1,195 research outputs found

    End-to-End Bayesian Segmentation and Similarity Assessment of Performed Music Tempo and Dynamics without Score Information

    Get PDF
    Segmenting continuous sensory input into coherent segments and subsegments is an important part of perception. Music is no exception. By shaping the acoustic properties of music during performance, musicians can strongly influence the perceived segmentation. Two main techniques musicians employ are the modulation of tempo and dynamics. Such variations carry important information for segmentation and lend themselves well to numerical analysis methods. In this article, based on tempo or loudness modulations alone, we propose a novel end-to-end Bayesian framework using dynamic programming to retrieve a musician's expressed segmentation. The method computes the credence of all possible segmentations of the recorded performance. The output is summarized in two forms: as a beat-by-beat profile revealing the posterior credence of plausible boundaries, and as expanded credence segment maps, a novel representation that converts readily to a segmentation lattice but retains information about the posterior uncertainty on the exact position of segments’ endpoints. To compare any two segmentation profiles, we introduce a method based on unbalanced optimal transport. Experimental results on the MazurkaBL dataset show that despite the drastic dimension reduction from the input data, the segmentation recovery is sufficient for deriving musical insights from comparative examination of recorded performances. This Bayesian segmentation method thus offers an alternative to binary boundary detection and finds multiple hypotheses fitting information from recorded music performances

    Measuring Expressive Music Performances: a Performance Science Model using Symbolic Approximation

    Get PDF
    Music Performance Science (MPS), sometimes termed systematic musicology in Northern Europe, is concerned with designing, testing and applying quantitative measurements to music performances. It has applications in art musics, jazz and other genres. It is least concerned with aesthetic judgements or with ontological considerations of artworks that stand alone from their instantiations in performances. Musicians deliver expressive performances by manipulating multiple, simultaneous variables including, but not limited to: tempo, acceleration and deceleration, dynamics, rates of change of dynamic levels, intonation and articulation. There are significant complexities when handling multivariate music datasets of significant scale. A critical issue in analyzing any types of large datasets is the likelihood of detecting meaningless relationships the more dimensions are included. One possible choice is to create algorithms that address both volume and complexity. Another, and the approach chosen here, is to apply techniques that reduce both the dimensionality and numerosity of the music datasets while assuring the statistical significance of results. This dissertation describes a flexible computational model, based on symbolic approximation of timeseries, that can extract time-related characteristics of music performances to generate performance fingerprints (dissimilarities from an ‘average performance’) to be used for comparative purposes. The model is applied to recordings of Arnold Schoenberg’s Phantasy for Violin with Piano Accompaniment, Opus 47 (1949), having initially been validated on Chopin Mazurkas.1 The results are subsequently used to test hypotheses about evolution in performance styles of the Phantasy since its composition. It is hoped that further research will examine other works and types of music in order to improve this model and make it useful to other music researchers. In addition to its benefits for performance analysis, it is suggested that the model has clear applications at least in music fraud detection, Music Information Retrieval (MIR) and in pedagogical applications for music education

    Computational Models of Expressive Music Performance: A Comprehensive and Critical Review

    Get PDF
    Expressive performance is an indispensable part of music making. When playing a piece, expert performers shape various parameters (tempo, timing, dynamics, intonation, articulation, etc.) in ways that are not prescribed by the notated score, in this way producing an expressive rendition that brings out dramatic, affective, and emotional qualities that may engage and affect the listeners. Given the central importance of this skill for many kinds of music, expressive performance has become an important research topic for disciplines like musicology, music psychology, etc. This paper focuses on a specific thread of research: work on computational music performance models. Computational models are attempts at codifying hypotheses about expressive performance in terms of mathematical formulas or computer programs, so that they can be evaluated in systematic and quantitative ways. Such models can serve at least two purposes: they permit us to systematically study certain hypotheses regarding performance; and they can be used as tools to generate automated or semi-automated performances, in artistic or educational contexts. The present article presents an up-to-date overview of the state of the art in this domain. We explore recent trends in the field, such as a strong focus on data-driven (machine learning) approaches; a growing interest in interactive expressive systems, such as conductor simulators and automatic accompaniment systems; and an increased interest in exploring cognitively plausible features and models. We provide an in-depth discussion of several important design choices in such computer models, and discuss a crucial (and still largely unsolved) problem that is hindering systematic progress: the question of how to evaluate such models in scientifically and musically meaningful ways. From all this, we finally derive some research directions that should be pursued with priority, in order to advance the field and our understanding of expressive music performance

    Computational Modelling and Quantitative Analysis of Dynamics in Performed Music

    Get PDF
    PhDMusical dynamics- loudness and changes in loudness - forms one of the key aspects of expressive music performance. Surprisingly this rather important research area has received little attention. A reason is the fact that while the concept of dynamics is related to signal amplitude, which is a low-level feature, the process of deriving perceived loudness from the signal is far from straightforward. This thesis advances the state of the art in the analysis of perceived loudness by modelling dynamic variations in expressive music performance and by studying the relation between dynamics in piano recordings and markings in the score. In particular, we show that dynamic changes: a) depend on the evolution of the performance and the local context of the piece; b) correspond to important score markings and music structures; and, c) can reflect wide divergences in performers' expressive strategies within and across pieces. In a preparatory stage, dynamic changes are obtained by linking existing music audio and score databases. All studies in this thesis are based on loudness levels extracted from 2000 recordings of 44 Mazurkas by Frederic Chopin. We propose a new method for efficiently aligning and annotating the data in score beat time representation, based on dynamic time warping applied to chroma features. Using the score-aligned recordings, we examine the relationship between loudness values and dynamic level categories. The research can be broadly categorised into two parts. The first investigates how dynamic markings map to performed loudness levels. Empirical results show that different dynamic markings do not correspond to fixed loudness thresholds. Rather, the important factors are the relative loudness of neighbouring markings, the inter-relations of nearby markings and other score information, the structural location of the markings, and the creative license exercised by the performer in inserting further interpretive dynamic shaping. The second part seeks to determine how changes in loudness levels map to score features using statistical change-point techniques. The results show that significant dynamic score markings do indeed correspond to change points. Furthermore, evidence suggests that change points in score positions without dynamic markings highlight structurally salient events or events based on temporal changes. In a separate bidirectional study, we investigate the relationship between dynamic mark- ings in the score and performed loudness using machine learning techniques. The techniques are applied to the prediction of loudness levels corresponding to dynamic markings, and to the classification of dynamic markings given loudness values. The results show that loudness values and markings can be predicted relatively well when trained across recordings of the same piece, but fail dismally when trained across a pianist's recordings of other pieces. The findings demonstrate that score features may trump individual style when modelling loudness choices. The analysis of the results reveal that form|such as the return of the theme - and structure - such as repetitions -influence predictability of loudness and markings. This research is a first step towards automatic audio-to-score transcription of dynamic markings. This insight will serve as a tool for expression synthesis and musicological studies.Queen Mary University of Londo

    On the analysis of musical performance by computer

    Get PDF
    Existing automatic methods of analysing musical performance can generally be described as music-oriented DSP analysis. However, this merely identifies attributes, or artefacts which can be found within the performance. This information, though invaluable, is not an analysis of the performance process. The process of performance first involves an analysis of the score (whether from a printed sheet or from memory), and through this analysis, the performer decides how to perform the piece. Thus, an analysis of the performance process requires an analysis of the performance attributes and artefacts in the context of the musical score. With this type analysis it is possible to ask profound questions such as “why or when does a performer use this technique”. The work presented in this thesis provides the tools which are required to investigate these performance issues. A new computer representation, Performance Markup Language (PML) is presented which combines the domains of the musical score, performance information and analytical structures. This representation provides the framework with which information within these domains can be cross-referenced internally, and the markup of information in external files. Most importantly, the rep resentation defines the relationship between performance events and the corresponding objects within the score, thus facilitating analysis of performance information in the context of the score and analyses of the score. To evaluate the correspondences between performance notes and notes within the score, the performance must be analysed using a score-performance matching algorithm. A new score-performance matching algorithm is presented in this document which is based on Dynamic Programming. In score-performance matching there are situations where dynamic programming alone is not sufficient to accurately identify correspondences. The algorithm presented here makes use of analyses of both the score and the performance to overcome the inherent shortcomings of the DP method and to improve the accuracy and robustness of DP matching in the presence of performance errors and expressive timing. Together with the musical score and performance markup, the correspondences identified by the matching algorithm provide the minimum information required to investigate musical performance, and forms the foundation of a PML representation. The Microtonalism project investigated the issues surrounding the performance of microtonal music on conventional (i.e. non microtonal specific) instruments, namely voice. This included the automatic analysis of vocal performances to extract information regarding pitch accuracy. This was possible using tools developed using the performance representation and the matching algorithm

    Ontology of music performance variation

    Get PDF
    Performance variation in rhythm determines the extent that humans perceive and feel the effect of rhythmic pulsation and music in general. In many cases, these rhythmic variations can be linked to percussive performance. Such percussive performance variations are often absent in current percussive rhythmic models. The purpose of this thesis is to present an interactive computer model, called the PD-103, that simulates the micro-variations in human percussive performance. This thesis makes three main contributions to existing knowledge: firstly, by formalising a new method for modelling percussive performance; secondly, by developing a new compositional software tool called the PD-103 that models human percussive performance, and finally, by creating a portfolio of different musical styles to demonstrate the capabilities of the software. A large database of recorded samples are classified into zones based upon the vibrational characteristics of the instruments, to model timbral variation in human percussive performance. The degree of timbral variation is governed by principles of biomechanics and human percussive performance. A fuzzy logic algorithm is applied to analyse current and first-order sample selection in order to formulate an ontological description of music performance variation. Asynchrony values were extracted from recorded performances of three different performance skill levels to create \timing fingerprints" which characterise unique features to each percussionist. The PD-103 uses real performance timing data to determine asynchrony values for each synthesised note. The spectral content of the sample database forms a three-dimensional loudness/timbre space, intersecting instrumental behaviour with music composition. The reparameterisation of the sample database, following the analysis of loudness, spectral flatness, and spectral centroid, provides an opportunity to explore the timbral variations inherent in percussion instruments, to creatively explore dimensions of timbre. The PD-103 was used to create a music portfolio exploring different rhythmic possibilities with a focus on meso-periodic rhythms common to parts of West Africa, jazz drumming, and electroacoustic music. The portfolio also includes new timbral percussive works based on spectral features and demonstrates the central aim of this thesis, which is the creation of a new compositional software tool that integrates human percussive performance and subsequently extends this model to different genres of music
    • 

    corecore