16,288 research outputs found

    Learning spectro-temporal features with 3D CNNs for speech emotion recognition

    Get PDF
    In this paper, we propose to use deep 3-dimensional convolutional networks (3D CNNs) in order to address the challenge of modelling spectro-temporal dynamics for speech emotion recognition (SER). Compared to a hybrid of Convolutional Neural Network and Long-Short-Term-Memory (CNN-LSTM), our proposed 3D CNNs simultaneously extract short-term and long-term spectral features with a moderate number of parameters. We evaluated our proposed and other state-of-the-art methods in a speaker-independent manner using aggregated corpora that give a large and diverse set of speakers. We found that 1) shallow temporal and moderately deep spectral kernels of a homogeneous architecture are optimal for the task; and 2) our 3D CNNs are more effective for spectro-temporal feature learning compared to other methods. Finally, we visualised the feature space obtained with our proposed method using t-distributed stochastic neighbour embedding (T-SNE) and could observe distinct clusters of emotions.Comment: ACII, 2017, San Antoni

    Deep fusion of multi-channel neurophysiological signal for emotion recognition and monitoring

    Get PDF
    How to fuse multi-channel neurophysiological signals for emotion recognition is emerging as a hot research topic in community of Computational Psychophysiology. Nevertheless, prior feature engineering based approaches require extracting various domain knowledge related features at a high time cost. Moreover, traditional fusion method cannot fully utilise correlation information between different channels and frequency components. In this paper, we design a hybrid deep learning model, in which the 'Convolutional Neural Network (CNN)' is utilised for extracting task-related features, as well as mining inter-channel and inter-frequency correlation, besides, the 'Recurrent Neural Network (RNN)' is concatenated for integrating contextual information from the frame cube sequence. Experiments are carried out in a trial-level emotion recognition task, on the DEAP benchmarking dataset. Experimental results demonstrate that the proposed framework outperforms the classical methods, with regard to both of the emotional dimensions of Valence and Arousal

    On the Audio-Visual Emotion Recognition using Convolutional Neural Networks and Extreme Learning Machine

    Get PDF
    The advances in artificial intelligence and machine learning concerning emotion recognition have been enormous and in previously inconceivable ways. Inspired by the promising evolution in human-computer interaction, this paper is based on developing a multimodal emotion recognition system. This research encompasses two modalities as input, namely speech and video. In the proposed model, the input video samples are subjected to image pre-processing and image frames are obtained. The signal is pre-processed and transformed into the frequency domain for the audio input. The aim is to obtain Mel-spectrogram, which is processed further as images. Convolutional neural networks are used for training and feature extraction for both audio and video with different configurations. The fusion of outputs from two CNNs is done using two extreme learning machines. For classification, the proposed system incorporates a support vector machine. The model is evaluated using three databases, namely eNTERFACE, RML, and SAVEE. For the eNTERFACE dataset, the accuracy obtained without and with augmentation was 87.2% and 94.91%, respectively. The RML dataset yielded an accuracy of 98.5%, and for the SAVEE dataset, the accuracy reached 97.77%. Results achieved from this research are an illustration of the fruitful exploration and effectiveness of the proposed system

    Multimodal Sentiment Sensing and Emotion Recognition Based on Cognitive Computing Using Hidden Markov Model with Extreme Learning Machine

    Get PDF
    In today's competitive business environment, exponential increase of multimodal content results in a massive amount of shapeless data. Big data that is unstructured has no specific format or organisation and can take any form, including text, audio, photos, and video. Many assumptions and algorithms are generally required to recognize different emotions as per literature survey, and the main focus for emotion recognition is based on single modality, such as voice, facial expression and bio signals. This paper proposed the novel technique in multimodal sentiment sensing with emotion recognition using artificial intelligence technique. Here the audio and visual data has been collected based on social media review and classified using hidden Markov model based extreme learning machine (HMM_ExLM). The features are trained using this method. Simultaneously, these speech emotional traits are suitably maximised. The strategy of splitting areas is employed in the research for expression photographs and various weights are provided to each area to extract information. Speech as well as facial expression data are then merged using decision level fusion and speech properties of each expression in region of face are utilized to categorize. Findings of experiments show that combining features of speech and expression boosts effect greatly when compared to using either speech or expression alone. In terms of accuracy, recall, precision, and optimization level, a parametric comparison was made
    • …
    corecore