2,438 research outputs found

    Error-voltage-based open-switch fault diagnosis strategy for matrix converters with model predictive control method

    Get PDF
    This paper proposes an error-voltage based open-switch fault diagnosis strategy for matrix converter (MC). A finite control set model predictive control (FCS-MPC) method is used to operate the MC. The MC system performances under normal operation and under a single open-switch fault operation are analyzed. A fault diagnosis strategy has also been implemented in two steps. First, the faulty phase is detected and identified based on a comparison of the reference and estimated output line-to-line voltages. Then, the faulty switch is located by considering the switching states of the faulty phase. The proposed fault diagnosis method is able to locate the faulty switch accurately and quickly without additional voltage sensors. Simulation and experimental results are presented to demonstrate the feasibility and effectiveness of the proposed strateg

    Short-circuit fault analysis and isolation strategy for matrix converters

    Get PDF
    The behavior of matrix converter (MC) drive systems under the condition of MC short-circuit faults is comprehensively investigated. Two isolation strategies using semiconductors and high speed fuses (HSFs) for MC short-circuit faults are examined and their performances are compared. The behavior of MC drive systems during the fuse action time under different operating conditions is explored. The feasibility of fault-tolerant operation during the fuse action time is also studied. The basic selection laws for the HSFs and the requirements for the passive components of the MC drive system from the point view of short-circuit faults are also discussed. Simulation results are used to demonstrate the feasibility of the proposed isolation strategies

    Matrix converter open circuit fault behavior analysis and diagnosis with a model predictive control strategy

    Get PDF
    A novel fast and reliable open circuit fault diagnosis strategy for a Matrix Converter with a Finite Control Set Model Predictive Control strategy is proposed in this paper. Current sensors are located ahead of the clamp circuit to measure the output currents in order to improve the speed of fault diagnosis. In addition, the current recirculating path during a single open circuit switch fault condition is given in detail with the aim of contributing more expert knowledge to the fault diagnosis. The proposed fault diagnosis method is applicable over the whole range of modulation index

    Sensorless control of deep-sea ROVs PMSMs excited by matrix converters

    Get PDF
    The paper reports the development of model-based sensorless control methodologies for driving PMSMs using matrix converters. In particular, experimental results show that observer-based state-estimation techniques normally employed for sensorless control of PMSMs using voltage source inverters (VSIs), can be readily exported to matrix converter counterparts with minimal additional computational overhead. Furthermore, zero speed start-up and speed reversal are experimentally demonstrated. Finally, the observer is designed to be fault tolerant such that upon detection of a broken terminal (phase fault), the PMSM remains operational and could be utilized to provide a limp-home capabilit

    Open circuit fault detection and diagnosis in matrix converters

    Get PDF
    With the increased use of power electronics in aerospace, automotive, industrial, and energy generation sectors, the demand for highly reliable and power dense solutions has increased. Matrix converters become attractive when taking into account demands for high reliability and high power density. With their lack of large bulky DC-link capacitors, high power densities are possible with the capability to operate with high ambient temperatures. When a power converter needs high reliability, under tight weight and volume constraints, it is often not possible to have an entirely redundant system. Taking into account these constraints it is desirable that the power converter continue to operate even under faulty conditions, albeit with diminished performance in some regard. This paper presents an open circuit switch fault detection and diagnosis system for matrix converters, which has been experimentally validated. The presented system requires no load models, averaging windows or additional sensors, this makes the proposed method fast and low cost

    Catastrophic Failure and Fault-Tolerant Design of IGBT Power Electronic Converters - An Overview

    Get PDF

    Fault tolerant model predictive control of three-phase permanent magnet synchronous motors

    Full text link
    A new fault tolerant model predictive control (FTMPC) strategy is proposed for three-phase magnetically isotropic permanent magnet synchronous motor (PMSM) with complete loss of one phase (LOP) or loss of one leg (LOL) of the inverter. The dynamic model of PMSM with LOP or LOL is derived in abc- System. The principle of FTMPC is investigated, its predictive model for remaining two stator phase currents is established after LOP or LOL occurs, and the flux estimator based on current model is employed in order to calculate the stator flux & its corresponding torque. Extra-leg extra-switch inverter is used as power unit. The PI controller is put to use for regulating rotor speed and generating reference torque. Dynamic responses of healthy MPC and unhealthy FTMPC for PMSM systems are given to compare their performance via simulation and some analysis is presented. The simulation results show that the proposed FTMPC strategy not only allows for continuous and disturbance-free operation of the unhealthy PMSM with LOP or LOL but also preserves satisfactory torque and speed control. And then the effectiveness of the proposed schemes in this paper is demonstrated

    Implementation of a Cascade Fault Tolerant Control and Fault Diagnosis Design for a Modular Power Supply

    Get PDF
    The main objective of this research work was to develop reliable and intelligent power sources for the future. To achieve this objective, a modular stand-alone solar energy-based direct current (DC) power supply was designed and implemented. The converter topology used is a two-stage interleaved boost converter, which is monitored in closed loop. The diagnosis method is based on analytic redundancy relations (ARRs) deduced from the bond graph (BG) model, which can be used to detect the failures of power switches, sensors, and discrete components such as the output capacitor. The proposed supervision scheme including a passive fault-tolerant cascade proportional integral sliding mode control (PI-SMC) for the two-stage boost converter connected to a solar panel is suitable for real applications. Most model-based diagnosis approaches for power converters typically deal with open circuit and short circuit faults, but the proposed method offers the advantage of detecting the failures of other vital components. Practical experiments on a newly designed and constructed prototype, along with simulations under PSIM software, confirm the efficiency of the control scheme and the successful recovery of a faulty stage by manual isolation. In future work, the automation of this reconfiguration task could be based on the successful simulation results of the diagnosis method.This research was funded by the Tunisian Ministry of Higher Education and Scientific Research
    corecore