to set 
          Compute new MDL cost 
          If new cost is lower then accept and break loop D 
          Undo a (node) change 
D:     End of example loop 
C:    End of step loop 
B:  End of node loop 
A: End of passes loop 

 

In the experiment, the step length and the step number are related. They can be roughly 

calculated as follows: 

Distance between nearest two nodes=step length×step number (5.11) 

This equation guarantees that every node can run everywhere along the boundary. For a 

fair comparison with MDL, a master example is used in both MDL and MEM. A master 

example is a manual landmarked example. During optimization, landmarks on this 

particular example are not allowed to move. If nodes and number of examples increase, 

the computation time will increase dramatically. 

 

One of the problems for finding correspondence in a learning process is slow 

convergence. In the next section, we will calculate the gradient of our proposed cost 

function, in this way a variety of optimization techniques can be considered. Ericsson in 

[49] has shown a promising way to derive the gradient information from cost function 
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by using Singular Vector Decomposition (SVD) [50]. We will adopt this method, and 

extract a gradient from our proposed cost function. 

 

5.3.1 Introduction of SVD 

 

How to calculate SVD 

1) Find the eigenvalues of the matrix TA A and arrange them in descending order; 

2) Find the number of nonzero eigenvalues of the matrix TA A; 

3) Find the orthogonal eigenvectors of the matrix TA A  corresponding to the 

eigenvalues, and arrange them in the same order of form the column-vectors of the 

matrix n nV R ×∈ ; 

4) Form a diagonal matrix m nS R ×∈  placing on the leading diagonal of it the square 

roots iλ  in a descending order; 

Find the column vector of matrix m mU R ×∈ : 
1 TU AV
S

=  

 

A brief introduction of how to perform SVD is given at the above table. A basic theory 

of linear algebra is that any real or complex NM ×  matrix A can be factored 

into TUSVA = , where U is a MM × orthogonal matrix, V is an NN ×  orthogonal 

matrix and S is an NM ×  diagonal matrix with non-negative diagonal elements (also 

called singular values). 

Next, we are going to present the connection between PCA and SVD and their 

application in ASM. 
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5.3.2 Connection between PCA and SVD in the Applica tion of ASM 

 

Recall from paragraphs 3.4 and 3.5 that the idea behind PCA is to extract shape 

variations and statistic weight of each variation. Similar results can be achieved by 

using SVD, as in the following equation. 

TUSVX =  (5.12) 

Since U and V are orthogonal matrices and S contains the singular values of X, 

factorizing X can give two eigenvalue factorizations related to X as in Equation 5.13. 

TT UUSXX 2= , TT VVSXX 2=  (5.13) 

Now, dividing both sides of equation with 1−sn , and multiplying both sides with V, 

we get Equation 5.14. 

1

1

1

1 2

−
=

− s

T

s n
VSVXX

n
 (5.14) 

By comparing Equation 5.14 and Equation 3.9, we can see that V is the eigenvector 

matrix and 2S  is the eigenvalue. 

 

5.3.3 Derive a Gradient from the MEM Cost Function 

 

In this section, the gradient of the cost function is going to be derived based on the 

above sections. Given the thn  landmark on the thm  shape, we denote that changing 

the position of this landmark is mnC . Therefore, the gradient of cost function is 
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mnC

MEM

∂
∂

. Since during the experiment, H will not change dramatically, we assume that 

H is a constant in derivation. As a result, recalling from Equation 5.10, we will have 

Equation 5.15. 

∑ ∂
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mn C
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MEM λ
 (5.15) 

According to this equation, we can see that the derivative of the cost function is directly 

related with the derivative of eigenvalue of shape covariance matrix. Recalling the 

connection between PCA and SVD, we can have Equation 5.16. 
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Here, s is the diagonal matrix product from SVD, and mjx  is Cartesian coordinate for 

the thm  landmark on the thj  shape. 
mn

mj

C

x

∂
∂

 is the surface gradient, which can be 

estimated using differential approximation. 

 

We will focus on the derivation of the 
mj

i

x

s

∂
∂

 part.  Given a matrix X, which was 

composed by the concatenated shape vectors as it was defined in paragraph 3.3. Then, 

this matrix X is decomposed by using Singular Value Decomposition analysis. We are 

interested in computing the derivatives of the singular values is  with respect to shape 

locations. Here we have equation 5.17. 
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Then we multiply Equation 5.17 with TU  on the left and V on the right, which leads to 

equation 5.18. 
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Since 
ij

T

x

U
U

∂
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 and V
x

V
S

ij
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∂
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 are anti-symmetric, all their diagonal elements vanish. 

Recalling that S is a diagonal matrix, it is clear to say that the diagonal elements of 

S
x

U
U

ij

T

∂
∂

 and V
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ij
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vanish too. Therefore, we have a conclusion in Equation 5.19. 
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If we combine the results of Equations 5.15, 5.16 and 5.19, we come to derive Equation 

5.20, which will be the gradient of the MEM cost function. 

∑
= ∂

∂=
∂

∂ sn

i ij
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1

2  (5.20) 

 

5.3.4 Gradient Descent Optimization 

 

This section introduces Gradient Descent (also known as Steepest Descent) optimization 

method, which was used in 2D optimization of MEM. More details and other 

gradient-based optimization method can be found in [74]. 

The method is very simple; it is based on the observation that if the real-valued cost 

function ( )F x  is differentiable in a neighbourhood of a point A. The cost function 

value decreases fastest if we move the point A along the opposite or orthogonal 
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direction of gradient ( ( )F x−∇ ) at point A. With a free parameter of length of step γ , 

the next point B will be given in Equation 5.21: 

( )b a F xγ= − ∇  (5.21) 

Then, it can be seen that ( ) ( )F a F b≥ . Keep this in mind and recall our MEM cost 

function and initial landmarks; we can start from the initial positions (0b ), we will have 

( )0 1( ) ,F b F b≥ ≥K  (5.22) 

This process can be illustrated in the following Figure 5.5: 

Therefore, the sequence of ( )nx  will converge to a local minimum. Note that the value 

of the step size is allowed to change at every iteration.  

 

Figure 5.5 This graph shows the process of the steepest gradient optimization. It can be seen 

that the point is getting closer to the local minimum/maximum after each step. 

 

In general, if the gradient of a function is know for a particular optimization problem, it 
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generally pays off to use more sophisticated optimization techniques than Simplex or 

Simulated Annealing [49]. Here for comparison with MDL approach, we use the 

Steepest Descent optimization method in our proposed MEM approach. 

 

5.3.5 Scheme of Optimizing MEM 

 

With information about the gradient of cost function, we can use some more 

complicated optimization algorithm rather than the Genetic Algorithm [79], which is 

used by Davies et.al. [22]. The scheme of our optimization method is going to be shown 

in this section. 

1) Initialization: This step will help prepare the parameters for optimization. First, each 

shape is labelled swith a specific number of landmarks. If we use m levels of landmarks 

to represent the shape model and optimize the first n levels of landmarks ( nm ≥ ), then 

number of landmarks will be 12 −m . These landmarks will be placed according to 

equal arc length rule. 

2) Procrustes alignment: This step will involve processes of rotation, rescaling, and 

translation. In each iteration, corresponding affine shape error is minimized then 

normalized to unit shape. One important thing about this process is that in each iteration, 

the only change is the re-parameterization function as the curves are fixed. Landmarks 

on curves, rather than on the nodes, are estimated by interpolation. 

3) MEM & Gradient: Based on the second step and using Equations 5.13 and 5.23, we 

can easily calculate the MEM cost function value and gradient from the parameterized 
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landmarks. 

4) Update Parameters: During this step, each landmark will be moved towards the 

MEM gradient direction. Local minima will be probed and new shape parameters will 

be generated at the same time. Finishing this step, if the process does not converge, it 

will go back to step 2. 

 

The whole optimization scheme is shown in Figure 5.6. 

 

Figure 5.6 This graph is a brief scheme of optimization used in MEM algorithm.  The inputs 

are shape surface meshes and the outputs are surfaces with landmarks. 

 

5.4 Conclusions 

 

In this chapter, we proposed a new framework of finding correspondence across dataset 

automatically. We treat the finding correspondence problem as a coding problem and 

measure the order degree of a statistical shape mode system by Entropy. Therefore, we 

argue that the minimum entropy status will hold the correct correspondence. In addition, 

we did not compose our MEM cost function by directly summing up energy 
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components derived from each eigenvector as MDL does. Each Entropy component is 

assigned with a statistical weight concerning the different importance of each shape 

eigenvector. These weighting components make sense since they are based on the fact 

that the eigenvector with very small eigenvalues are mostly blurred by shape noise and 

we trust those eigenvector with large eigenvalues. Therefore, each eigenvector should 

be treated differently and energy component derived from each vector should also be 

assigned with a different weighting. 

 

The optimization scheme of MEM algorithm in 2D is also introduced. For simplicity, 

we use the parameterization method introduced in MDL. This is also because we want 

to make a neutral comparison with MDL, and evaluate the performance difference only 

from the cost-function. Optimization is performed by mapping the 2D shapes, either 

closed or open curves, onto a curved line by using the normalized shape length. Then 

each node is assigned with a parameter, which is defined by the absolute distance 

between the two ends or one end in closed shapes scenario. During optimization, nodes 

are manipulated by shape re-parameterization. A linear piecewise re-parameterization 

method was discussed. MDL uses a local search optimization method. One problem of 

the MDL approach has been the slow convergence of the optimization step. In MEM, a 

gradient based steepest descent optimization method is used. Singular Value 

Decomposition was introduced in this chapter, which has a direct connection with PCA. 

By using SVD, we successfully derived the Jacobian of MEM cost function; therefore, a 

variety of optimization techniques can be considered.  
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In conclusion, MDL and MEM share the same scheme of shape parameterization 

method, however, MDL uses a local search scheme and MEM uses a gradient based 

optimization method. Both algorithms start optimization from equal spaced positions.    

In the next chapter, we will discuss the quantitative comparisons between MDL and 

MEM on various types of 2D datasets. 
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Chapter 6 Experiments and Results in 2D 

 

The previous chapters have described and discussed the development of an 

automatically constructing method for finding correspondence across datasets, and 

evaluating schemes of different optimization methods. In this chapter, numerous 

experiments are performed on different kinds of 2D datasets for different validation 

purposes. The experiments will be conducted in several ways: closed curves, open 

curves with free ends, open curves with fixed ends. In each case, experiments are 

guided to compare performances between MDL and MEM. Datasets in this section are 

from Thodberg and Ericsson as used in references [49],[71], after personal 

communications. 

 

By using the criteria discussed in Chapter 4, it is shown that our MEM shows better 

performance on Generalization Ability and Specificity and similar in Compactness. One 

more experiment is carried out with the purpose of testing the control of “Pile Up” 

problem and its comparison between MDL and MEM. The preliminary results show that 

the MEM algorithm can make improvements in solving the “Pile Up” problem. 

 

6.1 Experiments on Closed Curves 

 

In this experiment, we will try both MDL and MEM on three different datasets, which 

are 24 contours of metacarpals (all closed curves，see Figure 6.1), 15 flying birds 
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contours, and 20 Mickey Mouse like cartoon contours. For a fair comparison, initial 

conditions and parameters are the same for both methods. For example, both methods 

start from equal spaced position landmarks (containing 8 nodes and 64 marks), and each 

node can move freely along the contours (one master example is used in MDL 

algorithm). 

 
Figure 6.1 24 Contours of metacarpals, with different orientations, sizes and shapes. 

 

All these 24 datasets, each is saved as 281 coordinates of points along the boundaries. 

During optimization, if a new coordinate needs to be found between existing points, a 

2-Dimension interpolation will be used. 

 

After MEM converged, it can be seen from the figure above that 8 nodes are placed at 

corresponding locations in the seemingly same manner in Figure 6.2. In the same time, 

we also show the correspondence results found by MDL in Figure 6.3.    
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Figure 6.2 24 contours of metacarpals with 8 nodes on them, landmarks are found by MEM. 

 

Figure 6.3 24 contours of metacarpals with 8 nodes on them, landmarks are found by MDL. 
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Figure 6.4 Shown is the process of node value changing during the experiment on 

metacarpals. There are 8 graphs representing 8 different nodes (from A to H) and in each 

graph 24 lines with different colours represent nodes from the 24 examples. The X-axis 

represents numbers of steps in optimization; Y-axis represents the node parameter value. 

The general idea of Node Parameter can be recalled from Figure 5.4. 

 

In the process of MEM, it can be seen from Figure 6.4 that the node value will change 

in different steps until eventually stabilized. Figure 6.5 shows the output of MEM 

cost-function by using steepest gradient method and output of MDL by using 

Thodberg’s approach [38]. 
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Figure 6.5 A demonstration of the output of the cost-function. X-axis represents number of 

steps in time and Y-axis is the corresponding value of cost function. The blue solid line shows 

the MEM performance by using the Steepest Descent method. 

 

From Figure 6.5 we can see that the value of the MEM cost function drops dramatically 

in the first 2500 steps then stabilizes and converges afterwards. During experiments, we 

found the MEM approach will converge approximate 2.3 times faster than Thodberg’s 

approach. 

An ASM is performed by using the corresponding points found by MEM, in Figure 6.6 

the effect of the first three principal components is shown. Then comparisons between 

MDL and MEM are implemented on three shape model properties: Generalization 

Ability, Specificity and Compactness. 
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Figure 6.6 Shown is the mean shape with red marks; the whiskers starting from the marks 

indicate three standard deviations of the first three principal components. 

 

. 

Figure 6.7 Generalization Ability comparison on closed curve. X-axis represents number of 

shape modes and Y-axis represents Generalization Ability.  

 



 102

 
Figure 6.8 Specificity comparison on closed curve. X-axis represents number of shape modes 

and Y-axis represents Specificity. 

 

 
Figure 6.9 Compactness comparisons on closed curve. X-axis represents number of shape 

modes and Y-axis represents Compactness. 
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  MEM MDL Percentage 

Difference 

Mean – Standard 

Deviation 

28.72832358 

 

29.6247037 

 

3.072266049% 

 

Mean 29.93930458 31.57360417 5.313680068% 

Generalization 

Ability 

Mean + Standard 

Deviation 

31.15028559 

 

32.85005712 

 

5.311757577% 

 

Mean – Standard 

Deviation 

36.37891469 37.00119245 

 

1.696039383% 

Mean 37.00788914 37.25340015 0.661208582% 

Specificity 

Mean + Standard 

Deviation 

37.01458584 37.26185859 0.665817423% 

Mean – Standard 

Deviation 

71.64381592 

 

63.77564717 

 

11.62044002% 

 

Mean 100.5747843 91.81160115 9.109982607% 

Compactness 

Mean + Standard 

Deviation 

129.5057526 

 

118.1826462 

 

9.14302525% 

  

Table 6.1. A quantitative analysis on the three criteria comparisons based on Area Under the 

Curve. The smaller corresponding value is marked in bold character. 

 

Since it is difficult to justify how many shape variations are suitable in experiments, we 

make a conclusion of a shape model’s performance if one mode achieves better 

performance in most of the number of shape variations (M). This manner of evaluation 

method is also suggested by Davies [22].  

 

As we can see from Figure 6.7, for 14 out of 22 shape variations, MEM achieves better 

performance in Generalization Ability ( )()( MDLGMEMG < ). Therefore, we can 

conclude MEM achieved better performance in Generalization Ability. In Figure 6.8, 

MEM also achieved better performance in Specificity in all shape modes, 

since )()( MDLSMEMS < . In Figure 6.9, C(MEM) is slightly larger than C(MDL), but 

considering the error for each M, we can say that these two methods offer similar 

Compactness level or MEM is a bit worse than MDL.  
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We also estimated the Area Under the Curve (AUC) in order to quantitatively calculate 

the difference between the three criteria. The AUC value is calculated for each criteria 

of mean value, mean value minus standard deviation and mean value plus standard 

deviation. The results of AUC are presented in Table 6.1, where smaller values are 

showed in bold characters. It can be seen that for Generalization Ability, MEM is better 

than MDL from 3% to 5.3%, for Specificity, MEM is better than MDL from 0.6% to 

1.7% and MEM is worse than MDL from 9% to 11% in Compactness. 

 

For further analysis on the results of our quantitative comparisons, we perform ANOVA 

test on Generalization Ability and Specificity (Tables 6.2 and 6.3). The purpose of 

two-way ANOVA is to find out whether data from several groups have a common mean. 

In this thesis, we perform two-way ANOVA. One-way ANOVA and two-way ANOVA 

differ in that the groups in two-way ANOVA have two categories of defining 

characteristics instead of one. The standard ANOVA table has columns for the sums of 

squares (SS), degrees-of-freedom (df), mean squares (SS/df), F statistics and p-values. 

We therefore can use the F statistics to do hypothesis tests in order to find out if the 

results are from two groups or just one. For example, if the p-value is near to zero, it 

means a strong indication that the two groups are from different distributions.  

 

Compactness is excluded from this statistical test since Compactness is not derived 

from samples like the Generalization Ability and Specificity. From the results, since 

most of the p-value is zero or close to zero, we can conclude that the null hypothesis is 

rejected in most of the experiments and therefore the MDL and MEM results are  
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Table 6.2. ANOVA table of the Generalization Ability on datasets of closed curves 

 

Table 6.3. ANOVA table of the Specificity on datasets of closed curves 
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statistically different (Tables 6.2 and 6.3). Results on the other datasets are also 

presented in this section, beginning with the datasets of flying birds with landmarks 

found by MEM, see Figure 6.10. 

 

 
Figure 6.10 Graph shows the 8 landmarks found by our MEM algorithm on the dataset of 15 

flying birds. 

 

Figure 6.10 shows the correspondence results by MEM on datasets of 15 flying bird 

examples. From the results, we can observe that the correspondence points are marked 

in the same manner. For example, the points on birds head, wings and tails are marked 

in the seemingly same locations. In the example showed in Figure 6.10, we used only 8 

control points in the optimization. However, we used more points in the reconstruction 

of Active Shape Model. In this experiment, we used a total of 64 points, the rest 56 

(64-8) points are set equally spaced in between existing points. This strategy can 
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effectively save computation time and only allows the algorithm to be optimized to the 

accuracy we need. Figure 6.11 shows the output of the MEM cost-function. It can be 

observed that cost-function will stabilize eventually. During experiments, we observe 

that the MEM approach can be optimized approximately 1.9 times faster than the MDL 

approach. This is due to the usage of the steepest descent optimization algorithm. 

 

 

Figure 6.11 A demonstration of output of cost-function during optimization. X-axis represents 

number of steps time in optimization and Y-axis represents value of the cost function. The blue 

solid line shows the MEM performance by using steepest descent method. 
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Figure 6.12 Shown is the process of node value changing during the experiment on flying birds. 

There are 8 graphs representing 8 different nodes (from A to H) and in each graph 15 lines 

with different colours representing nodes from the 15 examples. The X-axis represents 

numbers of steps in optimization, Y-axis represents the node parameter value. 

 

Figure 6.12 demonstrates the location changes of the 8 control points during 

optimization. From this figure, it can be seen that the all 8 control points start from 

location parameter 0.5, since we are using absolute curve length as a parameterization 

method, 0.5 means that the points are equally spaced. During the optimization, each 

control point’s location parameters first change dramatically, then after a few steps, 

achieve stabilization. 
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Figure 6.13 Graph shows the effect of first 3 shape variations. 

 

Figure 6.13 shows the first three main shape variations captured by Active Shape Model. 

In this figure, the gray round dot shows the mean position of the flying birds and each 

node is assigned with an arrow pointing along the eigenvector captured by the shape 

model. It can be observed from Figure 6.13 that the first eigenvector captures most of 

the shape variations and the variations exist on most of the shape contours except both 

ends of the wings. 

 

Figure 6.14 shows another example of using MEM to capture the correspondence points 

across the dataset of Mickey Mouse like cartoons. The datasets change in different size 

and different shapes. From the results, we can see that the 8 control points are placed in 

the same manner. The correspondence points lies on ears, feet, mouth, hand and tail. 
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Figure 6.14 Graph shows the 8 landmarks found by our MEM algorithm on the dataset of 20 

Mickey Mouse like cartoons. 

 

 

Figure 6.15 Graph shows the performance of cost function. The X-axis represents the number 

of steps and Y-axis represents the value of cost function. The blue solid line shows the output of 

MEM cost-function performance by using the Steepest Descent method. 
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Figure 6.16 Graph shows the process of node value changing during the experiment on Mickey 

Mouse like cartoon. There are 8 graphs representing 8 different nodes (from A to H) and in 

each graph 20 lines with different colours representing nodes from the 15 examples. The X-axis 

represents numbers of steps in optimization, Y-axis represents the node parameter value. 

 
Figure 6.17 Graph shows the effect of first three shape modes. 
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Figure 6.15 shows the output of the MEM cost-function. From experiments, we observe 

that MEM can be optimized approximately 2.3 times faster than the MDL, which is due 

to the usage of Steepest Descent optimization method. Figure 6.16 shows the parameters 

change during optimization. As the previous experiment on birds, after a few steps of 

optimization, MEM finally achieves stabilization. Figure 6.17, shows the Mickey 

Mouse like shape variations captured by Active Shape Model. From this figure, it can 

be seen that the first shape variations is more prominent than the rest two variations and 

the shape variations mainly concentrated on the head of Mickey. 

   

From the experiments performed above, it can be seen that the new MEM algorithm can 

find correspondence points across closed curve datasets in a reasonable same manner. 

MEM by using steepest descent method can converge faster than Thodberg’s MDL 

approach [38]. Furthermore, in comparison tests, MEM outweighed MDL in both 

Specificity and Generalization Ability evaluations and achieved similar performance in 

Compactness. 

 

6.2 Experiments on Open Curve with Fixed Ends 

 

In this experiment, we will perform both MDL and MEM on a dataset composed with 

32 contours of femurs (all open curves, see Figure 6.18). We will fix explicit ends to 

each example, which are the st1  point and nd32  point. 
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Figure 6.18 Examples of 32 contours of femurs taken from different patients. 

 

For a fair comparison, we use one master example (marked by an expert), 9 nodes and 

65 marks for both MDL and MEM (two fixed points that can not be moved in 

optimization have been pre-placed). All the points in each example start with node 

parameter 0.5 except the fixed points in the end of the shapes. During optimization, 

points will move along the shape contours to find the final optimal result. The process 

of node movement is shown in Figure 6.21. After each step, the value of the cost 

function will decline until stabilization. After optimization by MEM algorithm, we can 

see from Figure 6.19 that four level, 9 nodes have been placed across 32 datasets in a 

reasonably same manner. The first level is blue that has been fixed, the second level is 

green that lies in between blue, the third level is black that lie between blue and red and 

the forth level is red that lie either between blue and black or between black and green. 
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The correspondence points found by MDL is also shown in Figure 6.20. 

  

 
Figure 6.19 Results after optimization by MEM. It can be seen that four levels of nodes are 

placed along the boundary curves with the blue colour representing the fixed points. The first 

one is the master example that has been pre-processed by an expert. 

 

 

Figure 6.20 Results after optimization by MDL. It can be seen that four levels of nodes are 

placed along the boundary curves with the blue colour representing the fixed points. The first 

one is the master example that has been pre-processed by an expert. 
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Figure 6.21 A demonstration of node movement during optimization. Seven out of nine nodes 

are shown here. Each graph gives the movement of the node in 32 examples represented by 

different colour. X coordinate is step number and Y coordinate is node value. All nodes start 

to move from parameter 0.5 and stabilize around the 50th step.  

 

As previously, the outputs from MEM cost-function are presented in the Figure 6.22. 

During experiments, we can observe that our proposed MEM approach can converge 

approximately 2.2 times faster than the MDL approach.  



 116 

 

Figure 6.22 A demonstration of output of cost-function. X coordinate represents steps in time 

and Y coordinate represents value of the cost function. The blue solid line shows the output 

of MEM cost-function by using our proposed MEM approach. 

 

After applying MEM to datasets, all corresponding points are allocated. At the same 

time, an ASM will be ready for performing further tests. An example of the effects of 

first three principal components are shown below in Figure 6.23. 

 

 

Figure 6.23 Shown is the mean shape with red marks, the whiskers emanating from the 

marks indicate three standard deviations of the first three principal components. 
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Figure 6.24, shows the Generalization Ability comparison on open curve with fixed 

ends, which provides )()( MDLGMEMG <  in all M but the first one, so we can 

conclude that MEM achieves better performance in Generalization Ability test. 

 

In Figure 6.25, it can be seen that MEM only has slightly better performance in most of 

M (number of shape modes). Compared with results from the experiments performed on 

closed curves, MEM’s advantage over MDL has been reduced due to manual 

interference in the form of fixed end points. Still we can conclude that MEM is more 

specific than MDL when applying to open curve with fixed ends. 

 

Similar to what happened in experiments with closed curves MEM achieved similar 

Compactness level as MDL did, results are presented in Figure 6.26. 

 

 

Figure 6.24 Generalization Ability comparisons on open curve with fixed ends. X-axis 

represents number of modes and Y-axis represents value of Generalization Ability.    
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Figure 6.25 Specificity comparisons on open curve with fixed ends. X-axis represents 

number of modes and Y-axis represents value of Specificity.   

 

 

 

Figure 6.26 Compactness comparisons on open curve with fixed ends. X-axis represents 

number of modes and Y-axis represents value of Compactness.   
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  MEM MDL Percentage 

Difference 

Mean – Standard 

Deviation 

19.6739668 
 

21.34493112 

 

8.147290193% 

 

Mean 20.36815613 22.84819852 11.47733264% 

Generalization 

Ability 

Mean + Standard 

Deviation 
21.06234546 23.59616743 11.34754297% 

Mean – Standard 

Deviation 

29.14427775 30.50049923 4.54766216% 

Mean 30.52226656 30.55334555 0.101772171% 

Specificity 

Mean + Standard 

Deviation 

30.5440339 30.57412511 0.098468955% 

Mean – Standard 

Deviation 

32.52903414 

 

31.6409396 
 

2.767944232% 

 

Mean 44.11569886 43.18801673 2.125183621% 

 

Compactness 

Mean + Standard 

Deviation 

54.97383523 

 

53.84699932 
 

2.070992959% 

  

Table 6.4. A quantitative analysis on the three criteria comparisons based on Area Under The 

Curve. The smaller corresponding value is marked in bold character. 

 

We estimated the Area Under the Curve (AUC) to quantitatively present the differences 

between the three criteria. The AUC value is calculated for each criteria of mean value, 

mean value minus standard deviation and mean value plus standard deviation. The 

results of AUC are presented in Table 6.4, where smaller values are made in bold 

characters. It can be seen that for Generalization Ability, MEM is better than MDL from 

8.1% to 11.5%, for Specificity, MEM is better than MDL from 0.1% to 4.5% and MEM 

is worse than MDL from 2% to 2.7% in Compactness. 
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Table 6.5 ANOVA table of the Generalization Ability on datasets of open curves with fixed 

ends. 

 

From Tables 6.5 and 6.6, it can be seen that most of the p-value is zero or close to zero 

therefore the ANOVA results suggests that the two datasets are statistically different for 

all the cases in Generalizaion ability and different for most of the cases in Specificitiy. 
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Table 6.6 ANOVA table of the Specificity on datasets of open curves with fixed ends. 

 

6.3 Experiments on Open Curves with Free Ends 

 

Furthermore, experiments are performed on the same datasets of 32 contours of femurs, 

but they will have free end points during optimization. It means every point on each 

shape is able to move freely following the decline direction of the cost function. Again, 

MDL with one single master example and MEM without master example were tested. 
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Figure 6.27 Results after applying MEM on open curve with free ends. Annotation is the same as 

the previous experiment. 

 

 
Figure 6.28 Results after applying MDL on open curve with free ends.  
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As can be seen from Figure 6.27, the blue level points are not fixed to the end of the 

curves. Compared with results of open curves with fixed end, the correspondence 

results are different. Figure 6.28 shows the correspondence results found by MDL 

algorithm. 

 

Figure 6.30 shows the output of cost-function of MEM during optimization. From the 

figure, we can observe that the cost-function achieve stabilization after a few steps of 

optimization. During experiments, we can observe that our MEM converge about 2.2 

times faster than the MDL approach. Comparison between Figure 6.22 and Figure 6.30 

shows that MEM achieves stabilization faster if the ends are free. The movement of 

each node during optimization and three standard deviations of the first three principal 

components are also shown in Figures 6.29, and 6.31, respectively. 
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Figure 6.29 This figure shows nine nodes’ movement during optimization. Each graph gives the 

movement of the node in 32 examples represented by different colour. X coordinate is step 

number and Y coordinate is node value. All nodes start to move from parameter 0.5 and 

stabilize around the 25th step. 
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Figure 6.30 Cost function performance during optimization with x-axis representing steps in 

time, y-axis representing output of the cost function. The blue solid line shows the performance 

by our proposed MEM approach. 

 

 
Figure 6.31 Shows the mean shape with red marks, the whiskers emanating from the marks 

indicate three standard deviations of the first three principal components. 

 

Details of the MEM performance versus MDL are shown in Figures 6.32, 6.33 and 6.34. 

The conclusion is that MEM has better Generalization Ability, Specificity and similar 

Compactness compared with MDL. We also noticed that compared between 

experiments on open curve with free ends and experiments on curve with fixed ends, the 

former one performs better in more modes and the difference in each mode is larger 

considering the error bar. 
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Figure 6.32 Generalization Ability comparison on open curve with free ends. X-axis represents 

number of modes used in optimization Y-axis represents Generalization Ability. 
 

 

Figure 6.33 Specificity comparison on open curve with free ends. X-axis represents number of 

modes used in optimization Y-axis represents Specificity.  
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Figure 6.34 Compactness comparisons on open curve with free ends. X-axis represents 

number of modes used in optimization Y-axis represents Compactness. 

  MEM MDL Percentage 

Difference 

Mean – Standard 

Deviation 

20.8549217 

 

21.84049217 

 

4.616750983% 

 

Mean 21.56465324 23.4852349 8.526465812% 

Generalization 

Ability 

Mean + Standard 

Deviation 

22.27438479 24.24138702 8.45735612% 

Mean – Standard 

Deviation 

29.34152043 30.5049467 

 

3.888036601% 

 

Mean 30.52784939 30.76233419 0.765162664% 

Specificity 

Mean + Standard 

Deviation 

30.52784939 30.55075207 0.767901327% 

Mean – Standard 

Deviation 

25.75947493 

 

22.52097315 

 

13.41537581% 

 

Mean 34.12603632 

 

31.44714765 

 

8.170683524% 

 

Compactness 

Mean + Standard 

Deviation 

42.49259771 

 

39.1970983 

 

8.068335589% 

  

Table 6.7. A quantitative analysis on the three criteria comparisons based on Area Under the 

Curve. The smaller corresponding value is marked in bold character. 
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We perform the Area Under the Curve (AUC) to quantitatively calculate the difference 

between MEM and MDL using the three criteria. The AUC value is calculated for each 

criteria of mean value, mean value minus standard deviation and mean value plus 

standard deviation. The results of AUC are presented in Table 6.7, where smaller values 

are made in bold characters. It can be seen that for Generalization Ability, MEM is 

better than MDL from 4.6% to 8.5%, for Specificity, MEM is better than MDL from 

0.8% to 3.9% and MEM is worse than MDL from 8% to 13.4% in terms of 

Compactness. 

 

The ANOVA tests in Tables 6.8 and 6.9 shows that most p-value are zero or close to 

zero, therefore it suggests that the MDL and MEM are different in all the cases for 

Specificity test and are different for most of the cases for Generalization Ability except 

two.  
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Table 6.8 ANOVA table of the Generalization Ability on datasets of open curves with free 

ends. 
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Table 6.9 ANOVA table of the Specificity on datasets of open curves with free ends. 

 

6.4 Experiments on Improved Control of “Pile Up” 

 

When applying the MDL technique, one may encounter the so-called “Pile Up” problem. 

The problem happens during optimization, when points can pile up into one location. In 

this case, the cost function will attain a global minimum or meaningless local minimum 

and fail in describing the rest of the shapes. As we know, the points we move in the 
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experiments are control points, defined by the accuracy we need. There are more low 

levels in between existing control points. Therefore, it is unacceptable to have two or 

more control points overlapping each other. As have been stated in paragraph 4.7.2, 

different researchers have tried different methods to solve this problem. They either do 

not work efficient or lead the algorithm into an arbitrary manner. 

 

In Figure 6.35, 22 datasets of silhouettes contours are shown. During the experiments 

on these datasets, we encountered the “Pile Up” problem. Figure 6.36 shows the results 

by applying MDL and Figure 6.37 shows the results by applying MEM respectively. 

 
Figure 6.35 22 datasets of silhouettes contours are shown here 

 

An example of the “Pile Up” effect is shown in Figure 6.36 when MDL was applied to 

datasets of silhouettes contours (open curves with free ends). Figure 6.36, shows the 

final converged results found by MDL algorithm. For making more clear the visual 
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effect of the “Pile Up”, we put the bottom two points one pixel away from each other. In 

fact, the two bottom points are overlapping each other. It can be seen from the figure 

that the two points (a level one point and a level four point) at the bottom will collide or 

overlap. This “Pile Up” happened even when the first subject is used as a master 

example and this example has a well distributed control points on it. This “Pile Up” 

happened in MDL is because that the MDL will have lower cost function value if two 

points at the bottom are actually overlapping. In this case, however, since MEM has a 

larger cost-function value when points are overlapped and have equal probability, MEM 

approach prevents the “Pile Up” problem from happening.  

 

 

Figure 6.36 Results of MDL analysis of silhouettes contours. Here all 22 examples are shown, 

they are one step before MDL finally converged (blue is level one, green is level two, black is 

level three and red is level four). It can be seen that the two points at the bottom (red and blue) 

tried to pile up although one fixed master example has been used (first one).   
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Figure 6.37 Results of MEM analysis of silhouettes contours.   

In Figure 6.37, MEM results are shown. Compared with Figure 6.36, we can see that the 

MEM results do not suffer from the “Pile Up” problem, and the results are reasonably 

more accurate, all points are placed in the same manner across the datasets. 

 

Figure 6.38 Performance of the MEM cost-function is shown here, X-axis is steps in time and 

Y-axis is output of cost-function. The blue solid line shows the performance by using our 

proposed MEM approach. 
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Figure 6.38 shows the performance of the cost-function. From this graph, we can 

observe the cost-function value decline during optimization. Once again, during the 

experiment we observe that the MEM can be optimized about 2.2 times faster than the 

MDL approach due to the usage of gradient information in MEM approach. Figure 6.39 

shows the parameter value for each control nodes during optimization. The figure shows 

that all nodes start from value 0.5 (equal spaced situation) and gained a stabilization 

after a few steps. After correspondence points were found by the MEM algorithm, an 

Active Shape Model can be built to capture shape variations. The first three largest 

variations are shown in Figure 6.40.    

 

Figure 6.39 The changes of node value during optimization is shown in the graph. Each graph 

gives the movement of the node in 22 examples represented by different color. X coordinate is 

step number and Y coordinate is node value. All nodes start to move from parameter 0.5. 
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Figure 6.40 The changes of node value during optimization is shown in the graph. 

 

6.5 Conclusions of the Experiments 

 

In this chapter, we validated our proposed MEM algorithm by performing both MEM 

and MDL on several datasets for different 2D scenarios. They are closed curves, open 

curves with fixed ends, and open curves with free ends. Due to lack of ground truth, we 

adopted three generally accepted criteria to compare our proposed MEM with MDL. 

These criteria are Generalization Ability, Specificity and Compactness. Based on the 

results from the above paragraphs, several conclusions can be drawn. From the 

performance of the MEM cost function, we can see that the cost function converged 

during optimization and the converged results produced reasonable correspondence 

results. Based on the cost function performance from both MDL and MEM, it can be 

observed that our proposed MEM approach can converge faster than the MDL approach. 

From our quantitative comparison results between MDL and MEM, it can be observed 
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that MEM usually achieved better scores on Generalization Ability, and Specificity, and 

worse results on Compactness. In the case of open curves, it takes longer for the cost 

function to find correspondence under the scenario of fixed ends. Therefore, we suggest 

using free ends during optimization of datasets of open curves. The final experiment on 

facial profiles showed the advantage of using Entropy, rather than Description Length, 

as the component of cost function. In the experiment, MDL suffered the “Pile Up” 

problem, where bottom points on chin areas overlapped. However, MEM did not have 

this problem although the experiment was performed without using a master example 

and external cost function. We argue that MEM favours a distributed correspondence 

and MDL favours a congested correspondence. 
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Chapter 7 A 3D Minimum Entropy Approach and 

Experiment Results  

 

7.1 Discussion on 2D Work  

 

The MEM method introduced in the previous chapter provides a principled framework 

for automatic statistical shape model building. As can be seen from Chapter 6, MEM 

has been successfully applied to numerous 2D datasets. Different datasets, for example, 

closed curves, open curves with free ends, open curves with fixed ends, and open curves 

with complicated landforms were tested. According to the experimental results based on 

the comparisons between MEM and MDL (the current state of art), we can see that 

MEM provides better performance on Generalization Ability and Specificity and similar 

Compactness. Some good properties of MEM are also revealed, since it can keep the 

objective function away from the local minimum that often traps MDL without 

changing the function into an arbitrary manner. MEM favours a distributed 

correspondence, which makes balance between equal spaced results and congested 

results. On the contrary, MDL will pile up occasionally. The gradient of MEM is also 

proposed by using some useful results derived by SVD. With the help of cost function 

gradient, various optimization methods can be performed rather than the Genetic 

Algorithm used in the MDL approach. However, most of the medical image datasets are 

in 3D format [47], which requires an extension of our current 2D method. In this chapter, 

we will discuss some preliminary results on 3D MEM method. 
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7.2 Limitations of 2D MEM and MDL   

 

From the previous chapter of our 2D results, we can see that the proposed MEM 

algorithm has provided a reasonably more robust (in terms of solving the “Pile Up” 

problem) and accurate (in terms of better Generalization Ability and Specificity) 

approach to solve the “Correspondence Problem”. It can find corresponding points 

across 2D datasets automatically. However, the algorithm is not perfect enough to solve 

all the correspondence problems yet. Since, there are still some issues in MEM to solve. 

For example, both MDL and MEM inherently do not consider images with missing 

information. Figures 7.1 and 7.2 are shown as an example of limitations of MEM and 

MDL approaches. When images with missing information are used, correspondence 

points found by both algorithms can be very wrong. In Figure 7.1, since the dataset is in 

2D, parts of the bird’s shape is blocked by itself, the final results are heavily influenced 

by this. Therefore, if 3D shape information can be used, the optimal correspondence 

results can be improved. Most of the medical datasets are in the form of three 

Dimensions. Therefore, to make our proposed method more applicable to real medical 

image processing task, we will have to extent our current 2D scheme into 3D. 
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Figure 7.1 Correspondence points found by MEM are shown in this graph. 

 

Figure 7.1 above, shows the correspondence points found by our proposed MEM 

algorithm. In this the experiment, we used 8 control points during optimization and as in 

the previous 2D experiments, the rest of the landmarks in between control points are set 

equally spaced. In Figure 7.2, the MDL algorithm was used to find correspondence 

points across shapes automatically. As in MEM, 8 control points are used and landmarks 

in between control points are also set equally spaced. 
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Figure 7.2 Correspondence points found by MDL 

 

It can be seen from Figure 7.1 and 7.2 that both algorithms found correspondence points 

in a wrong fashion. The cause of these wrong results can be interpreted as in this 

particular dataset has some structure information which is not shared by each example. 

For example, they have different type of tail (some has one tail, some has two tails), feet 

and some of the shape variations are hidden due to the changes of 3D view angle. These 

differences are marked in Figure 7.3. 
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Figure 7.3 Coloured round masks are used to emphasize the differences between 

corresponding structures. Green is marked on tails, some tail has one branch and the other has 

two. Yellow marks the bird beak, because some pictures are shot from behind, therefore the 

beak is not shown. Red marks feat, for some of the birds, only one branch can be observed due 

to camera angle and 3D rotation.     

 

The problems, reported above, are not considered in algorithms MEM and MDL. MEM 

and MDL are applicable to datasets },,{ 21 nAAA K  under the condition that data have 
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corresponding information to each other (for any structure in iA , there is a 

corresponding structure in all other datasets).  

 

In this birds examples, some of the missing information is due to changes of view 

angles and different poses, which obscure the information in images. In 2D, it will 

become quite difficult to solve this problem, which was introduced by 3D shape 

variations. Therefore, in this chapter we will provide our natural extension of MEM in 

3D. In the next few sections, we will discuss a new 3D scheme of MEM algorithm and 

some experiments on 3D datasets are also presented.      

  

7.3 MEM on 3D  

 

This chapter shows how our previously stated 2D methods can be extended to 3D. 

Though intuitive, something straightforward in 2D is not that simple in 3D. In 3D MEM 

algorithm, several problems have to be solved. They are: (i) refining the surface 

parameterization and (ii) re-parameterization method (correspondence method). In this 

section, we are going to discuss the details of 3D scheme. We use an existing technique 

to tackle the shape parameterization and re-parameterization, and combine them with 

our proposed MEM cost-function to form a completely new scheme. 

 

The parameterization method has to be refined. For example, a 2D shape is 

parameterized by absolute length and mapped to a curved line. In 3D cases, shape 
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surfaces are mapped to a unit sphere, where shape is defined by only two parameters 

(longitude and latitude). This parameterization has to be unique and invertible to make 

sure of a valid mapping. Re-parameterization also needs to be refined to fit the 3D 

approach. Even, the initial parameterization method has to be reformed accordingly. 

 

We use conformal shape mapping [52] as a bridge between datasets and unit sphere to 

solve the 3D shape parameterization problem. Gaussian envelope function and random 

rotation matrix method are fitted into our approach to tackle the 3D shape 

re-parameterization problem. The initialization position is realized by dividing the unit 

sphere along longitude and altitude equally. These points are then mapped to original 

shape space to locate the initialization positions. Finally, the gradient of 3D cost 

function and optimization scheme are established. The conclusions are based on our 

comparison results on 3D artificial datasets and hippocampus datasets. 

 

7.3.1 Surface Extraction  

 

In the scope of this thesis, we are working on segmented datasets. In 2D, they are shape 

contours, which are saved as points along the boundary. In 3D, we are mostly working 

with binary data, under the assumption that 1 represents the object, and 0 the 

background. Therefore, surface extraction techniques have to be utilized to cope with 

our MEM algorithm. In reference [64], the Marching Cubes algorithm, also called 

iso-surface extraction, is described. This algorithm is chosen in our 3D scheme to 

generate the mesh from binary datasets. The basic rationale behind this idea is that we 
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can define a voxel (cube) by the pixel values at the eight corners of the cube (Figure 

7.4). 

 
Figure 7.4 The definition of voxel/cube is shown in this graph. 

 
Figure 7.5 The cube is cut by object surface on yellow points, red point is in the background. 
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If one or more pixels of a cube have values less than the user-specified iso-value, and 

one or more have values greater than this value, then we know that the voxel must 

contribute to some component of the iso-surface. By determining which edges of the 

cube are intersected by the iso-surface, we can create triangular patches, which divide 

the cube between regions within the iso-surface and regions outside, see Figure 7.5. 

 

In 3D space, we enumerate 256 (i.e.82 ) different situations for marching cubes. In 

Figure 7.5, only one simple situation is shown. By connecting the patches from all 

cubes on the iso-surface boundary, we get a surface representation. The problem with 

the marching cubes method is that it can generate large numbers of surfaces, which are 

more than we need. Thus, down sampling of the surface is usually needed to keep the 

same number of vertices and faces. After this process, the datasets are saved into two 

separate files, one with extension pts, another one with fce. File with extension pts 

contains the vertex coordinates, which is a 3N ×  matrix. Each row represents the 

coordinates of one vertex and these vertices are indexed the number of row from 0 to 

1−N . File with extension fce keeps the vertex relations, e.g. which 3 vertices form a 

face. Therefore, with these two files, we can recover the original data surface 

information. Moreover, these two files are quite easy to use for parameterization. 

 

7.3.2 Shape Parameterization 

 

In order to minimize the complexity of the parameterization of 3D shapes, we will limit 

our discussion to the closed two-manifolds of genus zero only (which means that the 
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surface can not be allowed to fold, tear and self-intersect). Objects of this kind are 

topologically equivalent to a unit sphere and there exist medical image data, which 

belong to this class, such as the liver, kidney, lungs, and brain. An example of brain data 

and mesh found by Marching Cubes algorithms are shown in Figures 7.6 and 7.7 

respectively. 

  

Figure 7.6 This is an example of 3D human brain data from reference [64]  

 

Figure 7.7 This shows a magnified display of a brain surface constructed by using marching 

cubes. This picture is from reference [64] 
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Therefore, our task is to find the means (i.e. a parameterization functionΦ ) to map our 

data on a unit sphere such that this process should be easily reversed (Figure 7.8 and 

7.9).  

 
Figure 7.8 A demonstration of mapping between shape and sphere.Φ is the bridge between 

original dataset and parameterized sphere. 

 

Figure 7.9 This graph shows mapping and inverse mapping between shape space and spherical 

space. 
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If successful, we can downgrade the complexity of our algorithm to two dimensions of 

longitude θ  and latitude φ . Mapping one arbitrary shape to unit sphere will obviously 

introduce some error. Therefore, metrics are designed to minimize this type of error. For 

example, metrics are created to preserve either local angles or triangle face relations 

while trying to minimize the distortions of other features. Davies et al [44] have 

proposed using a simplified version of the spherical harmonics method, which is 

described in [51]. In our proposed 3D algorithm, we use an angle preserving method, 

which is the Conformal Mapping (CM) from Gu et al [52]. We used a public available 

CM from the Insight Journal (www.insight-journal.org) and ITK (www.itk.org). This 

shape parameterization method introduces minimum angle distortion. Compared with 

Davies et al approach, Conformal Mapping offers minimum distortion on angles, which 

means moving clouds of points on the parameterized shape in a specific direction will 

cause the corresponding landmarks on the training shape to move in a coherent direction 

as well. This kind of shape parameterization offers a convenient method to retain local 

geometric information, when mapping data between surfaces. 

 

We will begin to discuss this method by first presenting Algorithm 1, based on reference 

[51]. 

Algorithm 1 Each dataset is represented as a triangulated mesh( )EVK ,= , with V 

denoting Vertices, and E Edges. Vertex locations are specified by function 3: RVf → , 

which is an embedding function defined on the original vertices of K. A second function 

3: RV →Ψ  specifies the verted location as mapped to the unit sphere. 

Definition 1 )(vω represents the normal vector of v. 
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Then, conformal mapping energy is given by the equation below. 

[ ]

2

,
, )()(),( ∑ −=Ψ

Evu
vu vuKKE

ε
ωω  (7.1) 

This form is string energy with all edge weightsvuK , . Therefore, minimizing this energy 

is with condition that edge weights vuK ,  are controlled by Equation 7.2. 

)cot(cot
2

1
, βα +=vuK  (7.2) 

Where α  and β  are opposing angles on edge ),( vu . On the other hand, setting vuK ,  

to 1 will yield barycentre mapping, where each vertex is positioned at the centre of its 

neighbourhood. For more details, it is recommended to read reference [53]. A 

demonstration of this conformal mapping is shown in Figure 7.10 below. More results 

about conformal mapping are shown in Figure 7.19. 

 
Figure 7.10 The colour coded correspondence is shown in this figure. Original dataset is colour 

coded, therefore corresponding points between original data and sphere can be found by 

identical colour. 

Until now, we only discussed the shapes with spherical topology. Although, this is 
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appropriate for most of the medical image data we are investigating, it is interesting to 

consider shapes, with other kind of topologies. According to my limited knowledge 

about finding correspondence in a learning process, there is no robust way for using 

either MDL or MEM on other topological shapes. However, in reference [22], Davies 

proposed some approaches. Since some methods have been used to parameterize 2D 

shapes with open (1R ) or closed ( 1S ) end, it can be helpful to think about shapes as in 

the space of 11 SR × . In this way, some 2D techniques can be utilized. However, this is 

only a computation trick; a more general method should be developed in future 

research. 

 

7.3.3 A Continuous Parameterization 

 

Sometimes, in order to obtain a 3D position for an arbitrary landmark/node, which is 

not a vertex on the dataset, we have to find a position in between landmark nodes. Since 

mapping landmarks between shape and sphere is computationally quite expensive in our 

algorithm (it takes about half of our whole computation time), we came to the 

conclusion that the advanced intersection strategy called likelihood search has to be 

employed, this intersection approach was introduced in reference [54]. The theory is 

that intersected triangles are cached and in case of missing cache, neighbour landmarks 

will be given higher priority to be probed. For simplicity, we adopt the intersection 

based on barycentric co-ordinates. Equation 7.3 defines ( )1 2 3, ,ξ ξ ξ  as the bar-centric 

co-ordinate of new vertices v with respect to trianglekt , see Figure 7.11.  
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Figure 7.11 How a new point is inserted into an existing triangle, where a new point is inserted 

into a triangle. 
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Where Area(ABC) is the area of the triangle ABC. Triangle kt contains v with the 

conditions that 1 2 30, 0, 0ξ ξ ξ> > > and 1 2 3 1ξ ξ ξ+ + = . Therefore, with a vertex v, on 

the original data, its barycentric co-ordinate can be used to define the corresponding 

point on the sphere. 

     ( ) ( )( ) ( )( ) ( )( )1 2 3
1 1 2 2 3 3,v v k k ku v t v t v tθ φ ξ ξ ξ= Φ + Φ + Φ  (7.4) 

The reverse mapping can be found in the same way. 
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7.3.4 Shape Re-Parameterization 

 

To cope with 3D cases, we need a transformation function, which can manipulate points 

around the shapes. In Davies et.al. [44], they use a symmetric theta transformation, 

which employs a Cauchy Kernel representation. The Cauchy Kernel function is 

addressed in [46], is uni-model, symmetric function of the form: 

( )
( )22

1

ax
xf

−+
=

η
η

π
, ,∞<<∞− x  0≥η  (7.5) 

Where, η  is the width of the Cauchy, and a is the position of the centre. By using this 

kernel, the normalized ( )uφ  that lies in the range [0, 1]. 
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Where kA is the magnitude of the thk kernel. The constant term ensures that ( ) uu =φ  

when all kA  are set to zero. The basic idea is to draw a great circle (which is the circle 

with the biggest diameter on the sphere) between any point v and a “fixed” point m on 

the sphere. The re-parameterization of the sphere can then be achieved by applying the 

same re-parameterization to each great circle using the kernel stated above. A 

demonstration of the re-parameterization is shown in Figure 7.12. 
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Figure 7.12 This graph shows how the sphere is re-parameterized. For any point v on the 

sphere, a great circle is drawn through it and a fixed point M (the centre of the kernel). Each 

great circle can then be re-parameterized according to the same function to the 

re-parameterization function.   

 

Although, by accumulating thousands of kernels at different positions, arbitrary 

parameterizations can be achieved, this re-parameterization method produces the 

desired results in an inefficient way. Not only that, the main disadvantage is that it is a 

global modification. For example, adding one new kernel will change the locations of 

all landmarks. This is highly undesirable for this application. Therefore, we suggest 

another method for shape re-parameterization, which is based on kernels with strict 

local properties. 

 

From the previous chapter, we have shown that the downhill direction of our cost 

function can be estimated by using products of SVD. Then, we assume that the gradient 
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direction is ),( φθ ∆∆  in parameter space. Thus, we define a Gaussian Envelope 

function to change each spherical coordinates by ),(),( φθδ ∆∆⋅xGE . Function GE is 

given below: 

2 2

2 2

(3 )

2 2 ,  for x<3( , )
0,     for 3

x

e eGE x
x

δ
δ δ δδ

δ

− −
 −= 
 ≥

,  (7.8) 

However, this method will become restricted when kernels are allocated on either north 

or south pole, because landmarks will all be attracted to or pushed away from the poles 

depending on φ∆ . According to reference [55], by keeping the kernels away from the 

poles and randomly rotating our parameter space, the desired effect can be achieved. 

We show this process in Figure 7.13. 

 

Figure 7.13 An example of kernels on unit sphere are shown here with 0.2δ = . Red is the 

centre of the kernel. Colour changes from red to yellow to green, which shows the magnitude 

changing from high to low.  
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7.3.5 Initial Parameterization 

 

Normally, after pre-processing, our datasets change from binary dataset to meshes with 

identical number of vertices and faces. Then, the next step is to provide a set of identical 

number of initial landmarks for the optimization strategy to work on. The initial 

landmarks can not be randomly generated, there has to be a rule which can be easily 

performed on each dataset. A good initialization can lead to a quick and reliable 

convergence. Therefore, in this section, we present our method of establishing initial 

landmarks on the mesh datasets. 

Based on the previous section about Conformal Mapping and Point Intersection, we can 

easily have continuous mapping relations between mesh datasets and spheres. Thus, we 

can establish our initial landmarks by equally dividing the sphere along its latitude and 

longitude. An example of the initial set of marks on the sphere is shown in Figure 7.14. 

 

 
Figure 7.14 An initial shape re-parameterization is shown on the unit sphere. 

 

Using reverse Conformal Mapping, we can map this mesh from parameter space to the 
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original Cartesian shape space. 

 

7.3.6 MEM in 3D 

 

In this paragraph, we will discuss the MEM cost function in 3D and its gradient. On the 

aspect of cost function, MEM is the same as in the 2D case. The only difference is the 

co-ordinates system changes from two to three Dimensions. Recall Equation 5.13, we 

will use the same formula in Equation 7.9. 
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(7.9) 

However, the gradient of cost function is slightly different between 2D and 3D scenarios. 

Here, we are keen to transform the calculated gradient fields into optimal kernel 

movements, e.g. ( )φθ ,=u  on the parameter space of unit sphere. Therefore, we will 

calculate the gradient of the MEM objective function with respect to individual 

landmarks. 
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Recalling from 2D MEM gradient, we can get the similar results: 
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Here again, the surface gradient
u

X

∂
∂

 can be estimated by using finite differences. In 

practice, there are other variables, which will influence landmark positions, e.g. the 

random rotation in shape re-parameterization. By calculating the gradient of rotating 

parameterization sphere in 3D Euclidean space and substituting the surface gradients in 
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Equation 7.8, we can have a very efficient optimization strategy. 

 

7.3.7 Optimization Scheme 

 

In this section, we are going to present the MEM optimization framework details of the 

proposed algorithm. The framework is also shown as a flow chart in Figure 7.15. 

 

Preparation: Datasets are pre-processed; meshes are generated from binary files. Initial 

landmarks (say 642) will be placed in parameter space. 

 

Step 1: Based on the knowledge of conformal mapping, we first build the connection 

between shapes and unit sphere. 

Step 2: The gradient of the MEM cost-function is calculated for the purpose of a quick 

convergence. A small step of movement is made along the direction of gradient on the 

sphere. 

Step 3: Re-parameterization is used to move landmarks along the coherent gradient 

direction on the original shape space. 

Step 4: MEM cost-function value is calculated and compared with previous calculated 

values, if not converged, the program will go back to Step 2. If converged, for example, 

the difference between the current and previous cost-function value is small enough 

(smaller than a predefined threshold), the algorithm will terminate. 
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Figure 7.15 An illustration of 3D model building scheme, from reference [44].  

 

In Figure 7.15, the whole scheme of automatic 3D model building is shown. iΩ  is the 

mapping from the thi  training shape to a sphere, iΦ  is the re-parameterization 

function, and F is the symbol for the MEM cost function. This graph is similar to 

reference [44]. 

 

In conclusion, MDL and MEM use similar shape parameterization techniques. For 

example, both parameterization methods using a reversible mapping technique to map 

3D shapes to a unit sphere. However, in MEM, the angle is preserved during shape 

mapping. Therefore, moving a point in the shape space, the corresponding point on the 

sphere will move coherently. For correspondence manipulation, MEM uses the steepest 

descent algorithm and MDL uses the Genetic Algorithm. For initialization method, both 

MDL and MEM start optimization from equal spaced positions. In the next sections, we 

will perform some experiments on 3D artificial datasets and real medical image datasets 

to evaluate the performance of MDL and MEM quantitatively. During the comparisons 
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with MDL, we use an published MDL approach from reference [101] after personal 

communications.    

 

7.4 Experimental Results on 3D Datasets 

 

This section presents the results of applying the MEM algorithm to one dataset of 

artificial cubes and hippocampus. A quantitative evaluation shows that the proposed 

MEM method provides better model properties than the alternative MDL approach. In 

the next few paragraphs, we show various graphs about Conformal Mapping results, 

quantitative comparison results, and correspondence points found by both MDL and 

MEM. 

 

7.4.1 Visualization of 3D Datasets 

7.4.1.1 Visualizing Node Correspondence 
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Figure 7.16 Colour Mapping method: X axis represents index number and Y axis represents 

colour space.  

 

All our 3D datasets are saved by using more than a thousand surface points and during 

experiments, either 642 or 2562 number of landmarks will be used to identify the 

correspondence points. For the purpose of making the correspondence easier to see, we 

will use a colour mapping technique to ease this problem. The datasets are saved in such 

a format that points on the surface are indexed from 0 to N-1 (where N is the total 

number of nodes on the surface). Therefore, it is quite straightforward to use this index 

as a parameter to map into the colour space. A brief introduction about this colour 

mapping method is shown in Figure 7.16. As a result, all nodes on the original datasets 

and sphere are indexed, and assigned with proper colour. Since the colour mapping is a 

one-to-one mapping, the same colour will uniquely identify corresponding points. An 
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example of the format of files used for this visualization provided in the Appendix 

section. By using this method, we can effectively identify the correspondence by finding 

the same colour across the shapes. 

 

7.4.1.2 Visualizing Shape Variations 

 

After applying the new technique to datasets, it is quite important to ensure the quality 

of the shape model visually. In this sense, some technique has to be utilized to show the 

properties of the shape model vividly. In Active Shape Model, the first few shape model 

variations of the model account for much of the shape model properties. 

  

There are two ways to perform this particular visualization task. Firstly, we can perform 

the visualization by showing the effect of moving the first weighting component in the 

range of 1 13 ,3λ λ − 
. We can generate new shapes by using the shape model. 

Secondly, we can start from the mean shape, and assign each node with an arrow to 

point out shape variations. 

 

An example of this visualization effect is shown in Figure 7.17. On the right, it shows 

the mean shape with blue arrows on each node; on the left, it shows two amplified 

views of the local structure. From this graph, we can observe that the shape variations 

captured by the first eigenvector are mainly located on the upper tail and bottom right 

corner. By using this visualization method, we can effectively detect the shape 

difference between subjects. 
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Figure 7.17 An example of the mean shape with the first shape variation vector captured by 

Active Shape Mode. The magnified images of some areas are also presented on the left. In this 

example, 4002 nodes are used.  

 

7.4.2 3D Experiments on Artificial Datasets 

 

For validating our proposed MEM algorithm, we first apply our method onto 3D 
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artificial datasets. We are employing our algorithm onto artificial datasets as 

complementary results, because we are short of large amount of real medical image 

datasets. The cuboids with different sizes, orientation and length ratios are quite easy to 

generate in C++ code. Therefore, 20 cuboids are generated automatically by choosing 

different aspect ratios, orientation and size. In Figure 7.18, we show part of this artificial 

dataset. There are in total 1002 nodes on each data to represent one cube surface, 642 

landmarks are used for optimization. As has been discussed previously, we first find the 

direct Conformal Mapping between cuboids and unit sphere. We will show the 

conformal mapping results on cuboids by using both coloured cuboids and unit spheres 

in Figure 7.19. From Figure 7.19, it can be seen that datasets are mapped to unit spheres 

successfully. In Figure 7.20, it can be seen that the corners on cuboids with 90° angle 

are very well preserved in Conformal Mapping. In the Figure 7.21, some of the datasets, 

which have been processed by MEM are shown. Again, the correspondence points can 

be identified by using unique colour. 

 

The next step of our experiment is to compare the proposed MEM to a model built 

using the MDL without one master example, which is arguably the best published 

approach to defining the correspondence between sets of closed surface. This 

comparison is based on the results of Generalization Ability, Specificity, and 

Compactness and is presented in Figure 7.22. From these results, we can see that MEM 

achieved better Generalization Ability, Specificity and Similar Compactness. 

 

The whole program is coded in C++ and run on a 1G CPU, 512M RAM laptop with 



 164

platform VC 2005. The total computation time is 1 hour and 4 minutes for MEM and 3 

hours 23 minutes for MDL. We attribute the computation efficiency of MEM to the 

usage of gradient-based optimization strategy in MEM. Another interesting observation 

is made when we re-construct our shape directly from the processed datasets and 

neglect the original shapes; we found that both MDL and MEM did not use corners as a 

one of the correspondence points. This can be seen in Figure 7.23. The reasons for this 

effect are complicated. We attribute this problem to both the ASM and finding 

correspondence as a learning process. ASM inherently introduces some simplifications 

and assumptions to shape variations, e.g. shape variations are composed by a linear 

combination of variations. Actually, in some case, e.g. what was observed in artificial 

3D cuboids, corners or cuboids are nonlinearly corresponded to each other. Moreover, 

automatic correspondence finding methods, such as MDL and MEM find 

correspondence in a learning process. The correspondence is achieved by optimizing a 

pre-specified cost-function and the cost-function is related to correspondence point’s 

statistics. From this scheme, it can be seen that, the correspondence does not necessarily 

relay on places with high curvatures such as corners. The only promise that MEM and 

MDL are trying to make is that final converged points are corresponding to each other. 
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Figure 7.18 Parts of the 3D artificial datasets are shown here. It can be seen that each cube has 

different aspect ratio and orientation. 
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Figure 7.19 Left: Original cuboids with colour. Right: Unit sph ere, with corresponding colour.   
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Figure 7.20 A demonstration of angle preserving during shape mapping. The content is same 

with Figure 7.18, white cross identifies the corner at the cuboids and their conformal 

mappings. This graph demonstrates Conformal Mapping’s ability to preserve angles during 

shape mapping. 
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Figure 7.21 MEM results of 12 out of 20 cuboids are shown in this figure, correspondence 

points are identified with the same colour. 
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Figure 7.22 From top to bottom: Generalization Ability, Specificity, and Compactness. X-axis 

represents number of modes used in optimization Y-axis represents corresponding comparison 

score. 
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Figure 7.23 Left is correspondence found by MEM and right is from MDL results. 

 

  MEM MDL Percentage 

Difference (%) 

Mean – Standard 

Deviation 
23.81355932 29.90227222 22.67008711 

Mean 24.7440678 30.7763452 21.72994428 

Generalization 

Ability 

Mean + Standard 

Deviation 
25.67457627 31.65041818 20.84899253 

Mean – Standard 

Deviation 
30.58375304 34.10951863 10.89994521 

Mean 30.92185346 34.47968029 10.87994922 

Specificity 

Mean + Standard 

Deviation 
31.25995388 34.84984196 10.86038168 

Mean – Standard 

Deviation 
28.75609433 27.5889462 4.14286017 

Mean 35.80726603 34.75246868 2.98979964 

Compactness 

Mean + Standard 

Deviation 
42.85843773 41.91599116 2.223421816 

 

Table 7.1. A quantitative analysis on the three criteria comparisons based on Area Under the 

Curve. The smaller corresponding value is marked in bold character. 

 

We perform the Area Under the Curve (AUC) to quantitatively calculate the differences 

of MEM vs. MDL using the three criteria. The AUC value is calculated for each criteria 

of mean value, mean value minus standard deviation and mean value plus standard 

deviation. The percentage difference is calculated as %200×
+
−

MEMMDL

MEMMDL
. 
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The results of AUC are presented in Table 7.1, where smaller values are made in bold 

characters. It can be seen that for Generalization Ability, MEM is better than MDL from 

20.8% to 22.7%, for Specificity, MEM is better than MDL about 10.9% and MEM is 

worse than MDL from 2.2% to 4.1% in Compactness. Again, we use ANOVA table to 

test if results from MDL and MEM are from the same distribution. Within all 

parameters p-value is what we concern. If the p-value is near to zero, which means a 

strong indication that the two groups are from different distributions. From Tables 7.2, 

and 7.3, we can see that most of the p-values are zero or close to zero, therefore the 

statistical test rejects the hypothesis that samples are from the same mean. The MDL 

and MEM comparisons on Generalization Ability and Specificity are statistically 

different. 

 

Table 7.2 ANOVA table of the Generalization Ability on datasets of 3D Cuboids.  
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Table 7.3 ANOVA table of the Specificity on datasets of 3D Cuboids. 

 

 

Figure 7.24 A demonstration of linear and nonlinear shape variations. Left: shapes with 

captured nonlinear variations (Red); Right: shapes with linear variations (Green). 

 

The reasons for correspondence points not lying on the corners are quite complicated. 

One of the reasons that correspondence points do not lie on the corners can be attributed 

to the feature extraction method in ASM. In ASM, shape variations are assumed to be a 

combination of linear shape variations. In fact, nonlinear variations may exist in 



 173

datasets. For example, Figure 7.24 shows an example of nonlinear shape variations in 

the artificial datasets. We are using linear variations to approximate nonlinear shape 

variations. This approximation in Active Shape Model may contribute error during 

correspondence optimization. Moreover, both MDL and MEM, are tools of minimizing 

the properties of statistics. Direct shape information, for example curvature, is not 

considered in these two approaches. Therefore, either MEM or MDL does not 

necessarily relay the correspondence points on the corners. 

 

From the quantitative experiments Figure 7.22, we can observe that MEM is better in 

the shape properties of Generalization Ability and Specificity. For Compactness 

properties, MDL and MEM achieves similar scores. In terms of computation time, 

MEM is more than three times faster; this is due to the steepest gradient optimization 

method. This is only a simple example of using both MDL and MEM on artificial 3D 

datasets; we perform one more experiment to demonstrate the algorithms ability on real 

medical dataset. This experiment will be discussed in the next section. 

 

7.4.3 3D Experiments on Hippocampus 

 

The MEM is also performed on the 3D medical datasets of hippocampus, which are 

Magnetic Resonance Imaging (MRI) datasets segmented by an expert. The datasets of 

hippocampus are from Professor Styner [84], after personal communication. These 

datasets have been processed by Marching Cube algorithm, so binary-segmented 

hippocampus datasets have become a set of surface points Cartesian coordinates. The 
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total 21 datasets are saved in .meta files, which are essentially the same as a 

combination of our .pts and .fce with an extra header file for image information. In 

Appendix, a clip of this .meta, .pts and .fce files is shown for interested readers. In the 

file .pts, all the points on the surface are numbered sequentially, and the location 

information is assigned to each location number. In the file .fce, all the neighbourhood 

information is provided, for example, it tells us which three points form a triangle face. 

Parts of the hippocampus and Conformal Mapping results are shown in Figure 7.25 and 

7.26, respectively. From Figure 7.25 we can observe that the shape differences are 

mainly on the tails of hippocampus on both sides. This observation can later be 

confirmed by the shape eigenvectors captured by Active Shape Model. From Figure 

7.26, it can be seen that the mapping between hippocampus and sphere can be identified 

by the same colour. 

 

The same machine and software platform as in the previous artificial datasets section 

were used as well. In this the experiment, each dataset is represented by 1002 nodes and 

2562 landmarks are used for optimization. Since we are using more landmarks than the 

number of nodes in the dataset, linear interpolation was used in this experiment. The 

computation time for MDL is 54 hours and 13 minutes, and 46 hours and 12 minutes for 

MEM. With the increase of computation complexity, it can be seen that more time is 

used for optimization. As discussed previously, we perform an experiment to compare 

the proposed MEM to a model built using the MDL without one master example. Again, 

this comparison is based on the results of Generalization Ability, Specificity and 

Compactness measurement. These results are presented in Figure 7.27. From these 
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results, which are similar to the results of artificial datasets section, we can see that 

MEM is more general and specific than MDL model; MEM has similar Compactness as 

MDL. As previously, we also perform ANOVA test on Generalization Ability, and 

Specificity measurements. Generalization Ability results of this statistical test are shown 

in Table 7.4. From the results, we can conclude that the Generalization Ability scores of 

MDL and MEM are statistically different. The hypothesis that the two group are drawn 

from the same distribution is rejected. Results of ANOVA test for Specificity are shown 

in Table 7.5. The conclusion is the same as Generalization Ability’s that the Specificity 

score from MDL and MEM are statistically different and drawn from two different 

distribution. 

 

For making visual impression, we show the shape properties of MEM model by 

presenting the mean shape (Figure 7.28) and the first few variations vectors (Figure 

7.29). As discussed earlier in Visualization section, we use two approaches to represent 

shape variations captured by Active Shape Model, as in Figure 7.29 and 7.30. The first 

three shape variations account for more than 99% of variations. 
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Figure 7.25 12 out of 21 datasets of hippocampus are shown 
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Figure 7.26 6 datasets and Conformal Mapping results are shown. As previously, the datasets 

are coloured the same for the purpose of visualizing correspondence points.  
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Figure 7.27 Top to bottom: Comparisons of Generalization Ability, Specificity, Compactness 

metrics on the datasets of hippocampus. X-axis represents number of shape modes used in 

comparisons and Y-axis represents the correspondence score. 
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Table 7.4 ANOVA table of the Generalization Ability on datasets of 3D hippocampus. 

 

Table 7.5 ANOVA table of the Specificity on datasets of 3D hippocampus. 
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From Tables 7.4 and 7.5 we can see that most of the p-values are zero or close to zero, 

therefore ANOVA test showed that the MDL and MEM are different in both 

Generalization Ability and Specificity. 

 

  MEM MDL Percentage 

Difference (%) 

Mean – Standard 

Deviation 
26.56703206 36.27255895 30.88984744 

Mean 27.66764923 37.16663596 29.30235664 

Generalization 

Ability 

Mean + Standard 

Deviation 
28.7682664 38.06071297 27.80963187 

Mean – Standard 

Deviation 
32.04142336 40.5774635 10.89994521 

Mean 33.79881387 42.46532847 10.87994922 

Specificity 

Mean + Standard 

Deviation 
35.55620438 44.35319343 10.86038168 

Mean – Standard 

Deviation 
59.98375092 57.31890199 4.543544183 

Mean 69.43375092 66.6853353 4.03825165 

Compactness 

Mean + Standard 

Deviation 
78.88375092 76.05176861 3.655691506 

 

 

Table 7.6. A quantitative analysis on the three criteria comparisons based on Area Under The 

Curve. The smaller corresponding value is marked in bold character. 

 

We perform the Area Under the Curve (AUC) to quantitatively calculate the difference 

between the three criteria, under MEM and MDL. The AUC value is calculated for each 

criteria of mean value, mean value minus standard deviation and mean value plus 

standard deviation. The results of AUC are presented in Table 7.6, where smaller values 

are made in bold characters. It can be seen that for Generalization Ability, MEM is 

better than MDL from 27.8% to 30.9%, for Specificity, MEM is better than MDL from 
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10.86% to 10.90% and MEM is worse than MDL from 3.7% to 4.5% in Compactness. 

 

 
Figure 7.28 This is an example mean shape drawn from 21 training sets.  

 

Figure 7.29 The first three modes of the MEM hippocampus model. Some of the shape 

differences can be seen from the corners (or tails) of hippocampus. 
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Figure 7.30 The first three modes of the MEM hippocampus model. In this approach, each 

node is assigned with an arrow pointing the shape variation direction.  
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In Figure 7.29, shapes are generated by choosing the weighting components (recall 

Equation 2.8 about the ASM) from 3 ,3i iλ λ −  . In the graph, three shape variations 

are shown. 

 

In Figure 7.30, it can be seen that each node is assigned with an arrow, pointing to the 

direction captured by the Active Shape Model. From Figure 7.30, the results show that 

shape variations are congested in the left and right side tail of the shape and very small 

variations in the middle. This observation agrees with our finding from the datasets, 

which was concluded in the previous paragraph. 

 

7.4.4 Conclusions on 3D Experiments and Discussion.  

 

In this chapter, the limitations of the framework used in 2D has been discussed which 

demands the introduction of a 3D framework. Therefore, the MEM extension in 3D has 

been discussed, and the MEM gradient in the 3D case is also presented. For validating 

the MEM method, we applied the proposed method to datasets of artificial cuboids and 

hippocampus. From our direct observation, it can be seen that MEM finds the 

correspondence reasonably accurately in 3D cases. Shape variations captured by the 

Active Shape Model; agree with what we observed from the training set that most shape 

variations are congested on both sides of the tail area. Again, for quantitative 

comparisons, measurements of Generalization Ability, Specificity and Compactness are 

performed. It can be seen that the quantitative comparisons show significant difference 

between the proposed MEM and MDL model. The AUC results show that the MEM 
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offers better Generalization Ability and Specificity than MDL on both 3D datasets. 

Moreover, the MEM has slightly worse Compactness than the MDL. However, 

Compactness is an application-based criterion. In a recent publication by Davies [65], 

they only use the criteria of Generalization Ability and Specificity for assessment of 

shape model properties. According to the experiment, both MDL and MEM can use the 

first three shape variations to cover more than 90% of all variations, which is more than 

enough for most of the applications. 

 

The 3D optimization algorithm takes much longer than in the 2D case due to increase of 

complexity (one more dimension and more nodes on the surface) even when a 

lower-level language (C++) is used (recall that the 2D code is built in Matlab). In the 

3D case, MEM is a bit faster than MDL, due to the refinement of shape 

parameterization and re-parameterization method. Another interesting observation is 

that during the experiments on cuboids, corners are not located as corresponding points 

by both MDL and MEM. We argued that this is caused mainly by two reasons. Firstly, if 

the variations are nonlinear, linear variations used in ASM will introduce some error. In 

this case, errors may be represented as missing corners. Secondly and more importantly, 

as a method of finding corresponding points is a learning process, both MDL and MEM 

do not necessarily find points, which have distinguishable features such as shape 

corners with high curvatures. 

 

In the end, we conclude that the proposed MEM can be successfully extended into 3D 

scenarios. 
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Chapter 8 Applications of Using MEM & MDL for 

Classification 

 

In this chapter, we will present, in terms of an application, some results on how to use 

the proposed automatic correspondence finding algorithm, in order to perform 

classification on genetic separated subjects. For example, face profiles can be easily 

separated by their gender. In this chapter, we performed a similar experiment, which 

was also introduced in [38] by Thodberg. During the experiment, a number of face 

profile photos were first collected. Manual or automatic face segmentation was 

performed to extract the face profile contours. These face profiles were used as an input 

to the automatic correspondence finding algorithm. In this experiment the facial profiles 

were considered as a 2D open curve with flexible end points problem. Normally, we 

will first set the number of correspondence points, which should be found during 

optimization. After optimization, on each set of face profiles, a number of 

correspondence points are located. An Active Shape Model (ASM) can be easily built 

from these points. As we recall from previous chapters, each shape profile is identified 

by concatenating landmark coordinates. Then error minimization is performed on 

reducing possible errors due to translation, rotation and scaling. After applying Principal 

Component Analysis to the shape covariance matrix to extract shape variations, each 

face profile is rewritten as a combination of mean shape and shape variations 

multiplying weighting vector, since all the profiles are using the same mean shape and 

the same set of shape variations. For simplicity, each profile can be identified by the 



 186

weighting vector b (please recall Equation 2.8) on the shape variations. Therefore, by 

using classification methods, such as Logistic Regression [100] on the ASM weighting 

vector b, a gender prediction model can be generated. In this experiment, since the 

gender of each profile is known, leave-one-out validation can be incorporated to 

evaluate the performance of the prediction model and the classification accuracy can be 

easily estimated. In this chapter, comparisons were performed between the classification 

accuracy from direct human observers, and shape model built from MDL, MEM, and 

manual landmarked results.  

 

The paragraphs below will introduce the details of methodology used in the experiments, 

results, and conclusions. We will first start from the preparation of the dataset, then, the 

details of the classification algorithm. A detailed comparison between the MDL, MEM 

and manual land marking is shown. In the end, we conclude our experiments.  

8.1 Introduction of Datasets 

 

We collected datasets of 131 facial profiles, in which, 64 are male and 67 are female. 

The datasets are collected by using a Digital Camera to collect pictures of the author’s 

friends and their friends. These people are all Chinese and aged from 20 to 30. From 

personal communication, they all claim that they did not have relatives from outside 

China for the last three generations; therefore, we can claim that these datasets belong to 

subjects of Chinese extraction. As in the experiments in the previous chapters about 

facial profiles, the shape profiles have to be manually segmented from digital pictures 
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before further processing. We demonstrate the segmentation result by showing two 

segmented graphs in Figure 8.1. In this figure, a male profile photo and a female profile 

photo are shown. On them, red lines are manually placed on the profiles in order to 

extract the facial boundaries.   

 

 
Figure 8.1 This graph shows manual segmentation on a male profile photo and a female profile 

photo. The red line is the segmentation result. 

 

The manual segmenting scheme is simply placing points on the boundary from forehead 

to chin area. The red line is reconstructed by a spline interpolation algorithm based on 

the placed points. Figure 8.2 shows the points markers used in manual segmentation. It 

can be seen that the black circles/dots are the manually placed points, the face contour 

and the red curve is reconstructed based on these black circles by using 2D spline 

interpolation. For manual segmenting the datasets efficiently and quickly, different 

manual point placing schemes are used to make sure that the interpolated 2D curve is 

correct. For example, facial contours with high curvature, such as nose, are marked 
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carefully with more points, and places where landform seems to be flat, such as the chin 

and forehead are marked with fewer points. During MDL or MEM optimization, the 

points along the curve needed to be moved freely to find the correspondence between 

each other. Since the curve is reconstructed from existing manually placed points, if a 

new point needs to be established between existing points, linear interpolation will be 

used to find a new point between nearest two existing points.  

 

 

Figure 8.2 This graph shows the points placed on the face contours during manual 

segmentation. The red contours are the same as in Figure 8.1. 



 189

After performing manual segmentation to all 131 facial profile photos, we now have all 

the contours information. We show part of the segmentation results in Figure 8.3, where 

the first row is composed of female subjects, and the second row is composed of male 

subjects.  

 

Figure 8.3 This graph shows twelve of the segmented examples from 131 facial profiles 

collected. Faces in the first row are female and at the bottom row are male. 

 

Compared with female subjects, we can see that the male subjects tend to have larger 

nose, lips are bigger and men’s eyes positioned deeper. As we discussed with several 

experiments participants, we concluded that they all use this information to judge a 

profile’s gender.   
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8.2 Classification Method 

 

As have been discussed in previous chapters, both MDL and MEM can be used to find 

correspondence points across 2D shapes contours automatically. In the experiment, we 

perform both technique to the datasets of 131 manually segmented facial profiles. After 

correspondence landmarks are found among shapes, Active Shape Models (ASM) are 

constructed from both MDL’s results and MEM’s results. After ASM is built, each shape 

is made by two components, which are mean shape and the result of multiplying shape 

variations and their weighting components. For the same ASM, the mean shape and 

shape variations are standard. The only difference between each shape is its weighting 

components/vector. We can therefore use the weighting vector as an input to the 

classification method to explore the difference between two groups with different 

gender. In our case, we are going to find the difference between the facial profiles 

between male and female. In this chapter, we perform Logistic Regression (LR) [100] 

on the weighting component/vector. LR (sometimes called the logistic model or logit 

model) is used for prediction of the probability of occurrence of an event by fitting data 

to a logistic curve. In our case, the probability of occurrence will be the subject’s gender, 

which is either male or female. A simple logistic curve is shown in Equation 8.1. 

1
( )

1 t
Curve t

e−=
+

 (8.1) 

Where t is the curve‘s parameter. We choose Logistic Regression as our classification 

method, for its simplicity and easy usage for prediction within two natural categories. 

More information about Logistic Regression, is provided in reference [100]. 
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A leave-one-out cross-validation of the prediction model is performed. For example, we 

have 131 datasets; we build correspondence points by using MEM, MDL or manual 

method. After correspondence points are found, an Active Shape Model can be built 

accordingly. Since the gender of each subject has been known, we can use the known 

information to train our Logistic Regression model based on 130 datasets, and make a 

prediction of the remaining dataset. A prediction of the model’s gender will be given 

under the rule that:  1) ( ) 0p male ≥ , ( ) 0p female ≥ , and 2) ( ) ( ) 1p male p female+ = . 

Here, p  stands for the probability of the subject being male or female. In the 

validation, the assumption will be rejected if the probability is lower than 0.5. For 

example, let ( )p male  be the probability of the subject being a man. Therefore, if 

( )p male  is smaller than 0.5, the prediction indicates that the sample under test is more 

likely to be a woman and vice versa. 

 

For measuring accuracy of our classification results, we use overall classification 

accuracy, Sensitivity and Specificity. Please be noted that the Specificity used in this 

paragraph is different from the Specificity Ability term used in the previous chapters, 

which are used for comparisons of different correspondence points. Since the ground 

truth is known for each subject. The overall classification accuracy is simply the results 

of number of correct classified cases divides number of total cases. Sensitivity (also 

called recall rate in some fields) measures the proportion of actual positive cases, which 

are correctly identified as such (e.g. the percentage of male subjects who are correctly 

identified as being male). Specificity measures the proportion of negatives cases which 

are correctly identified (e.g. the percentage of female subjects who are correctly 
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identified as being female). A theoretical, optimal prediction can achieve 100% 

Sensitivity (i.e. predict all people from the male group as male) and 100% Specificity 

(i.e. not predict anyone from the female group as male). In our case, Sensitivity is the 

classification accuracy within male groups, and Specificity is the classification accuracy 

within female groups.  

 

In addition, we also asked 15 observers to guess the gender of the facial profiles 

independently. As we have known the gender of the subjects, the overall classification 

accuracy, sensitivity and specificity can also be easily calculated. For representing the 

overall accuracy for the whole 15 individual observers, we use the mean Overall 

Accuracy, Sensitivity, Specificity and their variations among all observers.  

 

8.3 Experimental results  

 

Before presenting the accuracy of each model’s performance, we show some of the 

correspondence landmarks results achieved by MDL and MEM in Figures 8.4 and 8.5, 

respectively.   
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Figure 8.4 This graph shows the correspondence points found by MDL. The correspondence 

can be identified by the same colour. 
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Figure 8.5 This graph shows the correspondence points found by MEM. The correspondence 

can be identified by the same colour. 

 

From Figures 8.4 and 8.5, it can be seen that different colour represents the 

correspondence points in different level. The visual difference between MDL and MEM 

may not appear that significant, but there could be difference when using these two sets 

of correspondence points on a classification application. 
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After finding the correspondence points among shapes, we then build the ASM by using 

PCA. The mean shape from MDL and MEM correspondence points and the captured 

shape variations are represented in Figure 8.6.  

 

 

Figure 8.6 On the first row, the first three subjects are shape variations captured by MDL and 

the last three subjects show are shape variations captured by MEM. On the bottom row the 

contour shows the mean shape from MDL and MEM. Same as previous figures, the wiskers 

represent the shape variations.  

 

After building the ASM, we use each shape’s weighting vector as an input to the 

Logistic Regression to perform gender prediction. In this section, we give the 

comparison results between the four studies. Among these four studies, three are 

automatic prediction methods and one is based on direct human observation. For the 

direct human observation test, we invited 15 observers to guess the gender of the facial 
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profiles independently. As the gender of each profile is known, we can calculate the 

Classification Accuracy, Sensitivity and Specificity for each observer’s guess. Since 

there are multiple observers, we use the mean value and standard deviation to represent 

the direct observers’ gender prediction ability. For the automatic methods, we used 

correspondence points found by manually method, MDL and MEM to build ASM. 

Randomly select 130 datasets to train Logistic Regression and make gender prediction 

on the remaining subject. The overall classification accuracy by four methods and their 

standard deviation among the 15 evaluations and the statistic P-value for automatic 

methods as recorded are shown the Table 8.1: 

     

 

Table 8.1 This table shows the scores of different methods. In the second column, the P value is 

the confidence level, the third column shows the overall classification accuracy. 

 

From Table 8.1, it is interesting to observe that the model created by MDL and MEM 

methods gave prediction of the gender more accurate than the manual labelled model 

and direct human observing. A very small P-value means a very high certainty of the 

classification accuracy estimation. Since all the P-values are very small, our overall 

classification accuracy can be statistically trusted. Between the MDL and MEM models, 

MEM outperforms MDL by 5%. During the experiment, it is also observed that it is 

quite important to include the chin area to guarantee a good performance, which agrees 
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with the findings of reference [38]. If we exclude the chin area, the model by manual 

landmarks, MDL and MEM model’s correction ratio will all degrade to about 50%. 

Other than that, we found that the forehead area is also very important in the 

performance of the model. This is actually quite interesting finding, since that in our 

previous finding in the facial contours that the difference between female and male are 

in the eye, lip and nose areas. Maybe that is one of the reasons that human direct 

observer are lower than machine’s automatic prediction results. Machine uses all the 

information in the datasets whereas a human observer only picks up the most relevant 

information he or she believes to be relevant. Additionally, different individuals all 

agreed that they mainly use the curvature as criteria for prediction. This is due to 

recognition that in China, female faces have more flat landforms and male faces are 

more popped out and full landforms. The landform difference can also be observed from 

Figure 8.3. Another interesting finding by the observers is that some of the 

good-looking female and handsome male subjects are more likely to be miss-predicted 

by only looking at their facial profiles and their prediction probability is about 0.4. 

Therefore, the more “beautiful” faces are more involved with features from both male 

subjects and female subjects.  

 

The Sensitivity and Specificity results are shown in Table 8.2. From this table, we can 

observe that MEM marks achieves the highest score in Sensitivity, which means MEM 

marks classification is the most accurate in male subjects and MEM marks also achieves 

the highest score in Specificity, which means MEM marks classification is the most 

accurate in the female subjects. One interesting observation on this part of results is that 
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the direct human observation is more accurate than manual marks classification in 

Specificity, and less accurate in Sensitivity.   

 
Table 8.2 This table shows Sensitivity and Specificity of the four classication results. From this 

table, it can be seen that the MEM marks based classification achieves the highest scores on 

both Sensiticy and Specificity. 

 

 

Table 8.3 This graph shows some of the wrong prediction results made by MEM, MDL and 

manual model. In these examples, manual results made wrong prediction on all six examples; 

MEM had three correct guess whereas MDL had only one correct guess. 

   

Table 8.3 shows some of the results, whose gender has been wrongly predicted by most 

of the observers and also the automatic prediction models. From this table, the ground 

truth is that the first three examples are female and the last three examples are male. For 
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the model built from manual results, since the probability in all is lower than 0.5, the 

predictions were wrong for all six cases. For model built from MEM, the prediction was 

correct for the third, fourth and sixth case. For model built from MDL, the prediction 

was correct for only the second case. 

 

8.4 Conclusions  

 

In this chapter, we demonstrated one of the applications of our proposed MEM method, 

which is using the automatic found correspondence points to build Active Shape Model 

(ASM), and use this model’s parameters as an input to the classification method to 

perform gender prediction on facial contours. In the experiments, we also perform 

prediction accuracy comparisons between four different gender prediction methods. 

Three of them are automatic methods, which are using ASM built from manual 

landmarks, MDL found landmarks and MEM found landmarks. The fourth method is by 

inviting various people to participate direct guessing based on observing the facial 

contours. The overall classification accuracy results show that the ASM built from 

landmarks found by MEM and MDL are the first tier performers and the model built 

from MEM landmarks can provide 5% more accurate estimation than MDL. Direct 

human observing and model built from manual landmarks are in the second tier with 

accuracy 66% and 68% respectively. For Sensitivity, the performance from best to worst 

is MEM marks, MDL marks, manual marks and direct observation. For Specificity, the 

performance from best to worst is MEM marks, MDL marks, direct observation and 
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manual marks. 

 

The conclusion is that using computer to perform classification of profiles is relatively 

more accurate than direct human guessing. We attribute this reason to the fact that 

machines are actually using all the input information such as forehead, eye, nose, lip, 

chin, etc, but human observer only focus on local information such as eye and lip shape 

without considering the whole picture. Another interesting finding is that, we pick up 

some of the wrong prediction picture made by MDL and MEM based classification. 

Most of the observers agree that their wrong predicted faces seem to be more handsome 

or pretty than the correct predicted ones. It looks that for machines, these category of 

faces are involved with features from both male subjects and female subjects. When 

using automatic methods found correspondence to perform classification, MEM found 

correspondence can provide 5% more accurate overall classification accuracy than 

MDL found correspondence points.     
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Chapter 9 Conclusions and Future Work   

9.1 Contributions 

 

In the previous chapters, we have presented a new framework of finding the surface 

correspondence points across either 2D or 3D datasets automatically. In this section, we 

will summarize the conclusions and directions for future research work. 

 

The main contributions of this thesis are listed as follows: 

1) A new objective function, which provides a measurement of model utility 

A Minimum Entropy based objective function is derived to compose the cost-function. 

Unlike MDL where, the total cost function is simply added up directly, MEM has 

different weights for each Entropy component. 

2) The gradient of the MEM cost function is derived for a faster convergence 

Based on the results of SVD products on the shape covariance matrix, the gradient of 

the MEM cost function can be derived successfully. By using this gradient, the Steepest 

Descent optimization algorithm can be incorporated. Compared with the original 

simplex approach in MDL, the new gradient method is reasonably faster. 

3) A more shape feature preserving shape parameterization and 

re-parameterization method 

Unlike the simplified version of spherical harmonics used by Davies, we use conformal 

mapping as our 3D shape parameterization method. According to references [52], [53], 

this mapping technique can preserve more shape information and minimize angle 
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distortion. A more efficient re-parameterization method is used, which allows new 

kernel to be added without disturbing other landmarks. 

4) The framework is applicable to both 2D and 3D datasets 

The scheme for both 2D and 3D implementation of MEM algorithm is provided. This 

framework has been successfully applied to several 2D and 3D datasets. In addition 

comparisons against the MDL algorithm based on objective metrics we performed both 

on 2D and 3D, on different datasets and scenarios. 

5) Solving the “Pile Up” problem 

This well reported problem is inherently solved by the replacement of MDL 

cost-function to MEM cost-function. In both 2D and 3D scenarios, MDL runs into “Pile 

Up” several times, however, MEM did not encounter this problem at all, since MEM 

favours a distributed correspondence, and MDL favours a congested correspondence. 

6) Using MEM to perform an automatic classification scheme building and 

perform comparisons with other methods 

I used MEM, MDL, and manually labelled landmarks on the facial contours to build up 

a gender classifier. The comparison is performed between these three classifiers and 

direct human observation on a large dataset of facial data. Overall classification 

accuracy, sensitivity and specificity are used here. The results showed that the MEM’s 

classifier outperform other methods in all three evaluations.    
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9.2 Future Work 

 

Although the proposed MEM has been successfully applied to 2D and 3D datasets and 

it has been shown that MEM preserves better shape properties than MDL does, the 

proposed MEM algorithm is not perfect yet. There are still some limitations of the 

approach to automatic shape modelling; we present some future research directions 

here. 

 

9.2.1 Discrimination Analysis 

 

In chapter 8 we presented preliminary 2D discrimination analysis results, it is quite 

straightforward to think about extending the current technique to 3D cases. The MEM 

model can be used as a basis for exploring differences in shape between normal and 

abnormal objects. By doing this analysis, we can translate the technical superiority into 

real practical applications. In medical image processing, many datasets exist in 3D 

format and 3D information can give a more direct measurement of potential illness. For 

example, in Davies’s thesis [22], he suggests that shape information provides better 

discrimination of schizophrenia and normal subjects, than volume measurements. The 

discrimination objective can be pursued by constructing the MEM model on the training 

set consisting with both schizophrenia subjects ( iSC∑ ) and normal subjects ( iSN∑ ). 

After that, a classification method, such as Logistic Regression used in Chapter 8, can 

be used on the parameters consisted of shape weighting components. In Davies’s thesis, 

he simply uses Linear Discriminate Analysis (LDA) to classify these two groups. The 
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discrimination direction can be found at the same time. Figure 9.1 shows the results of 

the LDA analysis results on 56 schizophrenia datasets and 26 normal datasets from 

reference [22]. It can be seen from the graph that the schizophrenic patients will be most 

likely to have a hippocampus with longer and thinner tails. From left to right, the graph 

shows the shape changes from normal to schizophrenic shapes. 

 
Figure 9.1 The model was built for visualizing the shape difference between Normal subjects 

and Schizophrenic subjects. In the graph, “–“ indicates Normal and “+” indicates 

Schizophrenic. 

 

The accuracy of the MEM model can be justified by performing Leave-One-Out 

analysis. The pseudo code below, shows how to perform this analysis. 

 

 For shape example 1 si n= K  

1) MEM is performed on the training set withix excluded 

2) Shape parameters are separated into two groups 

3) LDA is performed to find the separating vector 
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4) The excluded example is mapped to discrimination space 

5) Go to step one, if this is not the last example 

 

More details and results about this LDA analysis are discussed in reference [22]. 

Another interesting future direction about the Discrimination Analysis is trying to use 

other classification or regression method rather than linear decimation method, e.g. 

Support Vector Machines [67], [68], Discrimination Analysis by using SVM can be 

found in [69], [70]. 

 

Essentially, we are planning to find the connection between shapes and biology. For 

example, shapes of brain may indicate gender; shapes of hippocampus may indicate 

some potential illness. Moreover, there is no ground truth for measuring the accuracy of 

correspondence found by different approaches. It may be a good idea to use the 

automatic found correspondence points to build a shape model, therefore test the shape 

model’s ability in some applications. Testing the model’s ability in application may be a 

more intuitive way to measure the model correspondence accuracy, rather than using the 

three comparison criteria. 

  

9.2.2 More Datasets 

 

As has been discussed in the introduction and literature review, the automatic shape 

modelling is an important technique, which has broad applications. Besides 

discrimination analysis on the datasets of healthy and unhealthy hippocampus, Brain 
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modelling can be another good application. 

 

Brain modelling is directly related to Neuroimaging and Human Brain Mapping, as 

brain can be segmented into different functionality zones each playing a different role. 

Therefore, it can be quite helpful for a physician to know the corresponding zone or 

points between a patient brain and brain atlas. An example of the brain atlas is shown in 

Figure 9.2.  

 
Figure 9.2 A brain atlas example, different colour represent different functionality zone. 

 

The approach for tackling this problem is simple; datasets are segmented and classified 

by an expert. Therefore, when a new example (patient dataset) joins the datasets, MEM 

will be performed and will find the corresponding points between the new coming 

dataset and prepared datasets. In this way, the corresponding zone will be found. There 

is some similar work on this brain surface correspondence finding problem. Figure 9.3, 
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is from reference [48], where the author found 69 corresponding points across datasets. 

 

Figure 9.3 From top to bottom, it shows different views of brain. Left: Atlas surface 

hand-labelled 69 points; Right: Correspondence points found in [48] . 

 

9.2.3 MEM with Appearance Information 

 

As reported in reference [16], shape information is sometimes not sufficient for finding 

the correspondence an ASM, especially when the shapes contain considerable variations. 

Fortunately, we can incorporate appearance information into the current MEM model 

and form a MEM appearance model. 

 

Different from ASM, the model is parameterized by using both shape coordinates and 

gray level information of the landmarks. 

1 1 1 1 2( , , , , , , , , , , )n n n nX x y z x y z I I I= K K  (9.1) 
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Where , ,i i ix y z  are landmark coordinates in , ,X Y Z direction respectively andiI is 

the intensity information on the landmarks. 

 

According to reference [16], with the help of the appearance information, shape model 

can provide better properties, for example segmentation accuracy. In this sense, we are 

hoping the MEM appearance model can convey better model properties than the 

original MEM. Some of the preliminary results about MDL appearance model appeared 

in [71], [72]. In reference [71], the basic theory about MDL and MDL appearance 

model was introduced. In paper [72], the author represented work of facial recognition 

by using MDL appearance model. The results demonstrated that with the appearance 

information the MDL model can find correspondence points more accurately. 

 

9.2.4 MEM with Arbitrary Topology Structure 

 

It has been shown in our 3D work section that the MEM can be applied to shapes with 

genus zero topology. In other words, any shape with sphere topology can be modelled 

by MEM automatically. Therefore, it is quite straightforward to ask if we can model 

shapes with arbitrary topology. For example, diaphragm is an important structure, which 

divides the human trunk to chest and abdomen. In many applications, e.g. liver/heart 

segmentation, it will be of great help if the position of diaphragm can be found. 

However, in terms of intensity, there is little difference between diaphragm, bottom of 

heart and top of liver. Other researchers in reference [73] have tried to use Active 

Appearance Model to segment the diaphragm. However, the manual landmark placing 
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makes the method difficult to use in practice. By incorporating the proposed MEM, we 

can ease this problem. In order to model diaphragm, we have to refine our framework. 

 

We suggest using the framework below for modelling shapes like diaphragm, which can 

be considered as open-shapes. 

 

Scheme for modelling open-surface shape 

1) Pre-process datasets: centring, roughly aligning datasets 

2) Rough initial landmarks: initial landmarks can be roughly placed by algorithms like 

ICP 

3) Measure MEM cost function: MEM is calculated in this step 

4) Re-parameterization: Move landmarks in shape space 

5) Stop criteria: finish optimization when convergence is achieved 

 

Comparing this approach with our original approach, there are some differences: 1) 

Shapes are not parameterized by a sphere anymore; therefore optimization is performed 

directly in shape space. 2) For the same reason of absence of parameterization, ICP is 

used for initial landmarks placement. 

 

The advantage of this approach is that it can model shapes with open surface. However, 

a suitable re-parameterization has to be developed to cope with different surfaces. 
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9.2.5 Shapes with Non-Linear Variations 

 

One of the essential goals of Active Shape Model is to extract shape variations from 

aligned landmarks cloud. A standard technique for such variations extraction is using 

Principal Component Analysis (PCA). PCA assumes that variations are linear in 

Euclidean vector space, which is insufficient and inefficient on datasets with non-linear 

variations and these non-linear variations are common in medical datasets. To some 

extent, the non-linear variation problem can be solved by approximations using a 

combination of linear components; however, the use of linear components increases the 

dimensionality of the model and allows for non-valid shapes [82]. Therefore, this 

approximation error remains in MDL and MEM approach, and sometimes can influence 

the results. Algorithms presented in [80], [81] have been developed to complement this 

approximation error in PCA. In this section, we are going to discuss the possibility of a 

nonlinear approach, which incorporates the nonlinear PCA with finding correspondence 

in a learning process. Preliminary results are shown, which are based on the comparison 

between PCA MDL and Nonlinear PCA MDL. Again, comparisons were performed by 

evaluating the Generalization Ability, Specificity and Compactness. 

      

9.2.5.1 Introduction of Nonlinear PCA 

 

The idea of nonlinear PCA is quite intuitive. PCA can be effectively performed on a set 

of observations that are linear. When variations are not linear [75], they will be mapped 

to a higher dimension where shape variations are again linear. PCA can then be applied 



 211 

in the higher dimensional space. A simple illustration of this mapping from lower 

dimension to higher dimension is in Figure 9.4. 

 
Figure 9.4 The graph shows the process of mapping the original shape vector to a higher 

dimension, nonlinear variations can be mapped to linear variations at the same time. Here Η  

denotes this mapping process. 

 

More precisely, PCA is going to be performed in the linear higher dimensional space 

[45, 76]. Given a set of aligned N shape vectors
1

N

i
i

x
=
∑ , we are going to decouple the 

nonlinear correlations through diagonalising their covariance matrix. For example: 

1

1
( ) ( )

N
T

i i
i

A x x
N =

= Η Η∑  (9.2) 

Same as Figure 9.4, ( )Η •  is a nonlinear mapping function which projects the input 

shape vectors from input space to feature space. To decouple the covariance matrix A, 

we have to solve the Eigen problem in Equation 9.3: 

p Apλ =  (9.3) 
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Where λ  is the eigenvalue, and P is a matrix where each column is the eigenvector of 

the matrix A. 

If we multiply p on each side of Equation 9.2, we will get Equation 9.4 

∑
=

=
N

i

T
ii xHpxH

N
Ap

1

)())((
1

 (9.4) 

Therefore, there must be coefficients ic so that 

1

( )
N

i i
i

p c x
=

= Η∑  (9.5) 

If we combine Equation 9.2, 9.3 and 9.5 together we will find that: 

1 1 1

1
( ( ) ( ) ) ( ( ( ) ( ) )( ( ) ( ) ) )

N M N
T T T T

i k i i k j j i
i i j

c x x c x x x x
N

λ
= = =

Η Η = Η Η Η Η∑ ∑ ∑ �  (9.6) 

This equation provides a clue that the previous mentioned eigenproblem can be solved 

by dot products of mapped shape vectors in higher dimension. Since computing such 

dot product in high dimensional space is still expensive, Support Vector Machine (SVM) 

[83] can be used to ease this problem. 

We can define a N N×  matrix S, where ( ) ( )ij i jS x x= Η Η , therefore, Equation 9.6 can 

be rewritten as Equation 9.7: 

N P SPλ =  (9.7) 

Where [ ]1 2; ;
T

NP p p p= K (MATLAB notation), is the eigenvector. 

We adopt the Gaussian Kernel to model the matrix S, as in Equation 9.8: 

2

2
( )

2( , )
x y

S x y e σ
−

−
=  

(9.8) 

Where e is the base of natural logarithm, and σ  is the standard deviation. As we are 

discussing the shape model in nonlinear cases, we will first discuss the weighting vector 
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(Please recall what we defined it in the previous linear cases in Equation 2.8). The 

weighting component b of a shape vector ix  can then be extracted by projecting 

( )ixΗ on each column of eigenvector matrix P as in Equation 9.9, were ia  is the 

weighting component. 

1

( ) ( ( ) ( ))
N

i i i i
i

b P x a x x
=

= ⋅Η = Η ⋅Η∑  (9.9) 

Again, this can also be solved by using a dot product from Gaussian Kernel. However, 

the nonlinear process discussed previously can be represented differently by giving a 

specific exponential mapping and its reverse logarithmic mapping, which was 

developed in Principal Geodesic Analysis [81]. Exponential mapping will be used as 

Η mapping and logarithmic mapping will be the inverse of Η mapping. In reference 

[81], Geodesics are used extensively, to catch variations in high dimensional space. 

Given a set of shapes 1 2, , , nx x xK  and a fixed mean shape µ  on a complete, 

connected manifold M, the definition of variations will be given by: 

 [ ]2 ( , )iE d xσ µ=  (9.10) 

Where d means the Riemann distance and E is the mathematic notation for 

“Expectation”. We can see that the variations of the data are equal to the expected value 

of the square Riemannian distance from the intrinsic mean. By using the Exponential 

Map and Log Map concepts, the Equation 9.10 can be rewritten as in Equation 9.11.   

22 2

1 1

1 1
( , ) log ( )

n n

i i
i i

d x x
n n µσ µ

= =
= =∑ ∑  (9.11) 

The projection of one vector to another is also intuitive, which is defined as a 

minimization of distance process. Although there is no guarantee that such projection 
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exists, the authors of reference [81] argued that given a small enough neighbourhoods 

around the mean shape, the unique shape can be assured. We adopt this nonlinear 

approach and combine it with the existing MDL approach. The purpose of this 

technique combination is trying to find if the nonlinear shape variations extraction 

method will somehow improve our correspondence finding algorithm. In the next 

section, we will present our preliminary experimental results on this approach. 

 

9.2.5.2 Experiments on Nonlinear MDL 

  

In order to validate our proposed algorithm, our experiments are conducted on the 

dataset of facial contours, which were used in the 2D work section. The same datasets 

were also used in the section of solving the “Pile Up” problem, where the original MDL 

met the “Pile Up” problem. 

 

It can be seen from Figure 9.5 that by using the nonlinear MDL optimization the 

algorithm did not meet the “Pile Up” problem. All landmarks are placed in a seemingly 

same manner. In Figure 9.6, it can be seen that the cost function stabilized after 7000 

steps in optimization. Again, we show the movement of each node in Figure 9.7 
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Figure 9.5 Results of nonlinear MDL analysis of facial contours. 

 

 

Figure 9.6 Results of performance of cost function. X-axis represents number of steps and 

Y-axis represents value of cost function. 
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Figure 9.7 Movement of nine nodes are shown here. Each graph gives the movement of the 

node in 22 examples represented by different colour. X coordinate is step number and Y 

coordinate is node value. All nodes start to move from parameter 0.5 and stabilize around the 

15th step. 

 

9.2.5.3 Conclusions  

 

In this section, our preliminary results on using nonlinear analysis to find 

correspondence are discussed. By mapping shape vectors into a higher dimension, 

nonlinear shape variations can become linear in that dimensional space. Therefore, PCA 

and MDL can be applied in this higher dimension. From our experimental results, we 

can see that the proposed nonlinear MDL can find correspondence across datasets 
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automatically. It can also be observed from Figure 9.5 that, by using nonlinear PCA to 

replace linear PCA, MDL did not meet the “Pile Up” problem on the datasets of facial 

profiles. Another interesting preliminary result is that, compared with results on using 

linear MDL, nonlinear method can find correspondence much faster. 

        

9.3 Final Conclusions 

 

In this chapter, we presented the conclusions of our contributions to the areas of 

automatic Active Shape Model building, especially the “Correspondence Problem”. 

Rather than using Description Length as a measurement of cost-function, we proposed 

using Entropy as an alternative. Besides that, we proposed using a proper weighting for 

energy component extracted from each eigen-shape vector. Compared with the MDL 

approach, the newly proposed MEM can have better shape properties in the criteria of 

Generalization Ability and Specificity and also similar in the criterion of Compactness. 

With the derivation from Single Value Decomposition, MEM’s gradient can be 

computed efficiently. Therefore, MEM method incorporating the Steepest Descent 

approach can run faster than MDL’s approach. MEM also shows great potential to deal 

with the “Pile UP” problem, which is encountered in MDL. The proposed MEM is so 

flexible that it can be applied to both 2D and 3D scenarios. In terms of applications, we 

demonstrate the capability of using MEM to find correspondence points across 2D 

facial contours and therefore build up gender classifier automatically. The comparison 

with other automatic classification schmes shows that the MEM based classifier shows 
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better performance in terms of overall classification accuracy, sensitivity and specificity. 

We also listed some future work directions in this chapter. I am hoping that with the 

help of this thesis, the automatic Active Shape Model building problem (i.e. 

correspondence problem) can, to some extent, be solved or making some progress 

towards the perfect solution. 
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Appendix  

 

Data Format  

 

This appendix section shows the datasets formats, which are used in the thesis. They are 

meta, pts, fce, vector and visualization. 

Meta file is a common data format used in Insight Segmentation & Registration Toolkit 

(ITK www.itk.org). 

Table A1. Meta  

ObjectType = Scene 

NDims = 3 

NObjects = 1 

ObjectType = Mesh 

NDims = 3 

ID = 0 

TransformMatrix = 1 0 0 0 1 0 0 0 1 

Offset = 0 0 0 

CenterOfRotation = 0 0 0 

ElementSpacing = 1 1 1 

PointType = MET_FLOAT 

PointDataType = MET_DOUBLE 

CellDataType = MET_DOUBLE 

NCellTypes = 1 

PointDim = ID x y ... 

NPoints = 4002 

Points =  

0 -10.9759 1.50363 -1.73291  

1 12.036 0.184908 -3.7455  

2 -10.9527 1.55506 4.44425  

3 12.098 0.294071 5.49359  

4 2.00945 8.81335 -1.50159  

……………. 

3999 -23.8896 -5.50267 -2.19734  

4000 -23.9489 -5.67883 -2.4453  

4001 -23.8785 -5.77109 -2.63706  

CellType = TRI 
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NCells = 8000 

Cells =  

0 12 0 31  

1 582 31 32  

2 582 12 31  

3 13 12 582  

4 583 32 33  

5 583 582 32  

6 584 582 583  

7 584 13 582  

……………. 

7994 275 4000 3999  

7995 276 4000 275  

7996 276 4001 4000  

7997 277 4001 276  

7998 277 543 4001  

7999 11 543 277 

 

It can be seen that the number of cells (cN ) and number of points (pN ) have the 

relations as follows: 

2 4c pN N= −  (A.1) 

 
Table A2. pts 

15.3607 14.5341 22.7496 

13.3707 36.1425 12.7825 

15.4711 11.7889 15.1863 

……………. 

13.8812 35.2222 8.36011 

22.5363 25.9905 16.9296 

23.6575 23.0942 12.8139 

11.6803 21.1842 16.7248 

 

The pts file is composed by point coordinates. Each line is a 3D coordinate for a 

landmark and number of rows is equal to number of points. 
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Table A3. fce  

12 0 21 

282 21 22 

282 12 21 

13 12 282 

283 22 23 

283 282 22 

……………. 

284 282 283 

284 13 282 

14 13 284 

285 23 24 

 

The fce file shows the relations between points. For example, the first line of sample 

data shows that the 12th, 0th and 21st form a triangle surface. 

 

Table A4 Visualization  

NUMBER_OF_POINTS = 1002 

DIMENSION = 1 

TYPE = Scalar 

0.000000 

0.000999  

0.001998  

……………. 

1.000000 

 

From the first point to the end point, each point is assigned with a value from 0 to 1. 

Table A5 Variations Vector 

NUMBER_OF_POINTS = 1002 

DIMENSION = 3 

TYPE = Vector 

     0.024348     0.000863    -0.006797 

    -0.028662    -0.003137     0.009808 

     0.026247    -0.002523    -0.000842 
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-0.029640    -0.000341     0.003859 

    ……………. 

-0.000846    -0.000448    -0.004895 

 0.001895    -0.001639    -0.003297 

Each node is assigned with a vector. This vector can be with length 1. 
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Zihua Su, Tryphon Lambrou, Andrew Todd-Pokropek 
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Malet Place Engineering Building, Gower Street, London WC1E 6BT, U.K. 

Abstract. Statistical shape models use Principal Component Analysis (PCA) to describe the shape 

variations. However, PCA has the restriction that the input data must be drawn from a Gaussian 

distribution, and is only able to describe global decomposition. In recent years, Independent 

Component Analysis (ICA) has become a popular alterative for shape decomposition. Due to the local 

variations that ICA represents, the final optimal result usually turns out to be an invalid shape. In this 

paper, we will investigate the details of the ICA-ASM. With the consideration of the influence from 

neighbourhood points by using Markov Random Field (MRF), we overcome this drawback 

introduced by ICA. Our initial results show that our proposed method offers a better rate in obtaining 

a valid shape. From this, we can conclude that the MRF based ICA model provides improved results 

to the Bayesian based ICA model currently used. 

 

1 Introduction 

Geometric shape information plays a key role in many computer vision and image processing applications, 

especially in medical image analysis where many anatomical structures and organs can be identified and 

classified in terms of their unique shapes. The correspondence is such a critical thing that usually comes 

before Procrustes alignment.  

The advantage of Active Shape Model (ASM) is that it uses experiences from training data to judge the 

correspondence and shape outline. In recent years ICA has been introduced into ASM for its excellent 

performance on giving more accurate local variations and no restrictions on data set. Actually, ICA has 

become a more general data description method than PCA does. By using the Bayesian frame work [1], 

we can cast our problem into a Maximum a Posterior Probability (MAP) work. The final result shape is 

the optimal minimization. The problem is by using ICA your optimization method will face more local 

peaks than PCA does. Therefore, the result is more likely to be trapped in invalid shapes. We noted that 

some work has been done for eliminating this effect. By adding more artificial training set Wang et al [1] 

make their shape model more rigid and more global. To some extent, they solve the problem of invalid 

shape, but that makes it harder to capture local variations. By using MRF theory [2], our method 

successfully conquers this drawback. We also note that some other approach has been made by R.H. 

Davies et al [3].  
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2 Method 

2.1 ICA-Based Active Shape Model 

ICA is a more general description of data format than PCA, since PCA can only represent the orthogonal 

condition. An example is shown in Figure 1. PCA requires the data to be Gaussian distributed and in most 

of cases that does not hold [4]. In addition, ICA gives a very convenient advantage, which PCA can not 

easily have, that the joint probability of all the components is equal to the product of every component’s 

probability.   

)()()()( 21 nXPXPXPXP K=  (1) 

 

In our proposed method we use similar ranking algorithm to that presented in [5]. After that, we select the 

first t components to cover 98% of all variations. 

  

 

Figure 1. An example of PCA (left) and ICA (right), as we can see, ICA finds the real distribution format but PCA 

does not. 

Since we know that finding the maximum negentropy direction is equivalent to finding a representation in 

which mutual information is minimized and negentropy is natural measure of non-Gaussianity. Here we 

propose a Gaussian mixture model for the ICA density expression. In this mixture model we are combing 

M parameterised densities and giving each one of them a weight. A frequently used algorithm for this 

optimization problem is the Expectation Maximization (EM) algorithm [4]. EM is an iterative method that 

finds the maximum by choosing a new guess to maximize the lower bound. Some of the optimization 

results from the real training sets are shown in Figures 2 and 3. 
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Figure 2. Gaussian Mixture estimated by EM. 
 

Figure 3. Intermediate steps of the EM algorithm. 

 

2.2 Markov Random Field Regularization 

Since ASM was developed, research has been carried out on its parameter optimization. Different 

methods have been used in order to compose objective functions. Among these methods, Bayesian frame 

work is widely employed due to its usage of prior knowledge. However, lack of consideration in relations 

between parameters makes the final optimal shape often invalid. Using ICA to substitute PCA makes this 

even worse. Wang, et al [1] has tried to add some rigid artificial variations to the eigenvectors to make the 

shape changes more global and reasonable. This, to some extent, solves the problem, but makes the mode 

harder to capture local variations that often exist in practical cases. A natural way to incorporating spatial 

correlations into Bayesian process is to use MRF as a priori model. Thus, we follow the four successive 

stages of the Bayesian paradigm: 1) Construction of a prior probability distribution p(d) for the 

deformation field D matching the template shape tS from training data to source shape sS . 2) 

Formulation of an observation model p(y|d) that describes the distribution of the observed shaped Y given 

any particular realization of the prior distribution. 3) Using Bayes theorem to combine the prior and 

observation model into the posterior distribution. 4) Drawing inference based on the posterior 

distribution. 

At this point we provide some definitions from MRF theory in order to describe the probability 

distribution on a spatial arrangement of points. Neighbourhood system and cliques are the most important 

definition in MRF theory. Given a graph of n connected sites n
iisS 1}{ == , a neighbourhood system 

},{ SsNN s ∈= is any collection of subsets of S for which: i) sNs∉ , and ii) rs NsNr ∈⇔∈ , 

then sN  are the neighbours of s. A clique c is a subset of sites S for which every pair of sites is 

neighbour. Let all cliques be denoted by C. For all Cc∈   we assume that we have a family of 

potential function cV .We may now define an energy function of any given configuration of d i.e. 

∑ ∈= cCc VdU )( .This leads to the definition of Gibbs measure. The Gibbs measure induced by energy 

function )(dU is     
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( ) ( )( )TdUe
z

dp −= 1
 (2) 

where, Z is the partition function and T is a parameter referred to as temperature. The Gibbs measure 

maximizes entropy (uncertainty) among all distributions with the same expected energy. The temperature 

controls the “peaking” of the density function; normally we define it as 1 for simplicity. The normalizing 

constant may be impossible to obtain due to the problem of dimensionality but often we need only ratios 

of probabilities and the constant omitted. A theoretical result called Hammersley-Clifford gives the 

relation between MRF and Gibbs random fields and states that D is a Markov random field with respect 

to N if ( )dp is a Gibbs distribution with respect to N [7][8]. So, we need to specify potentials that 

induce the Gibbs measure in order to encompass MRF properties of D on the graph.  More details are 

given in [2]. 

2.3 Prior Distributions 

We construct energy function based on differences between neighbouring sites. We put this in a 

multivariate case then we have the general expression of energy governing the site-priors 

 

∑ −=
ji

pjisite dddU
~

)(  (3) 

 

where, 
p

.  is the p-norm, p=2 in the 2 D case, and id represents the multivariate displacement of the 

ith site. 

     With p=2 the energy function induces a Gaussian prior on the deformation fields. Neglecting 

regions with strong surface dynamics the local optimization becomes concave and the maximum 

likelihood estimate of the displacement at the ith site is taken as the mean of the neighbouring 

displacements. Given the statistical models (ICA-ASM) and the shape parameters T
taaaa ).....( 21= , 

and pose parameters: scale s, rotation θ , transportation 
y

TTx , . The combined pose and shape 

parameter vector to be determined is represented by the following equation. 

T
tyx aaaTTsP ),,,,,,,( 21 Kθ=  (4) 

 

 

2.4 Observation Models 

The observation model p(y|d) describes the conditional distribution of the observed data Y. By specifying 

an observation model we may favour a mapping that makes correspondence between regions of similar 

boundary properties. We propose only using the edge information in the input image, which is denoted as 

E here. The edge image E is assumed to consist of one of the deformed templates,pt corrupted by additive 
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white zero mean Gaussian noise with standard deviation nσ , i.e. E= pt +n. This leads to (similar as in 

[9]): 
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where, k the template magnitude at any point which is assumed to be a constant and is chosen to be the 

maximum boundary response. N is the number of marks on the boundary.  

The posterior equation is given by 

 

)/exp()|( TUydp total−∝  (6) 

 

where, obsitetotal UaaUU )1( −+= , in which [ ]1:0∈a  weights the sensitivities of different parts. 

When applying simulated annealing the posterior is linked to the prior and the observation model by    

 

Tdpdypydp /1))())|(()|( ∝  (7) 

 

3. Results and Discussion 

In our experiment, a collection of 28 slices of different brain MRI datasets was used, in which the corpus 

callosum were labelled manually. On each image, 36 landmarks were labelled. Since we did not have a 

large data set, a leave-one-out experiment is performed, by repeatedly training the shape model on 27 of 

the images and testing it on the remaining image. The start position is selected by differing from the mean 

shape, either on X or Y coordinates by 10 pixels. A comparison is made between ICA based Bayesian 

model and our proposed MRF based method. In Figure 4, it can be seen that our result shows the new 

shape model finds the boundary with correspondences more reasonably accurately and the result is not 

sensitive to the start position. 
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Figure 4. Three of the results: Bayesian ICA (left with small dot), Bayesian PCA （middle with small dot）and MRF 

(right with large dot). We can see that MRF achieves better performance. 

In order to evaluate the two methods accurately, we calculate the overall displacement of searched shape 

to the manually labelled shape (Gold Standard) for each test image. The distance of two shapes is defined 

as the sum of all absolute distances between corresponding points. We calculate MRFASM (our proposed 

method) and BAYEASM (original ASM). Then we calculate the improvement (m) 

( ) BAYEASMMRFASMBAYEASMm −=  (8) 

 

It is shown in Figure 5. The x- coordinate is the index of the test images, and the y-coordinate is its 

corresponding percentage improvement value. We can see from the figure that our method works better 

on all images.  The points within the circle represent the cases where the Bayesian ASM converged. 

Comparing the equations provided in [1] and equation (6) of our methods, we can find that MRF 

introduces a stronger prior distribution by considering spatial relation between neighbour points. The use 

of this term is actually smoothing the cost function that can be the reason of the advantages.  
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Figure 5. Shape to shape percentage distance difference, X direction is index of images; Y direction is percentage of 

improvement of ASM. 

 

4. Conclusion 

By using MRF, we give more restrictive relations between parameters to make our ICA-based model 

more easily converge onto a valid shape. Our initial results show that our proposed method offers a better 

rate in obtaining a valid and accurate shape.  From this, we can conclude that the MRF based ICA model 

provides improved results to the Bayesian based ICA model currently used. Further work will include a 

larger dataset for the 2D case, as well as extending the technique into 3D, and different organs. 
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