138 research outputs found

    Propagating Conjunctions of AllDifferent Constraints

    Full text link
    We study propagation algorithms for the conjunction of two AllDifferent constraints. Solutions of an AllDifferent constraint can be seen as perfect matchings on the variable/value bipartite graph. Therefore, we investigate the problem of finding simultaneous bipartite matchings. We present an extension of the famous Hall theorem which characterizes when simultaneous bipartite matchings exists. Unfortunately, finding such matchings is NP-hard in general. However, we prove a surprising result that finding a simultaneous matching on a convex bipartite graph takes just polynomial time. Based on this theoretical result, we provide the first polynomial time bound consistency algorithm for the conjunction of two AllDifferent constraints. We identify a pathological problem on which this propagator is exponentially faster compared to existing propagators. Our experiments show that this new propagator can offer significant benefits over existing methods.Comment: AAAI 2010, Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligenc

    Abscon 112: towards more robustness

    Get PDF
    dans le cadre de CP'08International audienceThis paper describes the three main improvements made to the solver Abscon 109 [9]. The new version, Abscon 112, is able to automatically break some variable symmetries, infer allDifferent constraints from cliques of variables that are pair-wise irreexive, and use an optimized version of the STR (Simple Tabular Reduction) technique initially introduced by J. Ullmann for table constraints

    XCSP3-core: A Format for Representing Constraint Satisfaction/Optimization Problems

    Full text link
    In this document, we introduce XCSP3-core, a subset of XCSP3 that allows us to represent constraint satisfaction/optimization problems. The interest of XCSP3-core is multiple: (i) focusing on the most popular frameworks (CSP and COP) and constraints, (ii) facilitating the parsing process by means of dedicated XCSP3-core parsers written in Java and C++ (using callback functions), (iii) and defining a core format for comparisons (competitions) of constraint solvers.Comment: arXiv admin note: substantial text overlap with arXiv:1611.0339

    Finite Domain Bounds Consistency Revisited

    Full text link
    A widely adopted approach to solving constraint satisfaction problems combines systematic tree search with constraint propagation for pruning the search space. Constraint propagation is performed by propagators implementing a certain notion of consistency. Bounds consistency is the method of choice for building propagators for arithmetic constraints and several global constraints in the finite integer domain. However, there has been some confusion in the definition of bounds consistency. In this paper we clarify the differences and similarities among the three commonly used notions of bounds consistency.Comment: 12 page

    Self-decomposable Global Constraints

    Get PDF
    International audienceScalability becomes more and more critical to decision support technologies. In order to address this issue in Constraint Programming, we introduce the family of self-decomposable constraints. These constraints can be satisfied by applying their own filtering algorithms on variable subsets only. We introduce a generic framework which dynamically decompose propagation, by filtering over variable subsets. Our experiments over the CUMULATIVE constraint illustrate the practical relevance of self-decomposition
    • …
    corecore