1,576 research outputs found

    A fast and simple algorithm for constructing minimal acyclic deterministic finite automata

    Get PDF
    In this paper, we present a fast and simple algorithm for constructing a minimal acyclic deterministic finite automaton from a denite set of words. Such automata are useful in a wide variety of applications, including computer virus detection, computational linguistics and computational genetics. There are several known algorithms that solve the same problem, though most of the alternative algorithms are considerably more difficult to present, understand and implement than the one given here. Preliminary benchmarking indicates that the algorithm presented here is competitive with the other known algorithms

    Finite Automata for the Sub- and Superword Closure of CFLs: Descriptional and Computational Complexity

    Full text link
    We answer two open questions by (Gruber, Holzer, Kutrib, 2009) on the state-complexity of representing sub- or superword closures of context-free grammars (CFGs): (1) We prove a (tight) upper bound of 2O(n)2^{\mathcal{O}(n)} on the size of nondeterministic finite automata (NFAs) representing the subword closure of a CFG of size nn. (2) We present a family of CFGs for which the minimal deterministic finite automata representing their subword closure matches the upper-bound of 22O(n)2^{2^{\mathcal{O}(n)}} following from (1). Furthermore, we prove that the inequivalence problem for NFAs representing sub- or superword-closed languages is only NP-complete as opposed to PSPACE-complete for general NFAs. Finally, we extend our results into an approximation method to attack inequivalence problems for CFGs

    A Semi-automatic and Low Cost Approach to Build Scalable Lemma-based Lexical Resources for Arabic Verbs

    Get PDF
    International audienceThis work presents a method that enables Arabic NLP community to build scalable lexical resources. The proposed method is low cost and efficient in time in addition to its scalability and extendibility. The latter is reflected in the ability for the method to be incremental in both aspects, processing resources and generating lexicons. Using a corpus; firstly, tokens are drawn from the corpus and lemmatized. Secondly, finite state transducers (FSTs) are generated semi-automatically. Finally, FSTsare used to produce all possible inflected verb forms with their full morphological features. Among the algorithm’s strength is its ability to generate transducers having 184 transitions, which is very cumbersome, if manually designed. The second strength is a new inflection scheme of Arabic verbs; this increases the efficiency of FST generation algorithm. The experimentation uses a representative corpus of Modern Standard Arabic. The number of semi-automatically generated transducers is 171. The resulting open lexical resources coverage is high. Our resources cover more than 70% Arabic verbs. The built resources contain 16,855 verb lemmas and 11,080,355 fully, partially and not vocalized verbal inflected forms. All these resources are being made public and currently used as an open package in the Unitex framework available under the LGPL license

    Efficient Implementation for Deterministic Finite Tree Automata Minimization

    Full text link

    DFKI finite-state machine toolkit

    Get PDF
    Finite-state devices such as finite-state automata and finite-state transducers have been known since the emergence of computer science and are recently extensively used in many areas of language technology. The use of finite-state devices is mainly motivated by their time and space efficiency. In this paper we present the Finite-State Machine Toolkit for building, combining and optimizing the finite-state machines, developed at the Language Technology Lab of the German Research Center for Artificial Intelligence
    • …
    corecore