2,647 research outputs found

    Automating Vehicles by Deep Reinforcement Learning using Task Separation with Hill Climbing

    Full text link
    Within the context of autonomous driving a model-based reinforcement learning algorithm is proposed for the design of neural network-parameterized controllers. Classical model-based control methods, which include sampling- and lattice-based algorithms and model predictive control, suffer from the trade-off between model complexity and computational burden required for the online solution of expensive optimization or search problems at every short sampling time. To circumvent this trade-off, a 2-step procedure is motivated: first learning of a controller during offline training based on an arbitrarily complicated mathematical system model, before online fast feedforward evaluation of the trained controller. The contribution of this paper is the proposition of a simple gradient-free and model-based algorithm for deep reinforcement learning using task separation with hill climbing (TSHC). In particular, (i) simultaneous training on separate deterministic tasks with the purpose of encoding many motion primitives in a neural network, and (ii) the employment of maximally sparse rewards in combination with virtual velocity constraints (VVCs) in setpoint proximity are advocated.Comment: 10 pages, 6 figures, 1 tabl

    Obstacle avoidance based-visual navigation for micro aerial vehicles

    Get PDF
    This paper describes an obstacle avoidance system for low-cost Unmanned Aerial Vehicles (UAVs) using vision as the principal source of information through the monocular onboard camera. For detecting obstacles, the proposed system compares the image obtained in real time from the UAV with a database of obstacles that must be avoided. In our proposal, we include the feature point detector Speeded Up Robust Features (SURF) for fast obstacle detection and a control law to avoid them. Furthermore, our research includes a path recovery algorithm. Our method is attractive for compact MAVs in which other sensors will not be implemented. The system was tested in real time on a Micro Aerial Vehicle (MAV), to detect and avoid obstacles in an unknown controlled environment; we compared our approach with related works.Peer ReviewedPostprint (published version

    Object Search Strategy in Tracking Algorithms

    Get PDF
    The demand for real-time video surveillance systems is increasing rapidly. The purpose of these systems includes surveillance as well as monitoring and controlling the events. Today there are several real-time computer vision applications based on image understanding which emulate the human vision and intelligence. These machines include object tracking as their primary task. Object tracking refers to estimating the trajectory of an object of interest in a video. A tracking system works on the principle of video processing algorithms. Video processing includes a huge amount of data to be processed and this fact dictates while implementing the algorithms on any hardware. However, the problems becomes challenging due to unexpected motion of the object, scene appearance change, object appearance change, structures of objects that are not rigid. Besides this full and partial occlusions and motion of the camera also pose challenges. Current tracking algorithms treat this problem as a classification task and use online learning algorithms to update the object model. Here, we explore the data redundancy in the sampling techniques and develop a highly structured kernel. This kernel acquires a circulant structure which is extremely easy to manipulate. Also, we take it further by using mean shift density algorithm and optical flow by Lucas Kanade method which gives us a heavy improvement in the results

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Food-delivery behavior under crowd sourcing mobility services

    Get PDF
    The rapid development of the online food-delivery industry, has led to not only increases in the number of the crowd-sourced shared food-delivery service drivers on our roads, but also growing urban traffic safety management concerns. This study investigates the decision-making behaviors that exist between delivery drivers, their food-delivery platform and their potential impact on traffic safety. Using the evolutionary game theory, stakeholder decision-making behaviors involving traffic safety within the food-delivery industry were analyzed. From our analysis, several behavioral influencers were identified, including penalties for traffic violations, the opportunity cost of delivery drivers complying with traffic rules, the costs associated with risk and strict management approaches, reputation incentives, costs related to the delivery platform being punished, the probability of compliance with traffic rules, and the probability of adopting a strict management approach by the delivery platform. Our study demonstrates that stabilization strategies used by the food service industry differ when the types of government control measures also differ. When the government takes a more aggressive approach to regulation and control, compliance with the traffic rules and the adoption of strict enforcement measures by management are the only evolutionary stability strategies available to food-delivery platforms. As part of a strict management strategy, appropriate compensation or incentive measures should be provided by the distribution platform. Furthermore, the fines given for traffic violations should be increased to create a safer road environment that has fewer traffic accidents involving food-delivery drivers

    Motion Segmentation Aided Super Resolution Image Reconstruction

    Get PDF
    This dissertation addresses Super Resolution (SR) Image Reconstruction focusing on motion segmentation. The main thrust is Information Complexity guided Gaussian Mixture Models (GMMs) for Statistical Background Modeling. In the process of developing our framework we also focus on two other topics; motion trajectories estimation toward global and local scene change detections and image reconstruction to have high resolution (HR) representations of the moving regions. Such a framework is used for dynamic scene understanding and recognition of individuals and threats with the help of the image sequences recorded with either stationary or non-stationary camera systems. We introduce a new technique called Information Complexity guided Statistical Background Modeling. Thus, we successfully employ GMMs, which are optimal with respect to information complexity criteria. Moving objects are segmented out through background subtraction which utilizes the computed background model. This technique produces superior results to competing background modeling strategies. The state-of-the-art SR Image Reconstruction studies combine the information from a set of unremarkably different low resolution (LR) images of static scene to construct an HR representation. The crucial challenge not handled in these studies is accumulating the corresponding information from highly displaced moving objects. In this aspect, a framework of SR Image Reconstruction of the moving objects with such high level of displacements is developed. Our assumption is that LR images are different from each other due to local motion of the objects and the global motion of the scene imposed by non-stationary imaging system. Contrary to traditional SR approaches, we employed several steps. These steps are; the suppression of the global motion, motion segmentation accompanied by background subtraction to extract moving objects, suppression of the local motion of the segmented out regions, and super-resolving accumulated information coming from moving objects rather than the whole scene. This results in a reliable offline SR Image Reconstruction tool which handles several types of dynamic scene changes, compensates the impacts of camera systems, and provides data redundancy through removing the background. The framework proved to be superior to the state-of-the-art algorithms which put no significant effort toward dynamic scene representation of non-stationary camera systems

    Maritime target detection based on electronic image stabilization technology of shipborne camera

    Full text link
    corecore