23,060 research outputs found

    Future Contingents and the Logic of Temporal Omniscience

    Get PDF
    At least since Aristotle’s famous 'sea-battle' passages in On Interpretation 9, some substantial minority of philosophers has been attracted to the doctrine of the open future--the doctrine that future contingent statements are not true. But, prima facie, such views seem inconsistent with the following intuition: if something has happened, then (looking back) it was the case that it would happen. How can it be that, looking forwards, it isn’t true that there will be a sea battle, while also being true that, looking backwards, it was the case that there would be a sea battle? This tension forms, in large part, what might be called the problem of future contingents. A dominant trend in temporal logic and semantic theorizing about future contingents seeks to validate both intuitions. Theorists in this tradition--including some interpretations of Aristotle, but paradigmatically, Thomason (1970), as well as more recent developments in Belnap, et. al (2001) and MacFarlane (2003, 2014)--have argued that the apparent tension between the intuitions is in fact merely apparent. In short, such theorists seek to maintain both of the following two theses: (i) the open future: Future contingents are not true, and (ii) retro-closure: From the fact that something is true, it follows that it was the case that it would be true. It is well-known that reflection on the problem of future contingents has in many ways been inspired by importantly parallel issues regarding divine foreknowledge and indeterminism. In this paper, we take up this perspective, and ask what accepting both the open future and retro-closure predicts about omniscience. When we theorize about a perfect knower, we are theorizing about what an ideal agent ought to believe. Our contention is that there isn’t an acceptable view of ideally rational belief given the assumptions of the open future and retro-closure, and thus this casts doubt on the conjunction of those assumptions

    Assessing Simulations of Imperial Dynamics and Conflict in the Ancient World

    Get PDF
    The development of models to capture large-scale dynamics in human history is one of the core contributions of cliodynamics. Most often, these models are assessed by their predictive capability on some macro-scale and aggregated measure and compared to manually curated historical data. In this report, we consider the model from Turchin et al. (2013), where the evaluation is done on the prediction of "imperial density": the relative frequency with which a geographical area belonged to large-scale polities over a certain time window. We implement the model and release both code and data for reproducibility. We then assess its behaviour against three historical data sets: the relative size of simulated polities vs historical ones; the spatial correlation of simulated imperial density with historical population density; the spatial correlation of simulated conflict vs historical conflict. At the global level, we show good agreement with population density (R2<0.75R^2 < 0.75), and some agreement with historical conflict in Europe (R2<0.42R^2 < 0.42). The model instead fails to reproduce the historical shape of individual polities. Finally, we tweak the model to behave greedily by having polities preferentially attacking weaker neighbours. Results significantly degrade, suggesting that random attacks are a key trait of the original model. We conclude by proposing a way forward by matching the probabilistic imperial strength from simulations to inferred networked communities from real settlement data

    Gaming Business Communities: Developing online learning organisations to foster communities, develop leadership, and grow interpersonal education

    Get PDF
    This paper explores, through observation and testing, what possibilities from gaming can be extended into other realms of human interaction to help bring people together, extend education, and grow business. It uses through action learning within the safety of the virtual world within Massively Multiplayer Online Games. Further, I explore how the world of online gaming provides opportunity to train a wide range of skills through extending Revans’ (1980) learning equation and action inquiry methodology. This equation and methodology are deployed in relation to a gaming community to see if the theories could produce strong relationships within organisations and examine what learning, if any, is achievable. I also investigate the potential for changes in business (e.g., employee and customer relationships) through involvement in the gaming community as a unique place to implement action learning. The thesis also asks the following questions on a range of extended possibilities in the world of online gaming: What if the world opened up to a social environment where people could discuss their successes and failures? What if people could take a real world issue and re‐create it in the safe virtual world to test ways of dealing with it? What education answers can the world of online gaming provide

    Spartan Daily, May 4, 2006

    Get PDF
    Volume 126, Issue 52https://scholarworks.sjsu.edu/spartandaily/10252/thumbnail.jp

    Spartan Daily, April 12, 2005

    Get PDF
    Volume 124, Issue 46https://scholarworks.sjsu.edu/spartandaily/10118/thumbnail.jp

    The future of shale

    Get PDF
    Master's Project (M.S.) University of Alaska Fairbanks, 2016This project examines the various drivers that led to the U.S. shale oil revolution in order to predict its place in the energy industry going forward and to analyze its effects on Alaska. The shale boom flooded the market with oil causing a dramatic decrease in crude oil prices in late 2014. With this price drop threatening to send Alaska into an economic recession, the future of shale should be of primary concern to all Alaskans as well as other entities that rely heavily on oil revenue. The primary driver leading to the shale revolution is technology. Advances in hydraulic fracturing, horizontal drilling, and 3D seismic mapping made producing shale oil and gas possible for the first time. New technologies like rotary steerable systems and measurements while drilling continue to make shale production more efficient, and technology will likely continue to improve. Infrastructure helps to explain why the shale revolution was mostly an American phenomenon. Many countries with shale formations have political infrastructure too unstable to risk shale investment. Capital infrastructure is a primary strength of the U.S. and also helps to explain why shale development didn't find its way up to Alaska despite having political stability. Financial infrastructure allowed oil companies to receive the funding necessary to quickly bring shale to the market. The final driver explored is crude oil prices. High oil prices helped spark the shale revolution, but with the recent price crash, there is uncertainty about its future. With production costs continually falling due to technology improvements and analysts predicting crude oil prices to stabilize above most project breakeven points, the future of shale looks bright.Introduction -- Shale & Alaska North Slope Crude Oil Prices -- Seeds of its own destruction? Technology -- Hydraulic Fracturing -- History of fracking -- Directional drilling -- History of drilling -- Benefits of directional drilling -- 3D seismic mapping -- Creating a shockwave -- Recording the data -- Interpreting the results -- The birth of a revolution -- Current/future developments -- Rotary steerable system -- Measurements while drilling -- Future developments. Infrastructure -- Political risk -- Financial markets -- Over investment -- Capital infrastructure. Crude prices -- The price crash -- Breakeven prices -- Future prices -- Alaska -- Conclusion -- Bibliography

    Spartan Daily, September 29, 1986

    Get PDF
    Volume 87, Issue 22https://scholarworks.sjsu.edu/spartandaily/7479/thumbnail.jp
    • 

    corecore