
electronics

Article

Developing Efficient Discrete Simulations on
Multicore and GPU Architectures

Daniel Cagigas-Muñiz 1 , Fernando Diaz-del-Rio 1 , Manuel Ramón López-Torres 1,
Francisco Jiménez-Morales 2 and José Luis Guisado 1,*

1 Department of Computer Architecture and Technology, Universidad de Sevilla, Avenida Reina Mercedes
s/n, 41012 Sevilla, Spain; dcagigas@us.es (D.C.-M.); fdiaz@us.es (F.D.-d.-R.); rlopez@us.es (M.R.L.-T.)

2 Department of Condensed Matter Physics, Universidad de Sevilla, Avenida Reina Mercedes s/n,
41012 Sevilla, Spain; jimenez@us.es

* Correspondence: jlguisado@us.es

Received: 16 December 2019; Accepted: 12 January 2020; Published: 19 January 2020
����������
�������

Abstract: In this paper we show how to efficiently implement parallel discrete simulations on
multicore and GPU architectures through a real example of an application: a cellular automata model
of laser dynamics. We describe the techniques employed to build and optimize the implementations
using OpenMP and CUDA frameworks. We have evaluated the performance on two different
hardware platforms that represent different target market segments: high-end platforms for scientific
computing, using an Intel Xeon Platinum 8259CL server with 48 cores, and also an NVIDIA Tesla
V100 GPU, both running on Amazon Web Server (AWS) Cloud; and on a consumer-oriented platform,
using an Intel Core i9 9900k CPU and an NVIDIA GeForce GTX 1050 TI GPU. Performance results
were compared and analyzed in detail. We show that excellent performance and scalability can
be obtained in both platforms, and we extract some important issues that imply a performance
degradation for them. We also found that current multicore CPUs with large core numbers can bring
a performance very near to that of GPUs, and even identical in some cases.

Keywords: laser dynamics; parallel computing; cellular automata; GPUs and multi-core processors
performance

1. Introduction

Discrete simulation methods encompass a family of modeling techniques which employ entities
that inhabit discrete states and evolve in discrete time steps. Examples include models such as
cellular automata (CA) and related lattice automata, such as lattice gas automata (LGA) or the lattice
Boltzmann method (LBM), and also discretizations of continuos models, such as many stencil-based
partial differential equation (PDE) solvers and particle methods based on fixed neighbor lists. They
are powerful tools that have been widely used to simulate complex systems of very different kinds
(in which a global behavior results from the collective action of many simple components that interact
locally) and to solve systems of differential equations.

To accurately simulate real systems, the quality of the computed results very often depends on
the number of data points used for the computations and on the complexity of the model. As a result,
realistic simulations frequently involve excessive runtime and memory requirements for a sequential
computer. Therefore, efficient parallel implementations of this kind of discrete simulation are extremely
important. But this type of discrete algorithm has a strong parallel nature, because each is composed of
many individual components or cells that are simultaneously updated. They also have a local nature,
since the evolution of cells is determined by strictly local rules; i.e., each cell only interacts with a low

Electronics 2020, 9, 189; doi:10.3390/electronics9010189 www.mdpi.com/journal/electronics

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/299807372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-2792-2844
https://orcid.org/0000-0001-6184-1629
https://orcid.org/0000-0002-5209-9028
https://orcid.org/0000-0001-5480-7617
http://www.mdpi.com/2079-9292/9/1/189?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9010189
http://www.mdpi.com/journal/electronics

Electronics 2020, 9, 189 2 of 17

number of neighboring cells. Thanks to this, they are very suitable to be implemented efficiently on
parallel computers [1,2].

In this paper, we study the efficient parallel implementation of a real application of this type,
a CA model of laser dynamics, on multicore and GPU architectures, employing the most commonly
used software frameworks for these platforms today: OpenMP and CUDA, respectively. In both
cases, we describe code optimizations that can speed-up the computation and reduce memory usage.
In both cases we evaluated the performance on two different hardware platforms that represent
different target market segments: a high-end chip intended for scientific computing or for servers,
and on a consumer-oriented one. In the case of the multicore architecture, the performance has
been evaluated on a dual socket server with 2 high-end Intel Xeon Platinum 8259CL processors
(completing 48 cores between them) running on Amazon Web Server (AWS) Cloud, and also on a
PC market Intel Core i9 9900 k processor. For the GPU architecture, we present the performance
evaluation results of a high-end GPGPU NVIDIA Tesla V100 GPU running on AWS Cloud and on
a consumer-oriented NVIDIA GeForce GTX 1050 TI. In all cases, we report speedups compared to
a sequential implementation. The aim of this work was to extract lessons that may be helpful for
practitioners implementing discrete simulations of real systems in parallel.

The considered application uses cellular automata, a class of discrete, spatially-distributed
dynamical systems with the following characteristics: a spatial and temporally discrete nature,
local interaction, and synchronous parallel dynamical evolution [3,4]. They can be described as a
set of identical finite state machines (cells) arranged along a regular spatial grid, whose states are
simultaneously updated by a uniformly applied state-transition function that refers to the states of
their neighbors [5]. In the last few decades, CA has been successfully applied to build simulations
of complex systems in a wide range of fields, including physics (fluid dynamics, magnetization in
solids, reaction-diffusion processes), bio-medicine (viral infections, epidemic spreading), engineering
(communication networks, cryptography), environmental science (forest fires, population dynamics),
economics (stock exchange markets), theoretical computer science, etc. [6–8]. It is currently being very
used, in particular, for simulations in geography (especially in urban development planning [9], future
development of cities [10], and land use [11]) pedestrian or vehicular traffic [12,13], and bio-medicine
(applied to physiological modeling; for example, for cancer [14], or epidemic modeling [15]).

The application studied here is a cellular automata model of laser dynamics introduced by
Guisado et al., capable of reproducing much of the phenomenology of laser systems [16–19]. It captures
the essence of a laser as a complex system in which its macroscopic properties emerge spontaneously
due to the self-organization of its basic components. This model is a useful alternative to the
standard modeling approach of laser dynamics, based on differential equations, in situations where
the considered approximations are not valid, such as lasers being ruled by stiff differential equations,
lasers with difficult boundary conditions, and very small devices. The mesoscopic character of the
model also allowed us to get results impossible to be obtained by the differential equations, such as
studying the evolution of its spatio-temporal patterns.

In order to reduce the runtime of laser simulations with this model by taking advantage of its
parallel nature, a parallel implementation of it for computer clusters (distributed-memory parallel
computers), using the message-passing programming paradigm, was introduced in [20,21]. It showed
a good performance on dedicated computer clusters [22] and also on heterogeneous non-dedicated
clusters with a dynamic load balancing mechanism [23].

Due to the excellent ratio performance/price and performance/power of graphics processing
units (GPUs), it is very interesting to implement the model on them. GPUs are massively parallel
graphics processors originally designed for running interactive graphics applications, but that can also
be used to accelerate arbitrary applications, which is known as GPGPU (general purpose computation
on a GPU) [24]. They can run thousands of programming threads in parallel, providing speedups
mainly from ×10 to ×200 compared to a CPU (depending on the application and on the optimizations
of its implementation), at very affordable prices. Therefore, GPUs have widespread use today in

Electronics 2020, 9, 189 3 of 17

high performance scientific computing. Their architecture is formed by a number of multiprocessors,
each of them with a number of cores. All cores of a multiprocessor share one memory unit called
shared memory, and all multiprocessors share a memory unit called global memory.

A first version of a parallel implementation of the model for GPUs was presented in [25].
Even when that first implementation did not explore all the possible optimizations to boost the
performance on that platform, it showed that the model could be successfully implemented on GPU.
A speedup of 14.5 on a NVIDIA GeForce GTX 285 (a consumer-oriented GPU intended for low-end
users and gamers) compared to an Intel Core i5 750 with 4 cores at 2.67 GHz was obtained. The GPU
implementation described in the present paper improves on the previous one; it has been carefully
optimized to extract all possible performance features from the GPU, and its performance has been
evaluated not only on a consumer-oriented GPU, but also on a Tesla scientific, high-end GPU.

Another interesting parallel platform to implement discrete simulations on today is the multicore
processor. Since around 2005, all general-purpose CPUs have implemented more than one CPU
(or “core”) on the processor chip. For a decade, the number of cores in standard Intel ×86 processors
was modest (mainly from 2 to 8). But in the last few years, high-end CPUs emerged in the market
which include up to several dozen cores (now up to 18 cores for Intel Core i9 and up to 56 cores for
Intel Xeon Platinum). Therefore, multicore CPUs can start to be competitive with GPUs to implement
parallel discrete simulations, especially taking into account that parallelization with OpenMP is much
easier than for GPUs. Therefore, we also present the first parallel implementation of the CA laser
dynamics model for multicore architectures, and we compare its performance on current high-end
multicore CPUs to the performance obtained on GPUs.

The remainder of the paper is organized as follows: Section 2 reviews the related work in the
field of discrete simulations via cellular automata and their parallel implementation on multicore and
GPU Architectures. Section 3 describes the methodology employed in this work, trying to give useful
indications to researchers interested in parallelizing efficiently their own codes. Section 4 presents the
results and discusses their interpretation and significance. Finally, Section 5 summarizes the contents
of this paper, and the conclusions, and indicates interesting future work.

2. Related Work

Most parallel implementations of CA models on multicore processors or GPUs were presented
after 2007. In the case of multicore processors, they became generalised only from 2005 onwards,
and started to be used for parallel simulations in the years following. Regarding GPUs, before 2007 there
were few works devoted to the parallel implementation of cellular automata models on GPUs, because
they had to adapt somehow their application to a shading language (a special purpose programming
language for graphics applications), such as OpenGL. An example is the paper from Gobron et al. [26],
which studied a CA model for a biological retina obtaining a ×20 speedup compared to the CPU
implementation. After the introduction in 2007 of CUDA (compute unified device architecture), a general
purpose programming language for GPUs of the NVIDIA manufacturer, there was soon a multi-platform
one called OpenCL; the usage of GPUs in scientific computing exploded.

Let us review some relevant parallel implementations of CA models on multicore CPUs and
GPUs introduced from 2007 on.

Rybacki et al. [27] presented a study of the performances of seven different very simple cellular
automata standard models running on a single core processor, a multi core processor, and a GPU.
They found that the performance results were strongly dependent on the model to be simulated.

Bajzát et al. [28] obtained an order of magnitude increase in the performance of the GPU
implementation of a CA model for an ecological system, compared to a serial execution.

Balasalle et al. [29] studied how to improve the performance of the GPU implementation of one
of the simplest two-dimensional CAs—the game of life—by optimizing the memory access patterns.
They found that careful optimizations of the implementation could produce a 65% improvement in
runtime from a baseline implementation. However, they did not study other more realistic CA models.

Electronics 2020, 9, 189 4 of 17

Special interest has been devoted to GPU implementations of Lattice Boltzmann methods,
a particular class of CA. Some works have been able to obtain spectacular speedups for them.
For instance, [30] reported speedups of up to ×234 with respect to single-core CPU execution without
using SSE instructions or multithreading.

Gibson et al. [31] presents the first thorough study of the performance of cellular automata
implementations on GPUs and multi-core CPUs with respect to different standard CA parameters—lattice
and neighborhood sizes, number of states, complexity of the state transition rules, number of
generations, etc. They have studied a “toy application”, the “game of life” cellular automaton in two
dimensions and two multi-state generalizations of it. They employed the OpenCL framework for the
parallel implementation on GPUs and OpenMP for multi-core CPUs. That study is very useful for
researchers, helping them choose the right CA parameters, when it is possible, by taking into account
their impact in performance. Additionally, it helps to explain much of the variation found in reported
speedup factors from literature. Our present work is different and complementary to that study in
the sense that the game of life is a toy model very useful to study the dependence of performance on
general CA parameters, but it is also very interesting to study the parallelization and performance of a
real application instead of a toy model such as the game of life, as we do in this work.

3. Materials and Methods

3.1. Cellular Automaton Model for Laser Dynamics Simulation

We present parallel implementations for multicore CPUs and for GPUs of the cellular automaton
model of laser dynamics introduced by Guisado et al. [16–18].

A laser system is represented in this model by a two-dimensional CA which corresponds to a
transverse section of the active medium in the laser cavity.

Formally, the CA model is made of:

(a) A regular lattice in a two-dimensional space of L × L cells. Each lattice position is labelled by
the indices (i, j). In order to avoid boundary problems and to best simulate the properties of a
macroscopic system, we use periodic boundary conditions.

(b) The state variables associated with each node (i, j). In the case of a laser system, we need two
variables: one for the lasing medium aij(t) and the other for the number of laser photons cij(t).
aij(t) is a boolean variable: 1 represents the excited state of the electron in the lasing medium in cell
(i, j) and 0 is the ground state. For the photons, cij(t) is an integer variable in the range [0, M], where
M is an upper limit that represent, the number of laser photons in cell (i, j). The state variables
aij(t) and cij(t) represent “bunches” of real photons and electrons, the values of which are obviously
smaller than the real number of photons and electrons in the system and are connected to them by a
normalization constant.

(c) The neighborhood of a cell. In a cellular automata the state variables can change depending on
the neighboring cells. In the laser model studied here [16], the Moore neighborhood is employed:
the neighborhood of a cell consists of the cell itself and the eight cells around it at positions north,
south, east, west, northeast, southeast, northwest, and southwest.

(d) The evolution rules that specify the state variables at time t + 1 as a function of their state at time
t. From a microscopic point of view the physics of a laser can be described by five processes:

(i) The pumping of the ground state of the laser medium to the excited state. In this way energy
is supplied to the lasing medium. This process is considered to be probabilistic: If aij(t) = 0,
then aij(t + 1) = 1 with a probability λ.

(ii) The stimulated emission by which a new photon is created when an excited laser medium
cell surrounded by one or more photons decays to the ground state: If aij(t) = 1 and
the sum of the values of the laser photons states in its neighboring cells is greater than 1,
then cij(t + 1) = cij(t) + 1 and aij(t + 1) = 0.

Electronics 2020, 9, 189 5 of 17

(iii) The non-radiative decaying of the excited state. After a finite time τa, an excited laser
medium cell will go to the ground state aij(t + 1) = 0 without the generation of any photon.

(iv) The photon decay. After a given time τc, photons escape and their number is decreased by
one unit cij(t + 1) = cij(t)− 1.

(v) Thermal noise. In a real laser system, there is a thermal noise of photons produced by
spontaneous emissions, and they cause the initial start-up of the laser action. Therefore in
our CA model, a small number of photons (less than 0.01%) are added at random positions
at each time step.

3.2. Sequential Implementation of the Model

The algorithmic description of the model using pseudo code is shown in Algorithms 1–4. The main
program is described in Algorithm 1. The structure of the algorithm is based on a time loop, inside of
which there is a data loop to sweep all the CA cells. At each time step, first, the lattice cell states are
updated by applying the transition rules, and then the total populations of laser photons and electrons
in the upper state are calculated by summing up the values of the state variables aij and cij for all the
lattice cells. Because we are emulating a time evolution, the order of the transition rules for each time
step can be switched. Of course, different orders get to slightly different particle quantities, but on the
whole, CA evolution is similar. Algorithm 2 defines the implementation of the noise photon creation
rule. The photon and electron decay rules and the evolution of temporal variables are described
in Algorithm 3. Finally, Algorithm 4 describes the implementation of the pumping and stimulated
emission rules.

In order to simulate a parallel evolution of all the CA cells, we use two copies of the cij matrix,
called c and c′. In each time step, the new states of cij are written in c′ and the updated values of this
matrix are only copied to c after finishing with all the CA cells. In the algorithmic description of the
implementation of the model, we used two temporal variables, ãij and c̃k

ij as time counters, where k
distinguishes between the different photons that can occupy the same cell. When a photon is created,
c̃k

ij = τc. After that, 1 is subtracted to c̃k
ij for every time step, and the photon will be destroyed when

c̃k
ij = 0. When an electron is initially excited, ãij = τa. Finally, 1 is subtracted to ãij for every time step

and the electron will decay to the ground level again when ãij = 0.

Algorithm 1 Pseudo code description of the main program for the CA laser model.

1: Initialize system
2: Input data
3: for time step = 1 to maximum time step do

4: for each cell in the array do

5: Apply noise photons creation rule (Algorithm 2)
6: Apply photon and electron decay and evolution of temporal variables (Algorithm 3)
7: Apply pumping and stimulated emission rules (Algorithm 4)
8: end for
9: Refresh value of c matrix with contents of c′ matrix

10: Calculate populations after this time step
11: Optional additional calculations on intermediate results
12: end for
13: Final calculations
14: Output results

Electronics 2020, 9, 189 6 of 17

Algorithm 2 Pseudo code diagram for the implementation of the noise photons rule.
1: {Introduce nn number of photons in random positions}
2: for n = 0 to nn − 1 do

3: {Generate two random integers in (0, size− 1) interval}
4: i←− random_number(0, Lx − 1)
5: j←− random_number(0, Ly − 1)
6: {Look for first value of k for which c̃k

ij = 0}
7: while c̃k

ij 6= 0 and k ≤ M do

8: k←− k + 1
9: end while

10: if k ≤ M then

11: {Create new photon}
12: c′ij ←− c′ij + 1
13: c̃k

ij ←− τc
14: end if
15: end for

Algorithm 3 Pseudo code diagram for the implementation of the photon and electron decay and
evolution of temporal variables’ rules.

1: for j = 0 to Ly − 1 do

2: for i = 0 to Lx − 1 do {CA lattice loop}

3: if cij > 0 then {Apply photon decay rule}

4: for k = 1 to M do

5: {Substract 1 to every photon’s lifetime}
6: if c̃k

ij > 0 then

7: c̃k
ij ←− c̃k

ij − 1
8: if c̃k

ij = 0 then {One photon decays}

9: cij ←− cij − 1
10: c′ij = cij
11: end if
12: end if
13: end for
14: end if
15: if aij = 1 then {Apply electron decay rule}

16: {Substract 1 to time of life of every excited electron}
17: ãij ←− ãij − 1
18: if ãij = 0 then

19: {One electron decays}
20: aij ←− 0
21: end if
22: end if
23: end for
24: end for

Electronics 2020, 9, 189 7 of 17

Algorithm 4 Pseudo code diagram for the implementation of the pumping and stimulated
emission rules.

1: for j = 0 to Ly − 1 do

2: for i = 0 to Lx − 1 do {CA lattice loop}

3: if aij = 0 then {Apply pumping rule}

4: {Generate random number in (0, 1) interval}
5: ξ ←− random_number(0, 1)
6: if ξ < λ then {λ: pumping probability}

7: {One electron is pumped}
8: aij ←− 1
9: ãij ←− τa

10: end if
11: else { (aij = 1)–>Apply stimulated emission rule}

12: if neighbours(i, j) > δ then

13: {Look for first value of k for which c̃k
ij = 0}

14: k←− 1
15: while c̃k

ij 6= 0 and k ≤ M do

16: k←− k + 1
17: end while
18: if k <= M then

19: aij ←− 0
20: ãij ←− 0
21: c′ij ←− c′ij + 1
22: c̃k

ij ←− τc
23: end if
24: end if
25: end if
26: end for
27: end for

3.3. Parallel Frameworks for Efficient CA Laser Dynamics Simulation

Algorithms described in previous Section 3.2 arise from a conversion of the physical processes
and differential equation systems that represent the CA laser model. The efficient execution of
these algorithms in parallel platforms to generate fast simulations of a bunch of different input
parameters requires many specific considerations for each hardware platforms. To begin with, modern,
out-of-order execution superscalar processors achieve an almost optimal time execution of operations
when operands reside in CPU registers. That is, they reach the so-called data– f low–limit of the
algorithm, those being the most patent bottlenecks of the real dependences among operations and
the difficult branch predictions. In fact, taking some simple assumptions around these bottlenecks,
some authors have proposed simple processor performance models that predict computing times with
enough accuracy [32]. Above this, when many operations cannot be executed over CPU registers,
memory model is the other crucial factor.

In relation with our CA model, a simple inspection of the code and of the data evolution brings
to light that memory usage is massive and that an elevated branch misprediction ratio is expected.
The first assertion is obvious: matrices that contain cij, c̃k

ij, aij, and ãij suppose many megabytes for
those lattice widths that emulate a correct behavior of the laser dynamics. The second assertion comes
mainly from two code features: the use of random values in many decisions representing the particle
evolution, and the difficult-to-predict values that particle states take along the life of the simulation.

Electronics 2020, 9, 189 8 of 17

While this paper concentrates in a laser dynamics model, it is obvious that these features may be
present in many CA simulations, mostly when cooperative phenomena are expected. What is more
relevant is the existence of many branches (some of them in the form of nested conditional structures)
in the "hot spot" zones implies that GPU implementations would suffer from an important deceleration.
This is due to the inherent so-called thread divergence [33] that GPU compilers introduce in these
cases, which is one of the main reasons why performance on these platforms diminishes.

Taking into account previous considerations, an accurate timing characterization of main
sequential algorithm pieces was done. This analysis concludes that:

- More than 80% of the mean execution time is spent in stimulated emission and pumping rules.
What is more, their execution times have a considerable variance: minimum times are around
five times lower than maximum times. This asserts the effect of random values and the difficult
to predict evolution of different cell particles.

- Random number computation supposes around the 70% of the pumping rule time.
- The rest of time resides mainly in photon and electron decay. The oscillatory behavior of particle

evolution during the stationary phase implies also a considerable variance in these times. This is
even more exaggerated during transient evolution.

- Noise photon rule timing is negligible, because this rule has a much smaller number of iterations
than the other rules.

Previous facts make necessary the introduction of at least the next changes in both OpenMP and
GPU code implementations (see https://github.com/dcagigas/Laser-Cellular-Automata):

- Of course, avoiding non re-entrant functions, such as simple random numbers generators.
Even more, although generating a seed for each thread should be enough to make random
generation independent among threads, the deep inner real data dependencies that random
functions contain last in the mean longer than the rest of an iteration step. An implementation
similar to that of the cuRAND library is preferable; that is, a seed for each cell ij, which preserves
a good random distribution while it accelerates each step around 40%.

- As only one electron per cell is allowed, suppressing the aij matrix. Thus, it is considered that if
ãij is zero, the electron is not excited; and it is excited elsewhere.

- Eliminating the refresh of c matrix (which supposes copying long matrices) with values of c̃ (line
9 of Algorithm 1), by using pointers to these two matrices and swapping these pointers at the end
of each iteration step.

In order to generate the random numbers, we have used the permuted congruential generator
(PCG) [34], a pseudorandom number generator based on a combination of permutation functions on
tuples and a base linear congruential generator. This generator was selected because it has several
desirable properties: it has proven to be statistically good, very fast, and its internal state does not
need a very large memory space. It is also suitable to be implemented in parallel both for multicore
and for GPU architectures.

The source code of the different implementations and the results achieved are available at https:
//github.com/dcagigas/Laser-Cellular-Automata. The source code is under GPL v3 license. Researchers
can download and modify the code freely to run their own particular laser dynamic simulations.

3.3.1. OpenMP Framework

Previous improvements are quite easy to detect and to implement. However, there are further
enhancements that speedup a CA simulation even more when running an OpenMP implementation
over multicore platforms. As a result, apart from the OPENMP_NOT_OPTIMIZED version,
an optimized one (called simply OPENMP) can be downloaded from the previous github page. For the
sake of clarity, these further enhancements are grouped and listed in the following points. Moreover,
they have been marked in the github source code with the symbol @.

https://github.com/dcagigas/Laser-Cellular-Automata
https://github.com/dcagigas/Laser-Cellular-Automata
https://github.com/dcagigas/Laser-Cellular-Automata

Electronics 2020, 9, 189 9 of 17

- After a deeper examination of laser dynamics evolution, it was detected that very few cells
contained more than one photon during the stationary evolution. Thus, the habitual matrix
arrangement of variable c̃k

ij; that is, when consecutively storing the M values for each cell, ij is
switched by the following one. All the cells ij are stored consecutively for each of the M possible
photons. In terms of the C++ code, this three-dimensional matrix is represented by: c̃[M][Lx][Ly]

(see li f et_ f matrix in the code). The new arrangement implies that all elements of c̃[0][][] are
continuously used and then cached, but the rest of elements c̃[1 : M− 1][Lx][Ly] are scarcely used,
so they do not consume precious cache lines. On the contrary, if the habitual matrix arrangement
had been used, it would have wasted many cache bytes (almost only 1 of each M element would
have been really used during the stationary period). The rest of code pieces where this matrix is
manipulated are not decelerated by the new arrangement; e.g., very few cells generate a shifting
from c̃[k][Lx][Ly] to c̃[k− 1][Lx][Ly], (k > 0), when a photon decays.

- While previous improvement avoids cache line wasting, memory consumption is another
fundamental issue. The analysis of real values of the large matrices leads to the conclusion
that maximum values are small for most physical variables. Thus, instead of 32 bits per element
(unsignedint variables in C++), real sizes in the optimized version have been reduced to unsigned
short int and unsigned char whenever possible. More exactly, this supposed reducing memory
size from: 32× Lx × Ly× (M + 3) to 16× Lx × Ly× (M + 1) + 8× 2 (see e, f 1, f 2, li f et_ f matrices
in the optimized code).

- In order to promote loop vectorization, some conditional branches have been transformed into
simple functions. For example, those conditional sentences that increment a counter q when a
certain condition p is true have been written like q+ = p. This eases the task of the compiler
when introducing SIMD instructions and predicative-like code and prevents many BTB (branch
target buffer) misprediction penalties, because these conditions are difficult to predict (due to the
stochastic nature of particle state evolution).

- Loop splitting is another classical technique that reduces execution time when memory
consumption is huge, and the loop manages much disjointed data. This occurs in the case
of photon and electron decay rules, which have been separated into two different loops in
the optimized version. This way, caches are not struggled with by several matrixes, thereby
preventing many conflict misses on them.

To sum up, previous optimizations achieve around a×2 speedup (see Section 4) with respect to the
basic one. It is worth remarking that both OpenMP versions give exactly the same particle evolution results.

Although the computation of random numbers has been considerably accelerated by using a seed
for each cell (i, j), it continues to be the most time-consuming piece. A final improvement leads to
an additional speedup of the OpenMP simulation time of approximately 3x: instead of computing
random numbers during the simulation, generating a list of them previously and using this same list
for all the desired simulations (if different parameters want to be tested, such as pumping probability,
and maximum electron and photon lifetimes).

Using a random numbers list as an input for the model eases the checking of results for different
platforms, because the output of the simulation must be exactly the same. More precisely, for the pumping
rule it is required that a random number is stored in the list for each time step and for each cell. This has
not been considered for the noise photons rule because its number of iterations is much smaller.

However, this list should be enormous for the pumping rule, even if only a random true/false
bit were stored for each time step and for each cell. For example, considering a simulation of 1000 steps,
a lattice of 4096 × 4096 would occupy 2 GB. Because of this, this improvement has not been considered in
the results section. Nonetheless, the interested reader can test this optimization (note that big lattice sizes
would overflow platform memory) simply by defining the constant RANDOM_VECT_ENABLE in the
github OpenMP codes. Defining this constant would generate the random numbers in advance while
suppressing its computation during the simulation time.

Electronics 2020, 9, 189 10 of 17

3.3.2. CUDA Framework

The CUDA framework has three main kernels (i.e., CUDA functions written in C style code),
the same as those of the OpenMP implementation. They are called for each time step sequentially.
First the PhotonNoiseKernel produces new photons randomly; then, the DecayKernel performs the
electron and photon decay, and lastly the PumpingKernel does the pumping and stimulated emission.
This order can be altered but it must be the same as the one used in OpenMP. Otherwise, results could
not be exactly the same.

There is one last kernel needed: do_shannon_entropy_time_step. Most of the variables needed to
calculate the Shannon Entropy are stored in GPU global memory. Data transfers between computer host
memory and GPU memory must be minimized because of its big latency. Although the calculations
are not parallel, it is more convenient to perform time step Shannon Entropy calculations in GPU
memory. There is also a final kernel called finish_shannon_entropy_time_step after the time-step loop.
However, this last kernel has a low impact in performance, because it is executed only once.

Simulation parameters are defined in a header file; for example, the SIDE constant that determines
the grid side width of a simulation. In the case of CUDA, and GPUs in general, memory size constraints
are particularly important when comparing with computer workstations. The GPU global memory
available is usually lower than that of a workstation. Thus, data structure types for electrons and
photons are important for large grids. Matrix data structures grow by a factor of four for each twofold
SIDE increment, and 40 in case of the matrix that records photon energy values in each cell (GPU_tvf).

For example, with a grid SIDE of 8192 (213) and 4 GB of GPU global memory, it is only possible to
run the simulation if cells of GPU_tvf matrix variable are set to char type in C. As mentioned before,
this variable is in charge of recording photon life time values in each grid cell. The char type is 8 bit
size, so only photon life time values between 0 and 255 are allowed. The same happens with electron
life time values. By default, this constant value is set to short int (i.e., 16 bits) to allow higher values.

The CUDA programming environment and the latest NVIDIA architectures (Pascal, Turing
and Volta) also have some restrictions related to integer atomic arithmetic operations. CUDA
atomic arithmetic operations only allow the use of int data type but not short int or char. In the
PhotonNoiseKernel it is necessary to update new photons in the matrix data structures. Those updates
are performed in a parallel way. To avoid race conditions, atomic arithmetic operations are needed
when each GPU hardware thread updates a matrix photon cell (two hardware GPU threads could try
to update the same cell at the same time). Therefore, it was necessary to use the int data type instead of
short int or char, thereby increasing the GPU memory size needed by these data structures.

The CUDA framework has also one extra feature that can be enabled in the source files: the
electron evolution output video. An .avi video file showing the electron evolution through the time
steps can be produced. This feature involves the transfer of a video frame for each time step from
GPU memory to host or computer memory. When activated and for a moderate grid side (1024 or
above), the total execution time could be significantly high because of the latency between GPU and
host memory transfers. This feature could also be adapted or modified to show photon evolution
(nonetheless, electron and photon behaviors are very similar).

4. Results

We present here, the performance evaluation results for the two architectures: multicore and GPU.
For each architecture we evaluated the performance on two different hardware platforms that are
representative of different target market segments: a high-end chip intended for scientific computing
or for servers, and a consumer-oriented one.

We checked that the simulation results of both parallel implementations reproduce the output of
the original sequential one. As an example, we show in Figure 1, the time evolution of the total number
of laser photons and the population inversion in the laser system for parameter values corresponding
to a laser spiking regime. The results are the same as those found in previous publications with a
sequential implementation, such as [21]. It is shown that the bigger the CA lattice size is, the smoother

Electronics 2020, 9, 189 11 of 17

the results are, since the model reproduces better the macroscopic behavior of the system with a higher
statistics.

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

1,000 0 100 200 300 400 500 600 700 800 900

P
o

p
u

la
ti
o

n

Time Steps

Lattice size = 400 x 400. OpenMP optimized version. Intel Xeon 48 cores.

Population Inversion
Laser Photons

 0

 2x10
6

 4x10
6

 6x10
6

 8x10
6

 1x10
7

 1.2x10
7

1,000 0 100 200 300 400 500 600 700 800 900

P
o

p
u

la
ti
o

n

Time Steps

Lattice size = 4,096 x 4,096. CUDA version. NVIDIA Tesla V100 GPU.

Population Inversion
Laser Photons

Figure 1. Output of the model for particular values of the system parameters corresponding to a laser
spiking behavior. Parameter values: λ = 0.0125, τc = 10, and τa = 180. The results are smoother for
larger lattice sizes. (Left): Parallel OpenMP optimized implementation with a lattice size of 400× 400 cells.
(Right): Parallel CUDA implementation with a lattice size of 4096× 4096 cells.

4.1. Multicore Architecture

The multicore architecture was executed and tested on the two following platforms.

4.1.1. High-End Multicore CPUs (48 Cores)

We evaluated the performance on a high-performance server CPU running in the Cloud, using the
Amazon Web Server (AWS) Infrastructure as a Service (IaaS) EC2 service. We ran our performance test
on a m5.24xlarge instance. It ran on a dual socket server with 2 Intel Xeon Platinum 8259CL processors
with 24 physical cores each (completing 48 physical cores and up to 96 threads between them), running
at a frequency of 2.50 GHz, with 35, 75 MiB of cache memory. The total RAM memory was 373 GiB.
Both processor sockets were linked by Ultra Path Interconnect (UPI), a high speed point-to-point
interconnect link delivering a transfer speed of up to 10.4 GT/s.

4.1.2. Consumer-Oriented Multicore CPU (Eight Cores)

The performance was evaluated on a PC with a Core i9 9900 k processor and a total RAM memory
of 16 GiB. The processor frequency was 3.6 GHz and the RAM memory was on a single channel
running at 2400 MHz. This processor has eight physical cores, each core supporting two hardware
threads (completing a total of 16 Threads).

4.2. GPU Architecture

The following two GPU chips were used to run and test the GPU architecture.

4.2.1. High-End GPU Chip

We evaluated the performance on a p3.2xlarge instance of the Amazon Web Server(AWS) IaaS
EC2 Cloud Computing service. It used a NVIDIA Tesla V100 GPU (Volta architecture) with 5120 CUDA
cores and a GPU memory of 16 GiB. The server used an Intel Xeon E5-2686v4 CPU with four physical cores
running at 2.3 GHz. CPU and GPU were interconnected via PCI-Express Generation 3, with a bandwidth of
32 GiB/s.

Electronics 2020, 9, 189 12 of 17

4.2.2. Consumer-Oriented GPU Chip

We used a consumer-oriented NVIDIA GeForce GTX 1050 Ti graphic card (Pascal architecture).
This card has 768 CUDA cores running at 1290 MHz. The total memory is 4 GiB of GDDR5 type, with a
maximum bandwidth of 1120 GiB/s.

4.3. Performance and Scalability Results

Figure 2 shows the speedup of the parallel OpenMP implementation running on the Core i9
9900 k PC (eight cores). In this case, speedups are fairly foreseeable. Firstly, for small lattice sizes,
most of matrices reside in CPU caches, thereby achieving an excellent speedup versus the sequential
(one thread) test until eight threads. Launching nine threads implies that a physical CPU must manage
two threads (whereas the rest of CPUs, only one), thereby causing the speedup to decrease. However,
this problem diminishes for more threads. Finally, Core i9 simultaneous multi-threading begins to play
a role from nine threads up; hence, speedups above eight were reached for some tests when launching
many threads.

In addition, speedups were stuck according to the maximum RAM bandwidth for big lattices, as
predicted by the roof-line model [35]. In these cases, RAM memory bandwidth was the bottleneck that
in fact determined program runtimes.

In the case of the the high-end server with two Intel Xeon Platinum 8259CL CPUs (see Figure 3),
our parallel implementation shows an excellent speedup for large lattice sizes. The OpenMP optimized
version reaches a speedup around ×30 for 48 threads. The behaviors were similar to those obtained
in the consumer-oriented hardware: a peak on the speedups was reached when launching the same
number of threads as physical CPUs; then, accelerations began to decrease with more threads; and
finally, speedups were recovered when the number of threads doubled the number of physical cores.

Nevertheless, for high number of threads, or more precisely, for small numbers of lattice rows
per thread, the computation-to-communication scale began to deteriorate speedups. Note that small
lattices (Figure 3 for lattice width = 512) exhibit this problem, whereas big lattice speedups are almost
not deteriorated. This is a well-known effect when scientific applications are massively distributed [36].
Because the CA model studied here involves communication between neighboring cells (using the
Moore neighborhood), the more threads in which we divide the lattice, the more communication
between threads requires, thereby degrading the parallel performance.

In Figures 4–7 we show a runtime comparison between both CPU/GPU pairs, for different sizes
and number of multicore threads. It is interesting to note that for CPU/GPU comparisons shown
in these figures, CUDA implementation is, at most, 2.5 times faster than the OpenMP Optimized
version. In truth, GPU platforms beat clearly CPU ones only for large lattice sizes: as shown in Figure 7,
that happens only for a number of threads much smaller than the number of available physical cores
of the CPU and for large system sizes. However, when using the 48 available cores of the CPU, the
CUDA implementation is again, only around 2.5 times faster than the CPU. Moreover, CPU and GPU
runtimes are even similar for small system sizes.

Electronics 2020, 9, 189 13 of 17

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

Number of Threads

OpenMP Basic 8 cores

Linear Speedup
4096
2048
1024
512

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

Number of Threads

OpenMP Optimized 8 cores

Linear Speedup
4096
2048
1024
512

Figure 2. Speedup of the parallel OpenMP implementation running on a consumer-oriented CPU with
eight cores. (Left): Basic implementation without in-depth optimization. (Right): Fully optimized
implementation.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

S
p
e
e
d
u
p

Number of Threads

OpenMP Basic 48 cores

Linear Speedup
4096
2048
1024
512

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

S
p
e
e
d
u
p

Number of Threads

OpenMP Optimized 48 cores

Linear Speedup
4096
2048
1024
512

Figure 3. Speedup of the parallel OpenMP implementation running on a high-end dual-socket server
with a total of 48 cores. (Left): Basic implementation without in-depth optimization. (Right): Fully
optimized implementation.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 512 1024 2048 4096

R
u

n
ti
m

e
 (

s
)

Lattice width (cells)

NVIDIA GTX 1050Ti vs. Intel Core i9 8 cores

OpenMP Basic
OpenMP Optimized

CUDA

Figure 4. Runtime comparison between NVIDIA GTX 1050 Ti GPU and Intel Core i9 (eight cores) for
different CA lattice sizes.

Electronics 2020, 9, 189 14 of 17

 0

 1

 2

 3

 4

 5

 6

 7

 2 4 6 8 10 12 14 16

A
c
c
e

le
ra

ti
o

n
 T

O
p

e
n

M
P
/T

C
U

D
A

Number of Threads

OpenMP 8 cores (16 threads) vs NVIDIA GTX 1050 ti

4096
2048
1024

512

Figure 5. Comparison of OpenMP Optimized and CUDA times when using Intel Core i9 and NVIDIA
GeForce GTX 1050 Ti resp.

 0

 2

 4

 6

 8

 10

 12

 500 1000 1500 2000 2500 3000 3500 4000

R
u

n
ti
m

e
 (

s
)

Lattice width (cells)

NVIDIA Tesla V100 GPU vs. Intel Xeon Platinum 48 cores

OpenMP Basic
OpenMP Optimized

CUDA

Figure 6. Runtime comparison between NVIDIA Tesla V100 GPU and Intel Xeon Platinum (dual socket
with 48 cores in total) for different CA lattice sizes.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10 20 30 40 50 60 70 80 90 100

A
c
c
e

le
ra

ti
o

n
 T

O
p

e
n

M
P
/T

C
U

D
A

Number of Threads

OpenMP 48 cores (96 threads) vs NVIDIA v100

4096
2048
1024

512

Figure 7. Comparison of OpenMP Optimized and CUDA times: Detail from 10 threads up when using
Intel Xeon Platinum and NVIDIA Tesla V100 GPU, respectively

An additional consideration plays in favor of classical CPU platforms. If a previously computed
random list were used as an input for the model, (thus preventing the time spent in computing random

Electronics 2020, 9, 189 15 of 17

numbers during simulation; see Section 3.3.1), OpenMP Optimized simulation times would be even
lower than those of CUDA versions. We recall here that, although this alternative is practical only for
medium lattice widths, it speeds up OpenMP version around three times. This optimization does not
favor GPU platforms so much.

5. Conclusions and Future Lines

In some previous studies cited in the introduction and Section 2, it was pointed out that the
speedups achieved with GPU when comparing to single-core CPUs where above ×10 and sometimes
above ×100. Even with these ratios, it is evident that a current multicore CPU may approach GPU
performance. Moreover, this affirmation must be revised and carefully analyzed for Cellular Automata
(CA) applications. In this paper, it was experimentally proven, using almost the same code for a
laser dynamics CA (except for the necessary adaptation to each platform), that these distances were
significantly shortened. We conclude that nested conditional structures (in general, many branches in
the "hot spot" zones) imply that GPU implementations would suffer from an important deceleration.
As a result, in spite of CA being massivelly parallel data structures, less than a ×3 speedup can
be achieved for GPUs against high performance CPUs. The other factor that limits CPU and GPU
performance for big lattice CAs is obviously the maximum RAM bandwidth, as predicted by the
roofline model. If other variables were taken into account, such as price, TDP, source code maintenance,
or easy and rapid software development, it is not clear that GPUs are always the best choice for an
efficient parallelization of CA algorithms.

Future lines, provided the important conclusions obtained in this paper for the specific case of laser
dynamics, include the extension of this analysis to generic cellular automata. This will be necessary in
order to extract a simple but realistic model that allows one to predict the performance on CPU and
GPU platforms mainly as a function of the form of its state transition rules, its neighboring relations,
the amount of memory, etc. It will be also interesting to investigate the efficient implementation and
speedup obtained by implementing this model on multi-GPUs.

Another interesting line to be investigated concerns speeding up the simulation by substituting
the pseudorandom number generator by a different type of algorithm that can be faster. A good
alternative can be an algorithm that generates pseudorandom numbers based on the calculation of
chaotic sequences, such as those presented in [37,38]. Those results suggest that they could reduce the
execution overhead, and thus contribute to a further speedup of the implementation of the studied
laser CA model.

Author Contributions: conceptualization, D.C.-M., F.D.-d.R., and J.L.G.; methodology, D.C.-M., F.D.-d.R., M.R.L.-T.,
and J.L.G.; software, D.C.-M., F.D.-d.R., M.R.L.-T., and J.L.G.; validation, D.C.-M., F.D.-d.R., and J.L.G.; investigation,
D.C.-M., F.D.-d.R., F.J,. and J.L.G.; resources, D.C.-M., F.D.-d.R., and J.L.G.; writing—original draft preparation,
D.C.-M., F.D.-d.R., F.J.-M., and J.L.G.; writing—review and editing, D.C.-M., F.D.-d.R., and J.L.G.; visualization,
D.C.-M. and M.R.L.-T.; supervision, J.L.G.; funding acquisition, D.C.-M., F.J.-M., and J.L.G. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the following research project of Ministerio de Economía, Industria
y Competitividad, Gobierno de España (MINECO), and the Agencia Estatal de Investigación (AEI) of Spain,
cofinanced by FEDER funds (EU): MABICAP (Bio-inspired machines on High Performance Computing platforms:
a multidisciplinary approach, TIN2017-89842P). The work was also partially supported by the computing facilities
of Extremadura Research Centre for Advanced Technologies (CETA-CIEMAT), funded by the European Regional
Development Fund (ERDF). CETA-CIEMAT belongs to CIEMAT and the Government of Spain.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Talia, D.; Naumov, N. Parallel cellular programming for emergent computation. In Simulating Complex
Systems by Cellular Automata; Springer: Berlin/Heidelberg, Germany, 2010; pp. 357–384.

Electronics 2020, 9, 189 16 of 17

2. Bandini, S.; Mauri, G.; Serra, R. Cellular automata: From a theoretical parallel computational model to its
application to complex systems. Parallel Comput. 2001, 27, 539–553, doi:10.1016/S0167-8191(00)00076-4.
[CrossRef]

3. Wolfram, S. Cellular Automata and Complexity; Addison-Wesley: Reading, MA, USA, 1994.
4. Ilachinski, A. Cellular Automata: A Discrete Universe; World Scientific: Singapore, 2001; p. 808.
5. Sayama, H. Introduction to the Modeling and Analysis of Complex Systems; Open SUNY Textbooks. 14: Geneseo,

NY, USA, 2015.
6. Chopard, B.; Droz, M. Cellular Automata Modeling of Physical Systems; Cambridge University Press: Cambridge,

MA, USA, 1998.
7. Sloot, P.; Hoekstra, A. Modeling Dynamic Systems with Cellular Automata. In Handbook of Dynamic System

Modeling; Fishwick, P., Ed.; Chapman & Hall/CRC: London, UK, 2007.
8. Hoekstra, A.G.; Kroc, J.; Sloot, P.M. (Eds.) Simulating Complex Systems by Cellular Automata; Springer:

Berlin/Heidelberg, Germany, 2010.
9. Gounaridis, D.; Chorianopoulos, I.; Koukoulas, S. Exploring prospective urban growth trends under different

economic outlooks and land-use planning scenarios: The case of Athens. Appl. Geogr. 2018, 90, 134–144,
doi:10.1016/J.APGEOG.2017.12.001. [CrossRef]

10. Aburas, M.M.; Ho, Y.M.; Ramli, M.F.; Ash’aari, Z.H. The simulation and prediction of spatio-temporal urban
growth trends using cellular automata models: A review. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 380–389,
doi:10.1016/J.JAG.2016.07.007. [CrossRef]

11. Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model
(FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan.
2017, 168, 94–116, doi:10.1016/J.LANDURBPLAN.2017.09.019. [CrossRef]

12. Qiang, S.; Jia, B.; Huang, Q.; Jiang, R. Simulation of free boarding process using a cellular automaton model
for passenger dynamics. Nonlinear Dyn. 2018, doi:10.1007/s11071-017-3867-5. [CrossRef]

13. Tang, T.Q.; Luo, X.F.; Zhang, J.; Chen, L. Modeling electric bicycle’s lane-changing and retrograde behaviors.
Phys. A Stat. Mech. Its Appl. 2018, 490, 1377–1386, doi:10.1016/J.PHYSA.2017.08.107. [CrossRef]

14. Monteagudo, A.; Santos, J. Treatment Analysis in a Cancer Stem Cell Context Using a Tumor Growth Model
Based on Cellular Automata. PLoS ONE 2015, 10, e0132306, doi:10.1371/journal.pone.0132306. [CrossRef]

15. Burkhead, E.; Hawkins, J. A cellular automata model of Ebola virus dynamics. Phys. A Stat. Mech. Appl.
2015, 438, 424–435, doi:10.1016/J.PHYSA.2015.06.049. [CrossRef]

16. Guisado, J.; Jiménez-Morales, F.; Guerra, J. Cellular automaton model for the simulation of laser dynamics.
Phys. Rev. E 2003, 67, 66708. [CrossRef]

17. Guisado, J.; Jiménez-Morales, F.; Guerra, J. Computational simulation of laser dynamics as a cooperative
phenomenon. Phys. Scr. 2005, T118, 148–152. [CrossRef]

18. Guisado, J.; Jiménez-Morales, F.; Guerra, J. Simulation of the dynamics of pulsed pumped lasers based on
cellular automata. Lect. Notes Comput. Sci. 2004, 3305, 278–285.

19. Kroc, J.; Jimenez-Morales, F.; Guisado, J.L.; Lemos, M.C.; Tkac, J. Building Efficient Computational Cellular
Automata Models of Complex Systems: Background, Applications, Results, Software, and Pathologies.
Adv. Complex Syst. 2019, 22, 1950013. [CrossRef]

20. Guisado, J.; Fernández-de Vega, F.; Jiménez-Morales, F.; Iskra, K. Parallel implementation of a cellular automaton
model for the simulation of laser dynamics. Lect. Notes Comput. Sci. 2006, 3993, 281–288, doi:10.1007/11758532_39.
[CrossRef]

21. Guisado, J.; Jiménez-Morales, F.; Fernández-de Vega, F. Cellular automata and cluster computing:
An application to the simulation of laser dynamics. Adv. Complex Syst. 2007, 10, 167–190. [CrossRef]

22. Guisado, J.; Fernandez-de Vega, F.; Iskra, K. Performance analysis of a parallel discrete model for the
simulation of laser dynamics. In Proceedings of the International Conference on Parallel Processing
Workshops, Columbus, OH, USA, 14–18 August 2006; pp. 93–99.

23. Guisado, J.; Fernández de Vega, F.; Jiménez-Morales, F.; Iskra, K.; Sloot, P. Using cellular automata for
parallel simulation of laser dynamics with dynamic load balancing. Int. J. High Perform. Syst. Archit. 2008,
1, 251–259. [CrossRef]

24. GPGPU. General-Purpose Computation on Graphics Hardware. Available online: https://web.archive.org/web/
20181109070804/http://gpgpu.org/ (accessed on 9 November 2018).

https://doi.org/10.1016/S0167-8191(00)00076-4
http://dx.doi.org/10.1016/S0167-8191(00)00076-4
https://doi.org/10.1016/J.APGEOG.2017.12.001
http://dx.doi.org/10.1016/j.apgeog.2017.12.001
https://doi.org/10.1016/J.JAG.2016.07.007
http://dx.doi.org/10.1016/j.jag.2016.07.007
https://doi.org/10.1016/J.LANDURBPLAN.2017.09.019
http://dx.doi.org/10.1016/j.landurbplan.2017.09.019
https://doi.org/10.1007/s11071-017-3867-5
http://dx.doi.org/10.1007/s11071-017-3867-5
https://doi.org/10.1016/J.PHYSA.2017.08.107
http://dx.doi.org/10.1016/j.physa.2017.08.107
https://doi.org/10.1371/journal.pone.0132306
http://dx.doi.org/10.1371/journal.pone.0132306
https://doi.org/10.1016/J.PHYSA.2015.06.049
http://dx.doi.org/10.1016/j.physa.2015.06.049
http://dx.doi.org/10.1103/PhysRevE.67.066708
http://dx.doi.org/10.1238/Physica.Topical.118a00148
http://dx.doi.org/10.1142/S0219525919500139
https://doi.org/10.1007/11758532_39
http://dx.doi.org/10.1007/11758532_39
http://dx.doi.org/10.1142/S0219525907001100
http://dx.doi.org/10.1504/IJHPSA.2008.024209
https://web.archive.org/web/20181109070804/http://gpgpu.org/
https://web.archive.org/web/20181109070804/http://gpgpu.org/

Electronics 2020, 9, 189 17 of 17

25. Lopez-Torres, M.; Guisado, J.; Jimenez-Morales, F.; Diaz-del Rio, F. GPU-based cellular automata simulations
of laser dynamics. In Proceedings of the XXIII Jornadas de Paralelismo, Elche, Spain, 19–21 September 2012;
pp. 261–266.

26. Gobron, S.; Devillard, F.; Heit, B. Retina simulation using cellular automata and GPU programming.
Mach. Vis. Appl. J. 2007, 18, 331–342. [CrossRef]

27. Rybacki, S.; Himmelspach, J.; Uhrmacher, A. Experiments With Single Core, Multi Core, and GPU-based
Computation of Cellular Automata. In Proceedings of the 2009 First International Conference on Advances
in System Simulation, Porto, Portugal, 20–25 September 2009.

28. Bajzát, T.; Hajnal, E. Cell Automaton Modelling Algorithms: Implementation and Testing in GPU Systems.
In Proceedings of the 2011 15th IEEE International Conference on Intelligent Engineering Systems, Poprad,
Slovakia, 23–25 June 2011.

29. Balasalle, J.; Lopez, M.; Rutherford, M. Optimizing Memory Access Patterns for Cellular Automata on GPUs.
In GPU Computing Gems Jade Edition; Elsevier: Burlington, MA, USA, 2011; pp. 67–75.

30. Geist, R.; Westall, J. Lattice-Boltzmann Lighting Models. In GPU Computing Gems, Emerald Edition; Elsevier:
Burlington, MA, USA, 2011; pp. 381–399.

31. Gibson, M.J.; Keedwell, E.C.; Savić, D.A. An investigation of the efficient implementation of cellular automata
on multi-core CPU and GPU hardware. J. Parallel Distrib. Comput. 2015, 77, 11–25, doi:10.1016/j.jpdc.2014.10.011.
[CrossRef]

32. Jongerius, R.; Anghel, A.; Dittmann, G. Analytic Multi-Core Processor Model for Fast Design-Space
Exploration. IEEE Trans. Comput. 2018, 67, 755–770. [CrossRef]

33. NVIDIA. CUDA C Best Practices Guide Version. Available online: http://developer.nvidia.com/ (accessed on
10 December 2019).

34. O’Neill, M.E. PCG: A Family of Simple Fast Space-Efficient Statistically Good Algorithms for Random Number
Generation; Technical Report HMC-CS-2014-0905; Harvey Mudd College: Claremont, CA, USA, 2014.

35. Williams, S.; Waterman, A.; Patterson, D. Roofline: An insightful visual performance model for multicore
architectures. Commun. ACM 2009, 52, 65–76. [CrossRef]

36. Hennessy, J.; Patterson, D. Computer Architecture: A Quantitative Approach, 6th Edition; Elsevier: Burlington,
MA, USA, 2017; Volume 19.

37. Guyeux, C.; Couturier, R.; Héam, P.C.; Bahi, J.M. Efficient and cryptographically secure generation of chaotic
pseudorandom numbers on GPU. J. Supercomput. 2015, 71, 3877–3903. [CrossRef]

38. Wang, L.; Cheng, H. Pseudo-Random Number Generator Based on Logistic Chaotic System. Entropy 2019, 21, 960.
[CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00138-006-0065-8
https://doi.org/10.1016/j.jpdc.2014.10.011
http://dx.doi.org/10.1016/j.jpdc.2014.10.011
http://dx.doi.org/10.1109/TC.2017.2780239
http://developer.nvidia.com/
http://dx.doi.org/10.1145/1498765.1498785
http://dx.doi.org/10.1007/s11227-015-1479-8
http://dx.doi.org/10.3390/e21100960
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Materials and Methods
	Cellular Automaton Model for Laser Dynamics Simulation
	Sequential Implementation of the Model
	Parallel Frameworks for Efficient CA Laser Dynamics Simulation
	OpenMP Framework
	CUDA Framework

	Results
	Multicore Architecture
	High-End Multicore CPUs (48 Cores)
	Consumer-Oriented Multicore CPU (Eight Cores)

	GPU Architecture
	High-End GPU Chip
	Consumer-Oriented GPU Chip

	Performance and Scalability Results

	Conclusions and Future Lines
	References

