23 research outputs found

    Propagation of Myocardial Fibre Architecture Uncertainty on Electromechanical Model Parameter Estimation: A Case Study

    Get PDF
    International audienceComputer models of the heart are of increasing interest for clinical applications due to their discriminative and predictive power. However the personalisation step to go from a generic model to a patient-specific one is still a scientific challenge. In particular it is still difficult to quantify the uncertainty on the estimated parameters and predicted values. In this manuscript we present a new pipeline to evaluate the impact of fibre uncertainty on the personalisation of an electromechanical model of the heart from ECG and medical images. We detail how we estimated the variability of the fibre architecture among a given population and how the uncertainty generated by this variability impacts the following personalisation. We first show the variability of the personalised simulations, with respect to the principal variations of the fibres. Then discussed how the variations in this (small) healthy population of fibres impact the parameters of the personalised simulations

    Spatio-Temporal Tensor Decomposition of a Polyaffine Motion Model for a Better Analysis of Pathological Left Ventricular Dynamics

    Get PDF
    International audienceGiven that heart disease can cause abnormal motion dynamics over the cardiac cycle, which can then affect cardiac function, understanding and quantifying cardiac motion can provide insight for clinicians to aid in diagnosis, therapy planning, as well as to determine the prognosis for a given patient. The goal of this paper is to extract population-specific cardiac motion patterns from 3D displacements in order to firstly identify the mean motion behaviour in a population and secondly to describe pathology-specific motion patterns in terms of the spatial and temporal aspects of the motion. Since there are common motion patterns observed in patients suffering from the same condition, extracting these patterns can lead towards a better understanding of a disease. Quantifying cardiac motion at a population level is not a simple task since images can vary widely in terms of image quality, size, resolution and pose. To overcome this, we analyse the parameters obtained from a cardiac-specific Polyaffine motion tracking algorithm, which are aligned both spatially and temporally to a common reference space. Once all parameters are aligned, different subjects and different populations can be compared and analysed in the space of Polyaffine transformations by projecting the transformations to a reduced-order subspace in which dominant motion patterns in each population can be extracted and analysed. Using tensor decomposition allows the spatial and temporal aspects to be decoupled in order to study the different components individually. The proposed method was validated on healthy volunteers and Tetralogy of Fallot patients according to known spatial andtemporal behaviour for each population. A key advantage of the proposed method is the ability to regenerate motion sequences from the respective models, thus the models can be visualised in terms of the full motion, which allows for better understanding of the motion dynamics of different populations

    Higher-Order Momentum Distributions and Locally Affine LDDMM Registration

    Full text link
    To achieve sparse parametrizations that allows intuitive analysis, we aim to represent deformation with a basis containing interpretable elements, and we wish to use elements that have the description capacity to represent the deformation compactly. To accomplish this, we introduce in this paper higher-order momentum distributions in the LDDMM registration framework. While the zeroth order moments previously used in LDDMM only describe local displacement, the first-order momenta that are proposed here represent a basis that allows local description of affine transformations and subsequent compact description of non-translational movement in a globally non-rigid deformation. The resulting representation contains directly interpretable information from both mathematical and modeling perspectives. We develop the mathematical construction of the registration framework with higher-order momenta, we show the implications for sparse image registration and deformation description, and we provide examples of how the parametrization enables registration with a very low number of parameters. The capacity and interpretability of the parametrization using higher-order momenta lead to natural modeling of articulated movement, and the method promises to be useful for quantifying ventricle expansion and progressing atrophy during Alzheimer's disease

    Three-dimensional reconstruction of peripheral nerve internal fascicular groups

    Get PDF
    Peripheral nerves are important pathways for receiving afferent sensory impulses and sending out efferent motor instructions, as carried out by sensory nerve fibers and motor nerve fibers. It has remained a great challenge to functionally reconnect nerve internal fiber bundles (or fascicles) in nerve repair. One possible solution may be to establish a 3D nerve fascicle visualization system. This study described the key technology of 3D peripheral nerve fascicle reconstruction. Firstly, fixed nerve segments were embedded with position lines, cryostat-sectioned continuously, stained and imaged histologically. Position line cross-sections were identified using a trained support vector machine method, and the coordinates of their central pixels were obtained. Then, nerve section images were registered using the bilinear method, and edges of fascicles were extracted using an improved gradient vector flow snake method. Subsequently, fascicle types were identified automatically using the multi-directional gradient and second-order gradient method. Finally, a 3D virtual model of internal fascicles was obtained after section images were processed. This technique was successfully applied for 3D reconstruction for the median nerve of the hand-wrist and cubital fossa regions and the gastrocnemius nerve. This nerve internal fascicle 3D reconstruction technology would be helpful for aiding peripheral nerve repair and virtual surgery.Yingchun Zhong, Liping Wang, Jianghui Dong, Yi Zhang, Peng Luo, Jian Qi, Xiaolin Liu and Cory J. Xia

    Incorporation of a deformation prior in image reconstruction

    Get PDF
    International audienceThis article presents a method to incorporate a deformation prior in image reconstruction via the formalism of deformation modules. The framework of deformation modules allows to build diffeomorphic deformations that satisfy a given structure. The idea is to register a template image against the indirectly observed data via a modular deformation, incorporating this way the deformation prior in the reconstruction method. We show that this is a well-defined regularization method (proving existence, stability and convergence) and present numerical examples of reconstruction from 2-D tomographic simulations and partially-observed images
    corecore