1,691 research outputs found

    Power Management Techniques for Data Centers: A Survey

    Full text link
    With growing use of internet and exponential growth in amount of data to be stored and processed (known as 'big data'), the size of data centers has greatly increased. This, however, has resulted in significant increase in the power consumption of the data centers. For this reason, managing power consumption of data centers has become essential. In this paper, we highlight the need of achieving energy efficiency in data centers and survey several recent architectural techniques designed for power management of data centers. We also present a classification of these techniques based on their characteristics. This paper aims to provide insights into the techniques for improving energy efficiency of data centers and encourage the designers to invent novel solutions for managing the large power dissipation of data centers.Comment: Keywords: Data Centers, Power Management, Low-power Design, Energy Efficiency, Green Computing, DVFS, Server Consolidatio

    Holistic Virtual Machine Scheduling in Cloud Datacenters towards Minimizing Total Energy

    Get PDF
    Energy consumed by Cloud datacenters has dramatically increased, driven by rapid uptake of applications and services globally provisioned through virtualization. By applying energy-aware virtual machine scheduling, Cloud providers are able to achieve enhanced energy efficiency and reduced operation cost. Energy consumption of datacenters consists of computing energy and cooling energy. However, due to the complexity of energy and thermal modeling of realistic Cloud datacenter operation, traditional approaches are unable to provide a comprehensive in-depth solution for virtual machine scheduling which encompasses both computing and cooling energy. This paper addresses this challenge by presenting an elaborate thermal model that analyzes the temperature distribution of airflow and server CPU. We propose GRANITE – a holistic virtual machine scheduling algorithm capable of minimizing total datacenter energy consumption. The algorithm is evaluated against other existing workload scheduling algorithms MaxUtil, TASA, IQR and Random using real Cloud workload characteristics extracted from Google datacenter tracelog. Results demonstrate that GRANITE consumes 4.3% - 43.6% less total energy in comparison to the state-of-the-art, and reduces the probability of critical temperature violation by 99.2% with 0.17% SLA violation rate as the performance penalty

    A Survey of Prediction and Classification Techniques in Multicore Processor Systems

    Get PDF
    In multicore processor systems, being able to accurately predict the future provides new optimization opportunities, which otherwise could not be exploited. For example, an oracle able to predict a certain application\u27s behavior running on a smart phone could direct the power manager to switch to appropriate dynamic voltage and frequency scaling modes that would guarantee minimum levels of desired performance while saving energy consumption and thereby prolonging battery life. Using predictions enables systems to become proactive rather than continue to operate in a reactive manner. This prediction-based proactive approach has become increasingly popular in the design and optimization of integrated circuits and of multicore processor systems. Prediction transforms from simple forecasting to sophisticated machine learning based prediction and classification that learns from existing data, employs data mining, and predicts future behavior. This can be exploited by novel optimization techniques that can span across all layers of the computing stack. In this survey paper, we present a discussion of the most popular techniques on prediction and classification in the general context of computing systems with emphasis on multicore processors. The paper is far from comprehensive, but, it will help the reader interested in employing prediction in optimization of multicore processor systems
    • …
    corecore