35 research outputs found

    An integrated security Protocol communication scheme for Internet of Things using the Locator/ID Separation Protocol Network

    Get PDF
    Internet of Things communication is mainly based on a machine-to-machine pattern, where devices are globally addressed and identified. However, as the number of connected devices increase, the burdens on the network infrastructure increase as well. The major challenges are the size of the routing tables and the efficiency of the current routing protocols in the Internet backbone. To address these problems, an Internet Engineering Task Force (IETF) working group, along with the research group at Cisco, are still working on the Locator/ID Separation Protocol as a routing architecture that can provide new semantics for the IP addressing, to simplify routing operations and improve scalability in the future of the Internet such as the Internet of Things. Nonetheless, The Locator/ID Separation Protocol is still at an early stage of implementation and the security Protocol e.g. Internet Protocol Security (IPSec), in particular, is still in its infancy. Based on this, three scenarios were considered: Firstly, in the initial stage, each Locator/ID Separation Protocol-capable router needs to register with a Map-Server. This is known as the Registration Stage. Nevertheless, this stage is vulnerable to masquerading and content poisoning attacks. Secondly, the addresses resolving stage, in the Locator/ID Separation Protocol the Map Server (MS) accepts Map-Request from Ingress Tunnel Routers and Egress Tunnel Routers. These routers in trun look up the database and return the requested mapping to the endpoint user. However, this stage lacks data confidentiality and mutual authentication. Furthermore, the Locator/ID Separation Protocol limits the efficiency of the security protocol which works against redirecting the data or acting as fake routers. Thirdly, As a result of the vast increase in the different Internet of Things devices, the interconnected links between these devices increase vastly as well. Thus, the communication between the devices can be easily exposed to disclosures by attackers such as Man in the Middle Attacks (MitM) and Denial of Service Attack (DoS). This research provided a comprehensive study for Communication and Mobility in the Internet of Things as well as the taxonomy of different security protocols. It went on to investigate the security threats and vulnerabilities of Locator/ID Separation Protocol using X.805 framework standard. Then three Security protocols were provided to secure the exchanged transitions of communication in Locator/ID Separation Protocol. The first security protocol had been implemented to secure the Registration stage of Locator/ID separation using ID/Based cryptography method. The second security protocol was implemented to address the Resolving stage in the Locator/ID Separation Protocol between the Ingress Tunnel Router and Egress Tunnel Router using Challenge-Response authentication and Key Agreement technique. Where, the third security protocol had been proposed, analysed and evaluated for the Internet of Things communication devices. This protocol was based on the authentication and the group key agreement via using the El-Gamal concept. The developed protocols set an interface between each level of the phase to achieve security refinement architecture to Internet of Things based on Locator/ID Separation Protocol. These protocols were verified using Automated Validation Internet Security Protocol and Applications (AVISPA) which is a push button tool for the automated validation of security protocols and achieved results demonstrating that they do not have any security flaws. Finally, a performance analysis of security refinement protocol analysis and an evaluation were conducted using Contiki and Cooja simulation tool. The results of the performance analysis showed that the security refinement was highly scalable and the memory was quite efficient as it needed only 72 bytes of memory to store the keys in the Wireless Sensor Network (WSN) device

    Defence against Denial of Service (DoS) attacks using Identifier-Locator Network Protocol (ILNP) and Domain Name System (DNS)

    Get PDF
    This research considered a novel approach to network security by combining a new networking architecture based on the Identifier-Locator Network Protocol (ILNP) and the existing Domain Name System (DNS). Specifically, the investigations considered the mitigation of network-level and transport-level based Denial of Service (DoS) attacks. The solutions presented for DoS are applicable to secure servers that are visible externally from an enterprise network. DoS was chosen as an area of concern because in recent years DoS has become the most common and hard to defend against attacks. The novelty of this approach was to consider the way the DNS and ILNP can work together, transparently to the application, within an enterprise scenario. This was achieved by the introduction of a new application-level access control function - the Capability Management System (CMS) - which applies configuration at the application level (DNS data) and network level (ILNP namespaces). CMS provides dynamic, ephemeral identity and location information to clients and servers, in order to effectively partition legitimate traffic from attack traffic. This was achieved without modifying existing network components such as switches and routers and making standard use of existing functions, such as access control lists, and DNS servers, all within a single trust domain that is under the control of the enterprise. The prime objectives of this research were: • to defend against DoS attacks with the use of naming and DNS within an enterprise scenario. • to increase the attacker’s effort in launching a successful DoS attack. • to reduce the visibility of vulnerabilities that can be discovered by an attacker by active probing approaches. • to practically demonstrate the effectiveness of ILNP and DNS working together to provide a solution for DoS mitigation. The solution methodology is based on the use of network and transport level capabilities, dynamic changes to DNS data, and a Moving Target Defence (MTD) paradigm. There are three solutions presented which use ILNP namespaces. These solutions are referred to as identifier-based, locator-based, and combined identifier-locator based solutions, respectively. ILNP-based node identity values were used to provide transport-level per-client server capabilities, thereby providing per-client isolation of traffic. ILNP locator values were used to allow a provision of network-level traffic separation for externally accessible enterprise services. Then, the identifier and locator solutions were combined, showing the possibility of protecting the services, with per-client traffic control and topological traffic path separation. All solutions were site-based solutions and did not require any modification in the core/external network, or the active cooperation of an ISP, therefore limiting the trust domain to the enterprise itself. Experiments were conducted to evaluate all the solutions on a test-bed consisting of off-the-shelf hardware, open-source software, an implementation of the CMS written in C, all running on Linux. The discussion includes considering the efficacy of the solutions, comparisons with existing methods, the performance of each solution, and critical analysis highlighting future improvements that could be made

    Survivability, Scalability and Security of Mobility Protocols

    Get PDF
    Today mobile computing has become a necessity and we are witnessing explosive growth in the number of mobile devices accessing the Internet. To facilitate continuous Internet connectivity for nodes and networks in motion, mobility protocols are required and they exchange various signaling messages with the mobility infrastructure for protocol operation. Proliferation in mobile computing has raised several research issues for the mobility protocols. First, it is essential to perform cost and scalability analysis of mobility protocols to find out their resource requirement to cope with future expansion. Secondly, mobility protocols have survivability issues and are vulnerable to security threats, since wireless communication media can be easily accessible to intruders. The third challenge in mobile computing is the protection ofsignaling messages against losses due to high bandwidth requirementof multimedia in mobile environments. However, there is lack of existing works that focus on the quantitative analysis of cost, scalability, survivability and security of mobility protocols.In this dissertation, we have performed comprehensive evaluation ofmobility protocols. We have presented tools and methodologies required for the cost, scalability, survivability and security analysis of mobilityprotocols. We have proposed a dynamic scheduling algorithm to protect mobility signaling message against losses due to increased multimedia traffic in mobile environments and have also proposed a mobile networkarchitecture that aims at maximizing bandwidth utilization. The analysis presented in this work can help network engineers compare different mobility protocols quantitatively, thereby choose one that is reliable, secure, survivable and scalable

    IPv6 Security Issues: A Systematic Review Following PRISMA Guidelines

    Get PDF
    Since Internet Protocol version 6 is a new technology, insecure network configurations are inevitable. The researchers contributed a lot to spreading knowledge about IPv6 vulnerabilities and how to address them over the past two decades. In this study, a systematic literature review is conducted to analyze research progress in IPv6 security field following the Preferred Reporting Items for the Systematics Review and Meta-Analysis (PRISMA) method. A total of 427 studies have been reviewed from two databases, IEEE and Scopus. To fulfil the review goal, several key data elements were extracted from each study and two kinds of analysis were administered: descriptive analysis and literature classification. The results show positive signs of the research contributions in the field, and generally, they could be considered as a reference to explore the research of in the past two decades in IPv6 security field and to draw the future directions. For example, the percentage of publishing increased from 147 per decade from 2000-2010 to 330 per decade from 2011 to 2020 which means that the percentage increase was 124%. The number of citations is another key finding that reflects the great global interest in research devoted to IPv6 security issues, as it was 409 citations in the decade from 2000-2010, then increased to 1643 citations during the decade from 2011 to 2020, that is, the percentage increase was 302%

    MobiVPN: Towards a Reliable and Efficient Mobile VPN

    Get PDF
    abstract: A Virtual Private Network (VPN) is the traditional approach for an end-to-end secure connection between two endpoints. Most existing VPN solutions are intended for wired networks with reliable connections. In a mobile environment, network connections are less reliable and devices experience intermittent network disconnections due to either switching from one network to another or experiencing a gap in coverage during roaming. These disruptive events affects traditional VPN performance, resulting in possible termination of applications, data loss, and reduced productivity. Mobile VPNs bridge the gap between what users and applications expect from a wired network and the realities of mobile computing. In this dissertation, MobiVPN, which was built by modifying the widely-used OpenVPN so that the requirements of a mobile VPN were met, was designed and developed. The aim in MobiVPN was for it to be a reliable and efficient VPN for mobile environments. In order to achieve these objectives, MobiVPN introduces the following features: 1) Fast and lightweight VPN session resumption, where MobiVPN is able decrease the time it takes to resume a VPN tunnel after a mobility event by an average of 97.19\% compared to that of OpenVPN. 2) Persistence of TCP sessions of the tunneled applications allowing them to survive VPN tunnel disruptions due to a gap in network coverage no matter how long the coverage gap is. MobiVPN also has mechanisms to suspend and resume TCP flows during and after a network disconnection with a packet buffering option to maintain the TCP sending rate. MobiVPN was able to provide fast resumption of TCP flows after reconnection with improved TCP performance when multiple disconnections occur with an average of 30.08\% increase in throughput in the experiments where buffering was used, and an average of 20.93\% of increased throughput for flows that were not buffered. 3) A fine-grained, flow-based adaptive compression which allows MobiVPN to treat each tunneled flow independently so that compression can be turned on for compressible flows, and turned off for incompressible ones. The experiments showed that the flow-based adaptive compression outperformed OpenVPN's compression options in terms of effective throughput, data reduction, and lesser compression operations.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Actas da 10ª Conferência sobre Redes de Computadores

    Get PDF
    Universidade do MinhoCCTCCentro AlgoritmiCisco SystemsIEEE Portugal Sectio

    Routing and Mobility on IPv6 over LoWPAN

    Get PDF
    The IoT means a world-wide network of interconnected objects based on standard communication protocols. An object in this context is a quotidian physical device augmented with sensing/actuating, processing, storing and communication capabilities. These objects must be able to interact with the surrounding environment where they are placed and to cooperate with neighbouring objects in order to accomplish a common objective. The IoT objects have also the capabilities of converting the sensed data into automated instructions and communicating them to other objects through the communication networks, avoiding the human intervention in several tasks. Most of IoT deployments are based on small devices with restricted computational resources and energy constraints. For this reason, initially the scientific community did not consider the use of IP protocol suite in this scenarios because there was the perception that it was too heavy to the available resources on such devices. Meanwhile, the scientific community and the industry started to rethink about the use of IP protocol suite in all IoT devices and now it is considered as the solution to provide connectivity between the IoT devices, independently of the Layer 2 protocol in use, and to connect them to the Internet. Despite the use of IP suite protocol in all devices and the amount of solutions proposed, many open issues remain unsolved in order to reach a seamless integration between the IoT and the Internet and to provide the conditions to IoT service widespread. This thesis addressed the challenges associated with the interconnectivity between the Internet and the IoT devices and with the security aspects of the IoT. In the interconnectivity between the IoT devices and the Internet the problem is how to provide valuable information to the Internet connected devices, independently of the supported IP protocol version, without being necessary accessed directly to the IoT nodes. In order to solve this problem, solutions based on Representational state transfer (REST) web services and IPv4 to IPv6 dual stack transition mechanism were proposed and evaluated. The REST web service and the transition mechanism runs only at the border router without penalizing the IoT constrained devices. The mitigation of the effects of internal and external security attacks minimizing the overhead imposed on the IoT devices is the security challenge addressed in this thesis. Three different solutions were proposed. The first is a mechanism to prevent remotely initiated transport level Denial of Service attacks that avoids the use of inefficient and hard to manage traditional firewalls. It is based on filtering at the border router the traffic received from the Internet and destined to the IoT network according to the conditions announced by each IoT device. The second is a network access security framework that can be used to control the nodes that have access to the network, based on administrative approval, and to enforce security compliance to the authorized nodes. The third is a network admission control framework that prevents IoT unauthorized nodes to communicate with IoT authorized nodes or with the Internet, which drastically reduces the number of possible security attacks. The network admission control was also exploited as a management mechanism as it can be used to manage the network size in terms of number of nodes, making the network more manageable, increasing its reliability and extending its lifetime.A IoT (Internet of Things) tem suscitado o interesse tanto da comunidade académica como da indústria, uma vez que os campos de aplicação são inúmeros assim como os potenciais ganhos que podem ser obtidos através do uso deste tipo de tecnologia. A IoT significa uma rede global de objetos ligados entre si através de uma rede de comunicações baseada em protocolos standard. Neste contexto, um objeto é um objeto físico do dia a dia ao qual foi adicionada a capacidade de medir e de atuar sobre variáveis físicas, de processar e armazenar dados e de comunicar. Estes objetos têm a capacidade de interagir com o meio ambiente envolvente e de cooperar com outros objetos vizinhos de forma a atingirem um objetivo comum. Estes objetos também têm a capacidade de converter os dados lidos em instruções e de as comunicar a outros objetos através da rede de comunicações, evitando desta forma a intervenção humana em diversas tarefas. A maior parte das concretizações de sistemas IoT são baseados em pequenos dispositivos autónomos com restrições ao nível dos recursos computacionais e de retenção de energia. Por esta razão, inicialmente a comunidade científica não considerou adequado o uso da pilha protocolar IP neste tipo de dispositivos, uma vez que havia a perceção de que era muito pesada para os recursos computacionais disponíveis. Entretanto, a comunidade científica e a indústria retomaram a discussão acerca dos benefícios do uso da pilha protocolar em todos os dispositivos da IoT e atualmente é considerada a solução para estabelecer a conetividade entre os dispositivos IoT independentemente do protocolo da camada dois em uso e para os ligar à Internet. Apesar do uso da pilha protocolar IP em todos os dispositivos e da quantidade de soluções propostas, são vários os problemas por resolver no que concerne à integração contínua e sem interrupções da IoT na Internet e de criar as condições para a adoção generalizada deste tipo de tecnologias. Esta tese versa sobre os desafios associados à integração da IoT na Internet e dos aspetos de segurança da IoT. Relativamente à integração da IoT na Internet o problema é como fornecer informação válida aos dispositivos ligados à Internet, independentemente da versão do protocolo IP em uso, evitando o acesso direto aos dispositivos IoT. Para a resolução deste problema foram propostas e avaliadas soluções baseadas em web services REST e em mecanismos de transição IPv4 para IPv6 do tipo pilha dupla (dual stack). O web service e o mecanismo de transição são suportados apenas no router de fronteira, sem penalizar os dispositivos IoT. No que concerne à segurança, o problema é mitigar os efeitos dos ataques de segurança internos e externos iniciados local e remotamente. Foram propostas três soluções diferentes, a primeira é um mecanismo que minimiza os efeitos dos ataques de negação de serviço com origem na Internet e que evita o uso de mecanismos de firewalls ineficientes e de gestão complexa. Este mecanismo filtra no router de fronteira o tráfego com origem na Internet é destinado à IoT de acordo com as condições anunciadas por cada um dos dispositivos IoT da rede. A segunda solução, é uma framework de network admission control que controla quais os dispositivos que podem aceder à rede com base na autorização administrativa e que aplica políticas de conformidade relativas à segurança aos dispositivos autorizados. A terceira é um mecanismo de network admission control para redes 6LoWPAN que evita que dispositivos não autorizados comuniquem com outros dispositivos legítimos e com a Internet o que reduz drasticamente o número de ataques à segurança. Este mecanismo também foi explorado como um mecanismo de gestão uma vez que pode ser utilizado a dimensão da rede quanto ao número de dispositivos, tornando-a mais fácil de gerir e aumentando a sua fiabilidade e o seu tempo de vida

    Rethinking Enterprise Network Control

    Full text link
    corecore