27,000 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Inferring Types to Eliminate Ownership Checks in an Intentional JavaScript Compiler

    Get PDF
    Concurrent programs are notoriously difficult to develop due to the non-deterministic nature of thread scheduling. It is desirable to have a programming language to make such development easier. Tscript comprises such a system. Tscript is an extension of JavaScript that provides multithreading support along with intent specification. These intents allow a programmer to specify how parts of the program interact in a multithreaded context. However, enforcing intents requires run-time memory checks which can be inefficient. This thesis implements an optimization in the Tscript compiler that seeks to improve this inefficiency through static analysis. Our approach utilizes both type inference and dataflow analysis to eliminate unnecessary run-time checks

    Penalty Dynamic Programming Algorithm for Dim Targets Detection in Sensor Systems

    Get PDF
    In order to detect and track multiple maneuvering dim targets in sensor systems, an improved dynamic programming track-before-detect algorithm (DP-TBD) called penalty DP-TBD (PDP-TBD) is proposed. The performances of tracking techniques are used as a feedback to the detection part. The feedback is constructed by a penalty term in the merit function, and the penalty term is a function of the possible target state estimation, which can be obtained by the tracking methods. With this feedback, the algorithm combines traditional tracking techniques with DP-TBD and it can be applied to simultaneously detect and track maneuvering dim targets. Meanwhile, a reasonable constraint that a sensor measurement can originate from one target or clutter is proposed to minimize track separation. Thus, the algorithm can be used in the multi-target situation with unknown target numbers. The efficiency and advantages of PDP-TBD compared with two existing methods are demonstrated by several simulations
    • …
    corecore