5,241 research outputs found

    A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

    Full text link
    Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow

    A Survey of Prediction and Classification Techniques in Multicore Processor Systems

    Get PDF
    In multicore processor systems, being able to accurately predict the future provides new optimization opportunities, which otherwise could not be exploited. For example, an oracle able to predict a certain application\u27s behavior running on a smart phone could direct the power manager to switch to appropriate dynamic voltage and frequency scaling modes that would guarantee minimum levels of desired performance while saving energy consumption and thereby prolonging battery life. Using predictions enables systems to become proactive rather than continue to operate in a reactive manner. This prediction-based proactive approach has become increasingly popular in the design and optimization of integrated circuits and of multicore processor systems. Prediction transforms from simple forecasting to sophisticated machine learning based prediction and classification that learns from existing data, employs data mining, and predicts future behavior. This can be exploited by novel optimization techniques that can span across all layers of the computing stack. In this survey paper, we present a discussion of the most popular techniques on prediction and classification in the general context of computing systems with emphasis on multicore processors. The paper is far from comprehensive, but, it will help the reader interested in employing prediction in optimization of multicore processor systems

    Understanding the thermal implications of multicore architectures

    Get PDF
    Multicore architectures are becoming the main design paradigm for current and future processors. The main reason is that multicore designs provide an effective way of overcoming instruction-level parallelism (ILP) limitations by exploiting thread-level parallelism (TLP). In addition, it is a power and complexity-effective way of taking advantage of the huge number of transistors that can be integrated on a chip. On the other hand, today's higher than ever power densities have made temperature one of the main limitations of microprocessor evolution. Thermal management in multicore architectures is a fairly new area. Some works have addressed dynamic thermal management in bi/quad-core architectures. This work provides insight and explores different alternatives for thermal management in multicore architectures with 16 cores. Schemes employing both energy reduction and activity migration are explored and improvements for thread migration schemes are proposed.Peer ReviewedPostprint (published version

    Evaluating Cache Coherent Shared Virtual Memory for Heterogeneous Multicore Chips

    Full text link
    The trend in industry is towards heterogeneous multicore processors (HMCs), including chips with CPUs and massively-threaded throughput-oriented processors (MTTOPs) such as GPUs. Although current homogeneous chips tightly couple the cores with cache-coherent shared virtual memory (CCSVM), this is not the communication paradigm used by any current HMC. In this paper, we present a CCSVM design for a CPU/MTTOP chip, as well as an extension of the pthreads programming model, called xthreads, for programming this HMC. Our goal is to evaluate the potential performance benefits of tightly coupling heterogeneous cores with CCSVM

    Developing Efficient Discrete Simulations on Multicore and GPU Architectures

    Get PDF
    In this paper we show how to efficiently implement parallel discrete simulations on multicoreandGPUarchitecturesthrougharealexampleofanapplication: acellularautomatamodel of laser dynamics. We describe the techniques employed to build and optimize the implementations using OpenMP and CUDA frameworks. We have evaluated the performance on two different hardware platforms that represent different target market segments: high-end platforms for scientific computing, using an Intel Xeon Platinum 8259CL server with 48 cores, and also an NVIDIA Tesla V100GPU,bothrunningonAmazonWebServer(AWS)Cloud;and on a consumer-oriented platform, using an Intel Core i9 9900k CPU and an NVIDIA GeForce GTX 1050 TI GPU. Performance results were compared and analyzed in detail. We show that excellent performance and scalability can be obtained in both platforms, and we extract some important issues that imply a performance degradation for them. We also found that current multicore CPUs with large core numbers can bring a performance very near to that of GPUs, and even identical in some cases.Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO), and the Agencia Estatal de Investigación (AEI) of Spain, cofinanced by FEDER funds (EU) TIN2017-89842
    corecore