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Abstract—In this paper, we propose to use deep 3-dimensional
convolutional networks (3D CNNs) in order to address the
challenge of modelling spectro-temporal dynamics for speech
emotion recognition (SER). Compared to a hybrid of Convolu-
tional Neural Network and Long-Short-Term-Memory (CNN-
LSTM), our proposed 3D CNNs simultaneously extract short-
term and long-term spectral features with a moderate number
of parameters. We evaluated our proposed and other state-
of-the-art methods in a speaker-independent manner using
aggregated corpora that give a large and diverse set of speak-
ers. We found that 1) shallow temporal and moderately deep
spectral kernels of a homogeneous architecture are optimal for
the task; and 2) our 3D CNNs are more effective for spectro-
temporal feature learning compared to other methods. Finally,
we visualised the feature space obtained with our proposed
method using t-distributed stochastic neighbour embedding (T-
SNE) and could observe distinct clusters of emotions.

1. Introduction

Recently, deep learning methods such as Fully-
connected Neural Networks (FCN) [1], Convolutional Neu-
ral Networks (CNN) [2], [3], and Long Short-Term Memory
(LSTM) [4], [5] have shown considerable improvements of
performance in speech emotion recognition (SER). As a
potential way to improve performance, representation learn-
ing has been used to build high-level features from low-
level features through several layers [2], [3], [6]. However,
learning sequential structures of spectrogram representations
appeared to be still challenging [7]. CNN-based methods
have been investigated to this end [2], [3], [4], [8]. Although
a hybrid of CNN and LSTM can be a promising method
to deal with spectral variations and temporal dependencies,
LSTM has the limitation of increasing depth caused by the
great number of parameters. Hence, learning temporal dy-
namics of spectral properties for SER remains a challenge.

In this paper, we propose to learn spectro-temporal
features using deep 3D CNNs. 3D CNNs are able to extract
spatio-temporal features in a seamless way and have shown
promising performances in computer vision tasks [9], [10].
For the task of SER, our proposed method composes a
temporal series of 2D spectral feature maps and models both
short and long-term dependencies simultaneously. Using

large-scale datasets (7 representative, aggregated corpora)
and speaker-independent classification experiments, we eval-
uated our proposed 3D CNNs for SER in a way that is
representative of challenges for SER “in the wild”. We found
that 1) homogeneous layers with shallow temporal but deep
spectral kernels work best among the limited set of explored
architectures, and that 2) our proposed 3D CNNs are more
effective and efficient for spectro-temporal feature learning
in SER compared to other CNN-based methods.

This paper is structured as follows. We first introduce
related studies in Section 2. Next, we present corpora in
Section 3, and describe our proposed learning method in
Section 4. The results will be reported in Section 5 and
concluded in Section 6.

2. Related Work

The performance of machine learning relies on “feature
engineering” that puts large effort in finding an optimal set
of features. For the same reason, previous works in SER
has focused on finding optimal feature sets and resulted in
the wide usage of off-the-shelf features such as F0, Mel-
Frequency Cepstrum Coefficients, and energy. However,
the performance greatly varies between corpora that have
distinct tasks. Representation learning offers a partial and
potential solution by extracting high-level features from low-
level features through a composition of multiple non-linear
transformations [6]. With deep architectures, representation
learning offers two advantages: 1) re-use of features which
yields benefits in both computational and statistical effi-
ciency, and 2) abstraction of features. For example, CNN
can extract abstract features in a more explicit way via a
pooling mechanism [11].

The performance of SER using deep architectures can
still be much improved, and an optimal feature set has not
been found yet for SER. For example, in [1], [5], [12],
high-level features obtained from off-the-shelf features out-
performed conventional methods. However, representation
learning using log-spectrogram features did not outperform
that of using off-the-shelf features - learning such a complex
sequential structure of emotional speech appeared to be hard
for representation learning [7].

More recently, the field of SER started employing CNN
using low-level features. CNN is able to recognise patterns
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with distortions and variations [11]. It operates two functions
and generates the integral of the point-wise multiplication
of the two functions. For one dimensional (D) discrete data,
it is defined as:

(f ∗ g)(t) =
T∑

k=−T

f(t− k) · g(k) (1)

CNN-based methods using low-level features were pro-
posed and outperformed off-the-shelf feature-based methods
[2], [3], [4], [8], [13]. In [2], [3], [8] 2D feature maps
were composed of spectrogram features with a fine reso-
lution. However, these 2D CNNs cannot model temporal
dependency directly. Instead, LSTM should be followed to
model temporal dependencies [4], [8]. Moreover, temporal
convolutions can extract spectral features from raw wave
signals and capture long-term dependencies [4]. Lastly,
CNN-LSTM-DNN was proposed to address frequency vari-
ations in spectral domain, long-term dependencies, separa-
tion in utterance-level feature space for the task of speech
recognition [14]. While these methods augment CNNs and
LSTM to handle spectral variations and temporal dynamics,
a large number of parameters are required, and it is hard
to learn complex dynamics with limited depths. Without
these complex memory mechanisms, 3D CNNs could learn
temporal features [9], [10]. In [9], [10], a series of human’s
motion was modelled by 3D CNNs, it empirically turned
out that 3D CNNs are not only effective but also efficient
to capture spatio-temporal features.

3. Data

We select seven representative corpora: LDC Emotional
Prosody [15], eNTERFACE [16], EMODB [17] FAU-aibo
emotion corpus [18], IEMOCAP [19], SEMAINE [20], and
RECOLA [21]. Since there are more corpora that have
discrete labels than those that have continuous labels (e.g.
arousal and valence), we focus on four discrete categories,
neutral, happy, sad, and angry, which are commonly acces-
sible as summarised in Table 1. However, the SEMAINE
and RECOLA corpora provide only continuous labels such
as arousal and valence, not discrete categories. To map
the continuous labels into the four discrete categories, we
use the landmarks of the valence and arousal dimensions
as provided in FEELTRACE [22]. We extract segments by
using voice activity detection or given time-alignment labels.
Then, we calculate the Euclidean Distance between the land-
marks and the values of the valence and arousal dimensions
of each segment. Since each segment has a sequence of
values of valance and arousal, we calculate the average
distance for each discrete category. Next, we assign the
emotional category with the smallest (average) distance to
the valence and arousal values. Table 2 shows the Feeltrace
landmarks for the four categories and the corresponding
valence and arousal values. We use only speech utterances
mapped into the four emotional categories and remove those
with other categories. To the best of our knowledge, our
dataset obtained from aggregating the 7 corpora has the

TABLE 1. OVERVIEW OF THE SELECTED CORPORA (THE NUMBER OF

SPEAKERS AND UTTERANCES)

Corpus ID Speakers Emotion
neutral happy sad angry

AIBO 51 10967 889 0 1492
EMODB 10 77 61 58 97
ENTERFACE 43 0 208 422 211
LDC 7 80 180 161 139
IEMOCAP 10 1708 595 2168 2206
SEMAINE 20 2694 766 82 392
RECOLA 23 159 14 109 121
Total 164 15685 2713 3000 4658

TABLE 2. LANDMARKS FOR THE SEMAINE AND RECOLRA
CORPORA IN FEELTRACE.

discrete emotional categories valence arousal
neutral 0.00 0.00
happy 0.74 0.52
angry -0.77 0.75
sad -0.7 -0.48
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Figure 1. The comparison of 2D-CNN-LSTM and 3D-CNN: a) Applying
2D convolution on each spectral feature map (T x S) in a time series (L).
b) Applying 3D convolution on a time series of maps (L x T x S) results
in another volume, preserving temporal dynamics of the input.

largest number of speakers and samples in the deep-learning
based experiments for SER.

4. Method

While the previous methods [8], [14] learn spectral
features and the temporal dependencies via the augmentation
of CNN and LSTM, our proposed method is designed to
learn spectro-temporal features simultaneously as depicted
in Figure 1. Particularly, spectral features should have a
sufficiently fine resolution, and both short-term (∼ 200ms)
and long-term (∼ 2s) should be considered. To this end, the
following network topology is configured.

Input feature maps. First, we segment utterances into
2s long sequences after min-max normalisation of gains per
speaker. Zero-padding is applied for utterances shorter than
2s while we trim those longer than 2s. Then, we extract
256 points log-spectrogram every 20ms. Since it potentially
causes over-fitting, we do not use a sliding contextual win-
dow on it. Therefore, we obtain 100 frames. Lastly, we
compose a temporal series of 2D feature maps that have a
resolution of 10 x 256. Each feature map represents spectral
features in shot-term (200ms) windows. As a result, each
utterance segment has a resolution of 10 x 10 x 256. Let us
denote elements of the resolution as long-term (L), short-
term (T), and spectral (S).

3D CNNs. Input feature maps are directly fed into 3D
CNNs. Based on the previous finding [10], we adopt a
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Figure 2. Block diagram of the proposed methods; L (state in long-term
temporal resolution)

homogeneous architecture, i.e., all convolutional layers have
the same resolutions (L x T x S). In subsequent experiments,
we empirically find the optimal resolutions and the number
of convolutional layers for our task. All convolutional layers
have four kernels.

3D Max-pooling. A 3D max-pooling layer follows each
3D CNN. However, to preserve the spectro-temporal fea-
tures at early phases [10], we do not pool outputs of the
first convolutional layers. Hence, except for the first pooling
layer, the rest of the pooling layers have the resolution of 2
x 2 x 2.

Lastly, we examine two methods to learn utterance-level
spectro-temporal features: (a) we simply flatten 3D volume
output features into 1D volume output vectors that are fed
into fully-connected layers with a softmax layer; and (b) we
transform 3D volume output features into 2D volume output
features that are fed into a temporal series of fully-connected
layers. Both methods use two fully-connected layers with
512 nodes. Let us denote method (a) and (b) as 3D-CNN-
DNN and 3D-CNN-DNN-ELM.

3D-CNN-DNN-ELM does not use pooling for the long-
term depth to train a sequence of the fully-connected layers.
Moreover, it requires statistical functionals at the softmax
layer and a proceeding classifier such as Extreme Learning
Machine (ELM) as proposed in [1], [5]. We follow the
same set-up of the functionals and ELM proposed in [1],
[5]. Training a linear classifier on features from the top
fully-connected layer of 3D-CNN-DNN can be an effective
approach [10] but it may bring similar effects of 3D-CNN-
DNN-ELM. Hence, we do not examine the variant of 3D-
CNN-DNN. Figure 2 illustrates the difference between 3D-
CNN-DNN and 3D-CNN-DNN-ELM.

5. Experiments and Results

First, we investigate how resolutions of kernels affect
performance of the 3D CNNs. Next, based on the optimal
resolution, we compare our proposed method to other state-
of-the-art methods using various features and architectures.
As a common set-up, we use Adam method [23] with a mini-
batch of 128 samples, and a fixed learning rate of 3 · 10−3.

TABLE 3. BEST, WORST, AND MEAN PERFORMANCE (UA) BY VARYING

RESOLUTIONS (L X S X T) OF 3D KERNELS

Shapes Resolutions Best Worst Mean
(a) shallow temporal & 2 x 2 x 2 .518 .451 .480± .03
deep spectral kernels 2 x 2 x 32 .541 .425 .484± .05

2 x 2 x 128 .550 .471 .496± .03
2 x 2 x 256 .516 .250 .416± .10

(b) deep temporal & 4 x 2 x 2 .481 .393 .450± .04
shallow spectral kernels 8 x 2 x 2 .507 .394 .454± .04

2 x 4 x 2 .503 .419 .450± .03
2 x 8 x 2 .487 .441 .463± .02

(c) deep temporal & 4 x 2 x 128 .469 .437 .451± .01
deep spectral kernels 8 x 2 x 128 .528 .421 .462± .04

2 x 4 x 128 .492 .446 .467± .02
2 x 8 x 128 .488 .423 .467± .03

We use categorical cross-entropy as the cost function. To
prevent over-fitting, we use early-stopping [24] (the maxi-
mum number of epoch: 20) and dropout [25] (p = .5) for
fully-connected layers. As an evaluation metric, Unweighted
Accuracy (UA) is used to consider the imbalanced distribu-
tion of the classes. We aim to conduct cross-validation while
keeping speaker-independence. Hence, we compose 5-fold
cross-validation. First, we independently shuffle speakers
in each corpus. Then, we divide each corpus into testing
(20%), validation (20%), and training (60% of the total
number of the speakers) sets. Next, seven testing sets (from
the seven corpora) are merged as testing data for one fold.
Validation and training data for the fold are constructed in
the same way. We repeat this process five times to build
5 folds. Lastly, we use Wilcoxon signed-rank paired test
(0.99 of confidence level and two-sided tests) [26] to check
significance of gains.

5.1. Exploring resolutions of kernels

Table 3 summarises results of variations in temporal and
spectral depth (L x T x S) of kernels. Commonly, we use
three convolutional layers. In (a), we use shallow temporal
kernels but vary spectral depth to find the optimal spectral
depth. Shallow or moderately deep spectral kernels (2, 32,
128) significantly outperform very deep kernels (256). We
assume that too deep kernels may cause over-fitting. In (b),
we use shallow spectral depth but vary temporal depth. No
matter which temporal depth changes, they perform worse
than many cases with deep spectral depth in (a). Moreover,
based on the result of (a), we keep deep spectral depth (128)
but vary temporal depth. A deep long-term kernel (8 x 2 x
128) results in the best performance among them but it does
not outperform the architecture with shallow temporal and
deep spectral kernels (a). From these results, we empirically
conclude that the kernels with shallow temporal depth and
moderately deep spectral depth (2 x 2 x 128) work the best
for 3D CNNs in our task. However, except for the very deep
spectral kernel (256), the gap is not significant. Hence, we
will examine spectral depth of 2, 32, and 128 but drop that
of 256 for other methods in subsequent experiments.
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TABLE 4. UA OF SPEAKER INDEPENDENT EXPERIMENTS, CNN: CONVOLUTIONAL NETWORK (RESOLUTION), FCN: FULLY-CONNECTED NETWORK

(#NODE), LSTM: LONG-SHORT-TERM-MEMORY (#CELL), ELM: EXTREME-LEARNING-MACHINE

Features Methods Configuration of layers Parameters (K) UA
off-the-shelf DNN-ELM [1] 3 x FCN (256) + ELM 141 .384± .05

LSTM-ELM [5] 2 x LSTM (128) + ELM 214 .421± .11
raw waveform 1D-CNN-LSTM [4] CNN (80) + CNN (800) + 2 x LSTM (128) 1583 .391± .06

CNN (80) + CNN (800) + 2 x LSTM (256) 2211 .380± .03
log-spectrogram 2D-CNN-LSTM [8] 2 x CNN (2 x 2) + 2 x LSTM (128) 264 .318± .01

2 x CNN (2 x 32) + 2 x LSTM (128) 268 .323± 01
2 x CNN (2 x 128) + 2 x LSTM (128) 282 .306± .03

2D-CNN-LSTM-DNN [14] 2 x CNN (2 x 2) + 2 x LSTM (128) + 2 x FCN (512) 595 .329± .02
2 x CNN (2 x 32) + 2 x LSTM (128) + 2 x FCN (512) 607 .350± .03
2 x CNN (2 x 128) + 2 x LSTM (128) + 2 x FCN (512) 611 .313± .01

3D-CNN-DNN (proposed) 2 x CNN (2 x 2 x [2, 32, 128]) + 2 x FCN (512) 792− 810 .250
3 x CNN (2 x 2 x 2) + 2 x FCN (512) 798 .480± .03
3 x CNN (2 x 2 x 32) + 2 x FCN (512) 793 .484± .05
3 x CNN (2 x 2 x 128) + 2 x FCN (512) 807 .496± .03

3D-CNN-DNN-ELM (proposed) 2 x CNN (2 x 2 x [2, 32, 128]) + 2 x FCN (512) 527− 548 .250
3 x CNN (2 x 2 x 2) + 2 x FCN (512) 528 .495± .05
3 x CNN (2 x 2 x 32) + 2 x FCN (512) 531 .516± .02
3 x CNN (2 x 2 x 128) + 2 x FCN (512) 546 .512± .03

5.2. Compared to state-of-the-art

We compare our proposed methods to state-of-the-
art methods: DNN-ELM [1], LSTM-ELM [5], 1D-CNN-
LSTM [4], 2D-CNN-LSTM [8], and 2D-CNN-LSTM-
DNN [14]. The following descriptions explain architectures
and features for the state-of-the-art methods.

DNN-ELM [1] and LSTM-ELM [5]. They use off-
the-shelf features: F0, voice probability, zero-crossing-rate,
12-dimensional (D) MFCC with Root Mean Squared energy
and those first time derivatives (totaling 32 features). Only
DNN-ELM uses a contextual windows of five frames to
model temporal dynamics. DNN-ELM has three hidden
layers of 256 nodes, and LSTM-ELM has two hidden layers
with 128 cells. Statistical functionals to extract utterance-
level features and a proceeding Extreme Learning Machine
(ELM) have the same setting in [1], [5].

1D-CNN-LSTM [4]. We extract a 32000D vector at
every 2s long sequence and segment each vector to 20 sub-
sequences using a contextual window with 40ms (1600D).
A first temporal convolutional layer has a length of 80,
followed by a max-pooling layer with a size of 2. Next,
a second temporal convolutional layer with a length of 800
followed by a max-pooling with a size of 40. LSTM blocks
with two hidden layers are stacked on the top conversational
layer, and the cell size varies (128 and 256).

2D-CNN-LSTM [8] and 2D-CNN-LSTM-DNN [14].
The shape of feature vectors is equal to that of the proposed
method (10 x 10 x 256). As the same way of our proposed
method, the homogeneous kernels are adopted, and we only
vary the spectral depth (2, 32, and 128). A max-pooling layer
follows each convolutional layer. The first pooling layer has
a resolution of 2 x 2 and the second one has that of 4 x 4.
Two LSTM layers that have a cell size of 128 are stacked
on the top conversational layer. Lastly, two fully-connected
layers with 512 nodes are stacked too.

Table 4 summarises results. For comparison, it includes
the performance of 3D-CNN-DNNs using the kernels of 2

x 2 x 2, 2 x 2 x 32, and 2 x 2 x 128 (previously presented
in Table 3), too. 2 x 2 x [2, 32, 128] is short for these three
shapes of kernels.

Any configuration of 2D-CNN-LSTM-DNN and 2D-
CNN-LSTM does not outperform DNN-ELM and LSTM-
ELM. While emotional classes can be directly learned from
spectrogram features [7], outperforming off-the-shelf fea-
tures is still challenging. Moreover, later experiments show
that 2D-CNN-LSTM(-DNN) could not avoid critical over-
fitting problems as increasing the depth from two to three.
Because of the complexity of LSTM, the depth is limited
to two, and it might not be sufficiently deep to learn the
complicated sequential structure of emotional speech [27].
1D-CNN-LSTM using raw waveform does not outperform
LSTM-ELM, too. We could not improve the performance
by increasing the depth from two to three. We assume that
it is mainly due to the huge number of parameters. We also
differentiate other configuration (e.g. resolutions of pooling
layers) later but any further gain is not observed.

On the other hand, 3D-CNN-DNN and 3D-CNN-DNN-
ELM, outperform DNN-ELM and LSTM-ELM with signif-
icant gains (11 ∼ 13 and 7 ∼ 9%, respectively). Moreover,
they outperform 1D-CNN-LSTM using raw waveform by
10 ∼ 12%. When we use the depth of two, the trained
models classify all test samples as “neutral” regardless of
its kernel resolutions, resulting in UA of .25. However, they
show the best performance at the depth of three. With the
given data set, the shallow temporal but moderately deep
spectral kernels are optimal for 3D-CNN-DNN (2 x 2 x 128)
and 3D-CNN-DNN-ELM (2 x 2 x 32). We could not observe
any gains as increasing the depth from three. Although 3D-
CNN-DNN-ELM outperform 3D-CNN-DNN, the difference
is not significant (p = .31).

Next, we investigate how each class becomes discrimina-
tive in the feature space. To this end, we visualise utterance-
level representations of one test set of our cross-validation
by using t-distributed stochastic neighbour embedding (T-
SNE) [28]. T-SNE is a non-linear transform technique to
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(a) DNN-ELM (b) LSTM-ELM

(c) 2D CNN-LSTM-DNN (d) 3D CNN-DNN

Figure 3. The result of T-SNE for the learned features of the test data;
coloured by emotional categories (green: neutral, orange: happy, blue: sad,
and red: angry)

TABLE 5. CONFUSION MATRIX (%). N: NEUTRAL, H: HAPPY, S: SAD,
A: ANGRY.

Method
DNN-ELM LSTM-ELM

N H S A N H S A
N 93 0 4 3 N 83 4 4 9
H 82 0 7 11 H 59 10 12 19
S 26 0 71 3 S 23 4 69 4
A 80 0 11 9 A 51 4 14 32

2D-CNN-LSTM-DNN 3D-CNN-DNN
N H S A N H S A

N 80 2 10 8 N 88 0 7 4
H 72 1 12 15 H 64 8 8 20
S 38 0 58 4 S 18 1 75 6
A 65 0 13 22 A 41 1 8 50

embed high-dimensional data into a space of two or three
dimensions. We obtain utterance-level features from the top
fully-connected layers (before the softmax layer). Figure 3
shows results of DNN-ELM, LSTM-ELM, 2D-CNN-CNN-
LSTM and 3D-CNN-DNN, and Table 5 presents their con-
fusion matrices. Compared to 2D-CNN-LSTM-DNN, 3D-
CNN-DNN shows a more discriminative separation between
“neutral” and “anger”. In Table 5, confusion between “neu-
tral” and “anger” significantly decreases in 3D-CNN-DNN.
The gains are 8 and 28%, respectively. Classification of
“neutral” and “sadness” shows the similar result too. The
gain for “sadness” is 17%.

5.3. Discussion

Our data has a large set of speakers from multiple
corpora that have different conditions of recordings, tasks,
and etc.. Moreover, the data has an imbalanced distribution
of the categories and our evaluation is carried out in a
speaker-independent manner. These settings are close to

realistic challenges and pose a great potential of over-fitting
(caused by the huge variance). In such a harsh condition,
LSTM modelling temporal dynamics of emotional speech
seems inefficient. Indeed, 1D-CNN-LSTM with a large num-
ber of parameters is vulnerable to over-fitting. Emotional
speech corpora in the research community are inevitably
limited compared to other tasks (speech and image recog-
nition). Compared to the complex augmented architectures,
3D CNNs have relatively simpler architectures, and those
with a moderate number of parameters could learn spectro-
temporal features in a seamless way. Lastly, the variance of
the performance shows the importance of large-scale cross-
validation and statistical tests. While they should not be
neglected, it is arduous to optimise deep architectures with
the great variance of the number of samples and that of
class distribution from aggregated corpora. We believe that
our evaluation is able to present the realistic performance in
the wild.

6. Conclusions and future work

In this paper, we proposed deep 3-dimensional convolu-
tional networks (3D CNNs) based methods to learn spectro-
temporal features for the task of speech emotion recognition
(SER). We designed 3D CNNs to learn short and long-term
spectro-temporal features with a moderate number of param-
eters. We evaluated the proposed and other state-of-the-art
methods using large-scale speaker independent experiments.
First, we found that shallow temporal and moderately deep
spectral kernels are optimal to the explored homogeneous
architectures. Next, we found that 3D CNNs are more suit-
able for spectro-temporal feature learning compared to other
CNN based methods (e.g. CNN-LSTM). CNN-LSTMs using
low-level representations do not outperform methods using
off-the-shelf features. However, 3D CNNs learn the features
with a moderate number of parameters and significantly
outperform the other methods. In addition, we visualised
the spectro-temporal features learned by the method via T-
distributed stochastic neighbor embedding technique. More
discriminative clusters of emotional classes can be observed
in the feature space, and our proposed method significantly
decreases the confusion rates. As future work, we plan
to investigate identity skip-connections that are recently
popular for optimising deep architectures [29].
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