114,343 research outputs found

    A Feature Selection Approach to the Group Behavior Recognition Issue Using Static Context Information

    Get PDF
    This paper deals with the problem of group behavior recognition. Our approach is to merge all the possible features of group behavior (individuals, groups, relationships between individuals, relationships between groups, etc.) with static context information relating to particular domains. All this information is represented as a set of features by classification algorithms. This is a very high-dimensional problem, with which classification algorithms are unable cope. For this reason, this paper also presents four feature selection alternatives: two wrappers and two filters. We present and compare the results of each method in the basketball domain.This work was supported in part by ProjectsMEyC TEC2012- 37832-C02-01, CICYT TEC2011-28626-C02-02, and CAM CONTEXTS (S2009/TIC-1485).Publicad

    Machine Analysis of Facial Expressions

    Get PDF
    No abstract

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Action Recognition in Videos: from Motion Capture Labs to the Web

    Full text link
    This paper presents a survey of human action recognition approaches based on visual data recorded from a single video camera. We propose an organizing framework which puts in evidence the evolution of the area, with techniques moving from heavily constrained motion capture scenarios towards more challenging, realistic, "in the wild" videos. The proposed organization is based on the representation used as input for the recognition task, emphasizing the hypothesis assumed and thus, the constraints imposed on the type of video that each technique is able to address. Expliciting the hypothesis and constraints makes the framework particularly useful to select a method, given an application. Another advantage of the proposed organization is that it allows categorizing newest approaches seamlessly with traditional ones, while providing an insightful perspective of the evolution of the action recognition task up to now. That perspective is the basis for the discussion in the end of the paper, where we also present the main open issues in the area.Comment: Preprint submitted to CVIU, survey paper, 46 pages, 2 figures, 4 table

    Using a Machine Learning Approach to Implement and Evaluate Product Line Features

    Get PDF
    Bike-sharing systems are a means of smart transportation in urban environments with the benefit of a positive impact on urban mobility. In this paper we are interested in studying and modeling the behavior of features that permit the end user to access, with her/his web browser, the status of the Bike-Sharing system. In particular, we address features able to make a prediction on the system state. We propose to use a machine learning approach to analyze usage patterns and learn computational models of such features from logs of system usage. On the one hand, machine learning methodologies provide a powerful and general means to implement a wide choice of predictive features. On the other hand, trained machine learning models are provided with a measure of predictive performance that can be used as a metric to assess the cost-performance trade-off of the feature. This provides a principled way to assess the runtime behavior of different components before putting them into operation.Comment: In Proceedings WWV 2015, arXiv:1508.0338
    corecore