7,893 research outputs found

    Detecting Lesion Bounding Ellipses With Gaussian Proposal Networks

    Full text link
    Lesions characterized by computed tomography (CT) scans, are arguably often elliptical objects. However, current lesion detection systems are predominantly adopted from the popular Region Proposal Networks (RPNs) that only propose bounding boxes without fully leveraging the elliptical geometry of lesions. In this paper, we present Gaussian Proposal Networks (GPNs), a novel extension to RPNs, to detect lesion bounding ellipses. Instead of directly regressing the rotation angle of the ellipse as the common practice, GPN represents bounding ellipses as 2D Gaussian distributions on the image plain and minimizes the Kullback-Leibler (KL) divergence between the proposed Gaussian and the ground truth Gaussian for object localization. We show the KL divergence loss approximately incarnates the regression loss in the RPN framework when the rotation angle is 0. Experiments on the DeepLesion dataset show that GPN significantly outperforms RPN for lesion bounding ellipse detection thanks to lower localization error. GPN is open sourced at https://github.com/baidu-research/GP

    Fast and Accurate Algorithm for Eye Localization for Gaze Tracking in Low Resolution Images

    Full text link
    Iris centre localization in low-resolution visible images is a challenging problem in computer vision community due to noise, shadows, occlusions, pose variations, eye blinks, etc. This paper proposes an efficient method for determining iris centre in low-resolution images in the visible spectrum. Even low-cost consumer-grade webcams can be used for gaze tracking without any additional hardware. A two-stage algorithm is proposed for iris centre localization. The proposed method uses geometrical characteristics of the eye. In the first stage, a fast convolution based approach is used for obtaining the coarse location of iris centre (IC). The IC location is further refined in the second stage using boundary tracing and ellipse fitting. The algorithm has been evaluated in public databases like BioID, Gi4E and is found to outperform the state of the art methods.Comment: 12 pages, 10 figures, IET Computer Vision, 201

    Accurate and reliable segmentation of the optic disc in digital fundus images

    Get PDF
    We describe a complete pipeline for the detection and accurate automatic segmentation of the optic disc in digital fundus images. This procedure provides separation of vascular information and accurate inpainting of vessel-removed images, symmetry-based optic disc localization, and fitting of incrementally complex contour models at increasing resolutions using information related to inpainted images and vessel masks. Validation experiments, performed on a large dataset of images of healthy and pathological eyes, annotated by experts and partially graded with a quality label, demonstrate the good performances of the proposed approach. The method is able to detect the optic disc and trace its contours better than the other systems presented in the literature and tested on the same data. The average error in the obtained contour masks is reasonably close to the interoperator errors and suitable for practical applications. The optic disc segmentation pipeline is currently integrated in a complete software suite for the semiautomatic quantification of retinal vessel properties from fundus camera images (VAMPIRE)

    Large scale evaluation of local image feature detectors on homography datasets

    Full text link
    We present a large scale benchmark for the evaluation of local feature detectors. Our key innovation is the introduction of a new evaluation protocol which extends and improves the standard detection repeatability measure. The new protocol is better for assessment on a large number of images and reduces the dependency of the results on unwanted distractors such as the number of detected features and the feature magnification factor. Additionally, our protocol provides a comprehensive assessment of the expected performance of detectors under several practical scenarios. Using images from the recently-introduced HPatches dataset, we evaluate a range of state-of-the-art local feature detectors on two main tasks: viewpoint and illumination invariant detection. Contrary to previous detector evaluations, our study contains an order of magnitude more image sequences, resulting in a quantitative evaluation significantly more robust to over-fitting. We also show that traditional detectors are still very competitive when compared to recent deep-learning alternatives.Comment: Accepted to BMVC 201
    • …
    corecore