5,998 research outputs found

    Techniques for the Fast Simulation of Models of Highly dependable Systems

    Get PDF
    With the ever-increasing complexity and requirements of highly dependable systems, their evaluation during design and operation is becoming more crucial. Realistic models of such systems are often not amenable to analysis using conventional analytic or numerical methods. Therefore, analysts and designers turn to simulation to evaluate these models. However, accurate estimation of dependability measures of these models requires that the simulation frequently observes system failures, which are rare events in highly dependable systems. This renders ordinary Simulation impractical for evaluating such systems. To overcome this problem, simulation techniques based on importance sampling have been developed, and are very effective in certain settings. When importance sampling works well, simulation run lengths can be reduced by several orders of magnitude when estimating transient as well as steady-state dependability measures. This paper reviews some of the importance-sampling techniques that have been developed in recent years to estimate dependability measures efficiently in Markov and nonMarkov models of highly dependable system

    Cross-entropy optimisation of importance sampling parameters for statistical model checking

    Get PDF
    Statistical model checking avoids the exponential growth of states associated with probabilistic model checking by estimating properties from multiple executions of a system and by giving results within confidence bounds. Rare properties are often very important but pose a particular challenge for simulation-based approaches, hence a key objective under these circumstances is to reduce the number and length of simulations necessary to produce a given level of confidence. Importance sampling is a well-established technique that achieves this, however to maintain the advantages of statistical model checking it is necessary to find good importance sampling distributions without considering the entire state space. Motivated by the above, we present a simple algorithm that uses the notion of cross-entropy to find the optimal parameters for an importance sampling distribution. In contrast to previous work, our algorithm uses a low dimensional vector of parameters to define this distribution and thus avoids the often intractable explicit representation of a transition matrix. We show that our parametrisation leads to a unique optimum and can produce many orders of magnitude improvement in simulation efficiency. We demonstrate the efficacy of our methodology by applying it to models from reliability engineering and biochemistry.Comment: 16 pages, 8 figures, LNCS styl

    Building Wavelet Histograms on Large Data in MapReduce

    Full text link
    MapReduce is becoming the de facto framework for storing and processing massive data, due to its excellent scalability, reliability, and elasticity. In many MapReduce applications, obtaining a compact accurate summary of data is essential. Among various data summarization tools, histograms have proven to be particularly important and useful for summarizing data, and the wavelet histogram is one of the most widely used histograms. In this paper, we investigate the problem of building wavelet histograms efficiently on large datasets in MapReduce. We measure the efficiency of the algorithms by both end-to-end running time and communication cost. We demonstrate straightforward adaptations of existing exact and approximate methods for building wavelet histograms to MapReduce clusters are highly inefficient. To that end, we design new algorithms for computing exact and approximate wavelet histograms and discuss their implementation in MapReduce. We illustrate our techniques in Hadoop, and compare to baseline solutions with extensive experiments performed in a heterogeneous Hadoop cluster of 16 nodes, using large real and synthetic datasets, up to hundreds of gigabytes. The results suggest significant (often orders of magnitude) performance improvement achieved by our new algorithms.Comment: VLDB201
    • …
    corecore