5 research outputs found

    Health condition assessment of ball bearings using TOSELM

    Get PDF
    The health condition assessment of Electric Multiple Unit (EMU) traction motor ball bearing is one of the key issues of high-speed train running safety. In order to assess health condition of EMU traction motor ball bearing, an online-sequential extreme learning machine algorithm based on TensorFlow (TOSELM) is proposed. Samples data set is divided into normal condition and fault condition using vibration data of ball bearings. This paper uses health condition accuracy rate index to evaluate TOSELM algorithm performance. The proposed approach is verified by public data set and private data set. The experiment results show the proposed method is an effective method for ball bearing health status assessment

    Application of variational mode decomposition in vibration analysis of machine components

    Get PDF
    Monitoring and diagnosis of machinery in maintenance are often undertaken using vibration analysis. The machine vibration signal is invariably complex and diverse, and thus useful information and features are difficult to extract. Variational mode decomposition (VMD) is a recent signal processing method that able to extract some of important features from machine vibration signal. The performance of the VMD method depends on the selection of its input parameters, especially the mode number and balancing parameter (also known as quadratic penalty term). However, the current VMD method is still using a manual effort to extract the input parameters where it subjects to interpretation of experienced experts. Hence, machine diagnosis becomes time consuming and prone to error. The aim of this research was to propose an automated parameter selection method for selecting the VMD input parameters. The proposed method consisted of two-stage selections where the first stage selection was used to select the initial mode number and the second stage selection was used to select the optimized mode number and balancing parameter. A new machine diagnosis approach was developed, named as VMD Differential Evolution Algorithm (VMDEA)-Extreme Learning Machine (ELM). Vibration signal datasets were then reconstructed using VMDEA and the multi-domain features consisted of time-domain, frequency-domain and multi-scale fuzzy entropy were extracted. It was demonstrated that the VMDEA method was able to reduce the computational time about 14% to 53% as compared to VMD-Genetic Algorithm (GA), VMD-Particle Swarm Optimization (PSO) and VMD-Differential Evolution (DE) approaches for bearing, shaft and gear. It also exhibited a better convergence with about two to nine less iterations as compared to VMD-GA, VMD-PSO and VMD-DE for bearing, shaft and gear. The VMDEA-ELM was able to illustrate higher classification accuracy about 11% to 20% than Empirical Mode Decomposition (EMD)-ELM, Ensemble EMD (EEMD)-ELM and Complimentary EEMD (CEEMD)-ELM for bearing shaft and gear. The bearing datasets from Case Western Reserve University were tested with VMDEA-ELM model and compared with Support Vector Machine (SVM)-Dempster-Shafer (DS), EEMD Optimal Mode Multi-scale Fuzzy Entropy Fault Diagnosis (EOMSMFD), Wavelet Packet Transform (WPT)-Local Characteristic-scale Decomposition (LCD)- ELM, and Arctangent S-shaped PSO least square support vector machine (ATSWPLM) models in term of its classification accuracy. The VMDEA-ELM model demonstrates better diagnosis accuracy with small differences between 2% to 4% as compared to EOMSMFD and WPT-LCD-ELM but less diagnosis accuracy in the range of 4% to 5% as compared to SVM-DS and ATSWPLM. The diagnosis approach VMDEA-ELM was also able to provide faster classification performance about 6 40 times faster than Back Propagation Neural Network (BPNN) and Support Vector Machine (SVM). This study provides an improved solution in determining an optimized VMD parameters by using VMDEA. It also demonstrates a more accurate and effective diagnostic approach for machine maintenance using VMDEA-ELM

    Iterative variational mode decomposition and extreme learning machine for gearbox diagnosis based on vibration signals

    Get PDF
    Vibration-based monitoring and diagnosis provide an excellent and reliable monitoring strategies for maintaining and sustaining a million dollars of industrial assets. The signal processing method is one of the key elements in gearbox fault diagnosis for extracting most useful information from raw vibration signals. Variational mode decomposition (VMD) is one of the recent signal processing methods that helps to solve many limitations in traditional signal processing method. However, pre-determine the input parameters especially the mode number become a challenging task for using this method. Then, this study aims to propose an iterative approach for selecting the mode number for the VMD method by using the normalized mean value (NMV) plot. The NMV value is calculates based on the ratio of a summation of VMD modes and the input signals. The result shows that the proposed iterative VMD approach can select an accurate mode number for the VMD method. Then, the vibration signals decomposed into different VMD modes and used for gearbox fault diagnosis. Statistical features have been extracted from the selected VMD modes and pass into extreme learning machine (ELM) for fault classification. Iterative VMD-ELM provide significance improvement of about 20% higher accuracy in classification result as compared with EMD-ELM. Hence, this research study offers a new mean for gearbox diagnosis strategy

    A Low Complexity Rolling Bearing Diagnosis Technique Based on Machine Learning and Smart Preprocessing

    Get PDF
    In this work, we present a diagnosis system for rolling bearings that leverages simultaneous measurements of vibrations and machine rotation speed. Our approach combines the robustness of simple time domain methods for fault detection with the potential of machine learning techniques for fault location. This research is based on a neural network classifier, which exploits a simple and novel preprocessing algorithm specifically designed for minimizing the dependency of the classifier performance on the machine working conditions, on the bearing model and on the acquisition system set-up. The overall diagnosis system is based on light algorithms with reduced complexity and hardware resource demand and is designed to be deployed in embedded electronics. The fault diagnosis system was trained using emulated data, exploiting an ad-hoc test bench thus avoiding the problem of generating enough data, achieving an overall classifier accuracy larger than 98%. Its noteworthy ability to generalize was proven by using data emulating different working conditions and acquisition set-ups and noise levels, obtaining in all the cases accuracies greater than 97%, thereby proving in this way that the proposed system can be applied in a wide spectrum of different applications. Finally, real data from an on-line database containing vibration signals obtained in a completely different scenario are used to demonstrate the distinctive capability of the proposed system to generalize

    Friction, Vibration and Dynamic Properties of Transmission System under Wear Progression

    Get PDF
    This reprint focuses on wear and fatigue analysis, the dynamic properties of coating surfaces in transmission systems, and non-destructive condition monitoring for the health management of transmission systems. Transmission systems play a vital role in various types of industrial structure, including wind turbines, vehicles, mining and material-handling equipment, offshore vessels, and aircrafts. Surface wear is an inevitable phenomenon during the service life of transmission systems (such as on gearboxes, bearings, and shafts), and wear propagation can reduce the durability of the contact coating surface. As a result, the performance of the transmission system can degrade significantly, which can cause sudden shutdown of the whole system and lead to unexpected economic loss and accidents. Therefore, to ensure adequate health management of the transmission system, it is necessary to investigate the friction, vibration, and dynamic properties of its contact coating surface and monitor its operating conditions
    corecore