84,041 research outputs found

    Network Flow Algorithms for Structured Sparsity

    Get PDF
    We consider a class of learning problems that involve a structured sparsity-inducing norm defined as the sum of ℓ∞\ell_\infty-norms over groups of variables. Whereas a lot of effort has been put in developing fast optimization methods when the groups are disjoint or embedded in a specific hierarchical structure, we address here the case of general overlapping groups. To this end, we show that the corresponding optimization problem is related to network flow optimization. More precisely, the proximal problem associated with the norm we consider is dual to a quadratic min-cost flow problem. We propose an efficient procedure which computes its solution exactly in polynomial time. Our algorithm scales up to millions of variables, and opens up a whole new range of applications for structured sparse models. We present several experiments on image and video data, demonstrating the applicability and scalability of our approach for various problems.Comment: accepted for publication in Adv. Neural Information Processing Systems, 201

    Direct estimation of kinetic parametric images for dynamic PET.

    Get PDF
    Dynamic positron emission tomography (PET) can monitor spatiotemporal distribution of radiotracer in vivo. The spatiotemporal information can be used to estimate parametric images of radiotracer kinetics that are of physiological and biochemical interests. Direct estimation of parametric images from raw projection data allows accurate noise modeling and has been shown to offer better image quality than conventional indirect methods, which reconstruct a sequence of PET images first and then perform tracer kinetic modeling pixel-by-pixel. Direct reconstruction of parametric images has gained increasing interests with the advances in computing hardware. Many direct reconstruction algorithms have been developed for different kinetic models. In this paper we review the recent progress in the development of direct reconstruction algorithms for parametric image estimation. Algorithms for linear and nonlinear kinetic models are described and their properties are discussed

    Stable Feature Selection from Brain sMRI

    Full text link
    Neuroimage analysis usually involves learning thousands or even millions of variables using only a limited number of samples. In this regard, sparse models, e.g. the lasso, are applied to select the optimal features and achieve high diagnosis accuracy. The lasso, however, usually results in independent unstable features. Stability, a manifest of reproducibility of statistical results subject to reasonable perturbations to data and the model, is an important focus in statistics, especially in the analysis of high dimensional data. In this paper, we explore a nonnegative generalized fused lasso model for stable feature selection in the diagnosis of Alzheimer's disease. In addition to sparsity, our model incorporates two important pathological priors: the spatial cohesion of lesion voxels and the positive correlation between the features and the disease labels. To optimize the model, we propose an efficient algorithm by proving a novel link between total variation and fast network flow algorithms via conic duality. Experiments show that the proposed nonnegative model performs much better in exploring the intrinsic structure of data via selecting stable features compared with other state-of-the-arts

    Time resolved tracking of a sound scatterer in a turbulent flow: non-stationary signal analysis and applications

    Get PDF
    It is known that ultrasound techniques yield non-intrusive measurements of hydrodynamic flows. For example, the study of the echoes produced by a large number of particle insonified by pulsed wavetrains has led to a now standard velocimetry technique. In this paper, we propose to extend the method to the continuous tracking of one single particle embedded in a complex flow. This gives a Lagrangian measurement of the fluid motion, which is of importance in mixing and turbulence studies. The method relies on the ability to resolve in time the Doppler shift of the sound scattered by the continuously insonfied particle. For this signal processing problem two classes of approaches are used: time-frequency analysis and parametric high resolution methods. In the first class we consider the spectrogram and reassigned spectrogram, and we apply it to detect the motion of a small bead settling in a fluid at rest. In more non-stationary turbulent flows where methods in the second class are more robust, we have adapted an Approximated Maximum Likelihood technique coupled with a generalized Kalman filter.Comment: 16 pages 9 figure

    Optimal web-scale tiering as a flow problem

    Get PDF
    We present a fast online solver for large scale parametric max-flow problems as they occur in portfolio optimization, inventory management, computer vision, and logistics. Our algorithm solves an integer linear program in an online fashion. It exploits total unimodularity of the constraint matrix and a Lagrangian relaxation to solve the problem as a convex online game. The algorithm generates approximate solutions of max-flow problems by performing stochastic gradient descent on a set of flows. We apply the algorithm to optimize tier arrangement of over 84 million web pages on a layered set of caches to serve an incoming query stream optimally
    • …
    corecore