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Abstract

Musical dynamics—loudness and changes in loudness—forms one of the key aspects of ex-

pressive music performance. Surprisingly this rather important research area has received

little attention. A reason is the fact that while the concept of dynamics is related to signal

amplitude, which is a low-level feature, the process of deriving perceived loudness from the

signal is far from straightforward.

This thesis advances the state of the art in the analysis of perceived loudness by modelling

dynamic variations in expressive music performance and by studying the relation between

dynamics in piano recordings and markings in the score. In particular, we show that dynamic

changes: a) depend on the evolution of the performance and the local context of the piece;

b) correspond to important score markings and music structures; and, c) can reflect wide

divergences in performers’ expressive strategies within and across pieces.

In a preparatory stage, dynamic changes are obtained by linking existing music audio

and score databases. All studies in this thesis are based on loudness levels extracted from

2000 recordings of 44 Mazurkas by Frédéric Chopin. We propose a new method for efficiently

aligning and annotating the data in score beat time representation, based on dynamic time

warping applied to chroma features. Using the score-aligned recordings, we examine the

relationship between loudness values and dynamic level categories.

The research can be broadly categorised into two parts. The first investigates how dynamic

markings map to performed loudness levels. Empirical results show that different dynamic

markings do not correspond to fixed loudness thresholds. Rather, the important factors are the

relative loudness of neighbouring markings, the inter-relations of nearby markings and other

score information, the structural location of the markings, and the creative license exercised

by the performer in inserting further interpretive dynamic shaping.

The second part seeks to determine how changes in loudness levels map to score features

using statistical change-point techniques. The results show that significant dynamic score

markings do indeed correspond to change points. Furthermore, evidence suggests that change

points in score positions without dynamic markings highlight structurally salient events or

events based on temporal changes.

In a separate bidirectional study, we investigate the relationship between dynamic mark-

ings in the score and performed loudness using machine learning techniques. The techniques

are applied to the prediction of loudness levels corresponding to dynamic markings, and to

the classification of dynamic markings given loudness values. The results show that loudness

values and markings can be predicted relatively well when trained across recordings of the

same piece, but fail dismally when trained across a pianist’s recordings of other pieces. The

findings demonstrate that score features may trump individual style when modelling loudness

choices. The analysis of the results reveal that form—such as the return of the theme—and

structure—such as repetitions—influence predictability of loudness and markings.

This research is a first step towards automatic audio-to-score transcription of dynamic

markings. This insight will serve as a tool for expression synthesis and musicological studies.
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Chapter 1

Introduction

1.1 Problem overview

1.1.1 Performers’ expression through music

Musical expression is an important part of music performance analysis. Palmer

and Hutchins [2006] underscore that performers “manipulate the sound proper-

ties, including frequency (pitch), time, amplitude, and timbre (harmonic spec-

trum) above and beyond the pitch and duration categories that are determined

by composers.” These manipulations define the term “musical expression” which

is partially achieved by altering the variables for stress, rhythm, accent, and in-

tensity contour. Another description of what expressiveness means is posed by

Fabian et al. [2014] in their letter to the authors of their book; however they

mention that it “could be a point of departure rather than a prescription”:

“Expressiveness:

1. refers to the effect of auditory parameters of music performance (loudness,

intensity, phrasing, tempo, frequency spectrum, etc.)–covering acoustic, phy-

choacoustic, and/or musical factors

2. refers to the variation of auditory parameters away from a prototypical perfor-

mance, but within stylistic constraints (e.g. too much variation is unacceptable,

and does not fall within the gamut of expressiveness)

3. is used in the intransitive sense of the verb (no emotion or mood or feeling is

necessarily being expressed; rather the music performance sounds “expressive”

to differing degrees).” ([Fabian et al., 2014, pg.xxi])

From the standpoint of the performer, Benetti Jr. [2013] showed that pianists

in particular employ procedures such as melodic shaping, emphasis on char-

13



acter, articulations, structural rules for applying rubato, and large dynamic

contrasts. These results demonstrate that performers generally conceptualise

expressiveness in relation to aesthetic trends. However one should remember

that performers reflect composers’ intentions. [Cook, 2000, p.14] highlights that

classical music scholars distinguish between authors (i.e. composers) and re-

producers (i.e. performers). The latter are often criticised when they obscure

the original music through “over-interpretation or gratuitous virtuosity” ([Cook,

2000, p.14]).

Uncertainty remains with respect to whether “the expressive deviations mea-

sured are due to deliberate expressive strategies, music structure, motor noise,

imprecision of the performer, or even measurement errors.” (Langner and Goebl

[2003]). Indeed, while a significant part of the performer’s aim is to commu-

nicate the composer’s intentions, nevertheless, performers bring their personal,

cultural, and historical viewpoints to the fore when subjectively understanding

expression [Fabian, 2014, p.61].

Of particular interest, in our research we use recordings from many pianists

playing the same Mazurka pieces by Frédéric Chopin. He was both a composer

and a performer, such that his personal performing style was eventually imitated

internationally, although he may not have had the intention to emphasize his

own originality ([Einstein, 1975, p.215]). This is important to be taken into

account when analysing the variations across different interpretations of his

pieces.

1.1.2 Music interpretation through a score

The problem of music interpretation is a complex one. The score is a represen-

tation of the composer’s intentions. The same symbol—be it a note, dynamic

marking, indication of articulation, or phrase grouping—can have a variety of

possible interpretations. The original score is refracted through the performer

[Rink, 2002, p.59], who can choose to render the symbols in unique ways. The

auditive effect of the refracted work is communicated to the listener, who in

turn perceive it as a subjective psychological experience.

The problem is made more complex as “even well-known scores that appear

to have widely-recognized meanings are changing all the time, not simply as

general performance style changes but in their characterization, leading to a

change in their perceived nature” Leech-Wilkinson [2012]. Possible deviations

from the score occur, mostly playing notes in different octave as written or ap-

plying rubato in position that is not indicated. More general, as it is described

in Cook et al. [2009]: “The practice of working from a score-based analysis to

a recording basically declares off limits all those aspects of performance that

14



cannot be directly related to notational categories; it eliminates most of what

there is to study before you even start, including all the rhetorical, persuasive,

or expressive effects that contribute so much to the meaning of music as perfor-

mance yet have little or nothing to do with structure as the music theorist sees

it.”

The focus of this thesis is on concepts related to dynamic levels in musical

expressivity which are represented in the score by markings such as p (piano,

meaning soft) and f (forte, meaning loud). These symbols are interpreted in

performance and communicated through the varying of loudness levels.

Musical dynamics can be conceptualized to exist on two levels: “Primary

dynamic shadings” are the main dynamic levels associated with notated mark-

ing, and “inner shadings” are dynamic variations associated with the foreground

level, which may not be notated ( Khoo [2007]). This is analogous to the analy-

sis of musical meter by Volk [2008], where the notated time signature indicates

the outer meter, while the local grouping of beats defines the inner meter. Inner

and outer meters sometimes conflict; similarly, the absolute loudness of dynamic

markings may be superseded by their local context so that a p dynamic might

objectively be louder than a f at another part of the piece, as shown in our

preliminary study (Kosta et al. [2014]).

One target is to understand the connection between loudness levels in record-

ings and printed dynamic markings in the score. However, two important con-

siderations concern score markings: first, dynamic markings may simply rein-

force the natural predisposition of a music part to be expressed in a particular

way based on its structure; second, precise annotation by the composer can be

present at a non-obvious place (Grachten and Widmer [2012]). Together with

the large amount of information and performance related parameters (Bisesi

and Parncutt [2010]), these challenges make the modelling of music expression

one of today’s most important unsolved problems in the description of music

audio.
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1.2 Motivation

Information abstracted from music signals can serve as an important source of

data for multimedia content analysis. A big challenge in creating these data

resources lies in the creation of meaningful and salient features for performed

music, which describes almost all the music that we hear.

The extraction of performance features, especially those related to expressiv-

ity, remains unelucidated today. In the past decade, several research groups have

developed algorithms for analysing musical expression in order to understand or

predict audio characteristics that determine expressiveness. They mostly derive

information from the analysis of features such as timbre and roughness or from

the analysis of basic concepts such as tempo and audio amplitude.

The origin of our research is to analyse the musical dynamics in isolation and

beyond the concept of amplitude variations. The change in perceived loudness

as music unfolds is indispensable in expressive music performance. Surprisingly,

despite its prominence in musical culture, this research topic has received little

scholarly attention. Main keys to enforce the importance of the topic include the

fact that the complexity in ability to modulate dynamics in an orchestra is an

index of music evolution throughout the ages and it is one of the key roles of the

conductor. The same happened in instrument making which evolved with the

ability to manipulate dynamics. An example of the above is the transfer from

baroque to the romantic period. Also the manipulation of dynamics is a crucial

skill to achieve for expert musicians and it is key for music critics and audiences

alike when deciding whether the player performed as composer intended.

Also we want to better understand the parameters which define the perform-

ers’ responses to dynamic markings. However, the connection between loudness

levels in performance and the printed dynamic markings in the score is still

poorly understood. While the meaning of prosodic inflections given the same

words have been widely studied in speech and linguistics1, very little work ex-

ists that addresses different meanings of the same symbolic representations of

expressive nuances in music.

Another challenge of conducting systematic research on expressive parame-

ters is the lack of audio data and annotations for analysis and for training; all

the above were the motivation for this thesis.

1For example, studies have examined the meanings of nuances in utterances of the words
“whatever” Benus et al. [2007] and “okay” Gravano et al. [2007].
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1.3 Aim

The aim of this work is to develop automatic methods that can more accurately

and meaningfully map musical expression in recorded music to an ontology for

music dynamics, beyond simply extracting a direct dynamic level; such tech-

niques will also be valuable for music transcription. On the synthesis side, the

analysis will be useful for generating expressive renderings of notated scores. It

also serves as a tool for musicological studies.

1.4 Contributions

This thesis advances the state of the art in the analysis of perceived loudness by

modelling dynamic variations in expressive music performance and by studying

the relation between dynamics in piano recordings and markings in the score.

In particular, we show that:

Dynamic changes:

a) depend on the evolution of the performance and the local context of the piece;

b) correspond to important score markings and music structures; and,

c) can reflect wide divergences in performers’ expressive strategies within and

across pieces.

We introduce change-point detection as a means toward extracting conceptual

dynamic levels, generally represented in the score by markings. Change-point

algorithms have been applied to domains such as climatology, bioinformatics,

finance, oceanography, and medical imaging (see Killick and Eckley [2014]). To

our knowledge, audio dynamics represents a novel application area.

Also we introduce a novel problem in machine learning by investigating

machine-learning techniques for the prediction of loudness levels correspond-

ing to dynamic markings, and for the classification of dynamic markings given

loudness values.

The data that has been created for the purpose of the thesis is publicly

available at the following address: https://github.com/katkost/MazurkaBL.

1.5 Associated publications

Portions of the work detailed in this thesis have been presented in national

and international scholarly publications, as follows (journal submissions and

publications highlighted in bold):

17

https://github.com/katkost/MazurkaBL


– Kosta, K., O. F. Bandtlow, E. Chew (2014). Practical Implications of
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formance Studies Network International Conference (PSN3), Jul 17-20,

Cambridge, UK.
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Towards Representing Musical Dynamics. In T. Collins, D. Meredith, A.
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Conference, MCM 2015, London, UK, June 22-25, 2015, Proceedings, pp.

179–184, Lecture Notes in Computer Science 9110, Berlin: Springer.
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ceedings of 8th International Workshop on Machine Learning and Music

(MML2015), Machine Learning for Music Generation, Vancouver.

– Kosta, K., O. F. Bandtlow, E. Chew (2016). Outliers in Performed Loud-

ness Transitions: An Analysis of Chopin Mazurka Recordings. In Pro-

ceedings of the 14th International Conference for Music Perception and

Cognition (ICMPC), pp. 601-604, July 5-9, 2016, San Francisco, Califor-

nia, USA.
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plications of Dynamic Markings in the Score.

– Kosta, K., S. Ewert, O. F. Bandtlow, E. Chew (to be submitted in IS-

MIR2017). MazurkaBL: A dataset of loudness and beat-position informa-

tion for 2000 Chopin Mazurka recordings.
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1.6 Dissertation outline

The thesis includes the following chapters:

Chapter 2 surveys in more detail the main concepts for this thesis and explores

existing relevant studies.

Chapter 3 describes the data that has been created for the thesis.

Chapter 4 presents the first study of the thesis which introduces the approach

from dynamic marking to performed loudness.

Chapter 5 expands the study presented in Chapter 4 by focusing on the data

outliers.

Chapter 6 presents the second study of the thesis which introduces the ap-

proach from performed loudness to score features.

Chapter 7 presents the third study of the thesis which introduces methods for

the prediction of loudness levels corresponding to dynamic markings and

for the classification of dynamic markings given loudness values.

Chapter 8 concludes the thesis and sets future directions.

Appendix A presents a glossary of the music terms used in this thesis.

Appendix B includes plots from the results derived from part of Chapter 6.
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Chapter 2

Background

In this chapter we start by reviewing the two main subjects of the thesis which

are loudness measurement (Section 2.1) and musical notation (Section 2.2). This

will be useful in our understanding of the way we extract information from the

audio signal and in our understanding of how this information can be represented

as a musical concept, respectively. More details on the interpretation of Chopin’s

pieces are presented (Section 2.3). We then review existing work in the area

(Section 2.4).

2.1 The concept of loudness

“A painter paints pictures on canvas.

But musicians paint their pictures on silence.”

—Leopold Stokowski

Loudness is a subjective sensation of the magnitude or strength of sound.

Intensity, on the other hand is an objectively measured physical property, an

amount of power. It is expressed in power units per unit area, as in watts per

square meter. Sound intensity is the major physical determinant of loudness,

but the relationship between intensity and loudness is very intricate. The fact

that the intensity-loudness relationship is confounded by frequency is especially

important for music: Because the ear’s sensitivity varies with frequency, equal

intensities do not elicit equal loudness across all audible frequencies. The unit

for sound intensity is watts per square meter. 1W/m
2

is a rather intense sound

which approaches the upper limit of hearing. The threshold of hearing at 1000

Hz is around 10−12W/m
2
.

Sound intensity is usually expressed in terms of intensity level rather than

pure intensity. Intensity level implies a comparison of a particular intensity to
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some baseline value. The comparisons implied by intensity levels of sound are

ratio comparisons which use the unit known as “decibel”. Decibels are measures

of power ratios and they are best defined in terms of the formula by which they

are computed. For sound intensity,

D = 10[log(I/I0)], (2.1)

where D is the number of decibels, I is the particular intensity which the decibel

value places on a level, and I0 is the baseline value. The baseline that is used

is the intensity at the threshold of hearing.

It is important to recognise two consequences of the definition of decibels as

the logarithm of a ratio. One, a relative small range of decibels encompasses

a relatively large range of acoustic powers. Two, one cannot simply combine

decibels to obtain an intensity level for tonal combinations. The decibel scale

is logarithmic; equal decibel amounts stand for equal ratios.

Sound Pressure Level (SPL) is a more common stimulus measure than inten-

sity level because it is easier to measure and it relates logically to the concept

of pressure variations being responsible for sound. It is expressed in decibels

which are computed differently in relation to a different baseline. The formula

is

D = 20[log(P/P0)], (2.2)

where D is the number of decibels, P is a particular pressure value, and P0 is

a baseline pressure. A common baseline is .00002 newtons per square meter.

Most decibel measures in psychoacoustic literature are indicators of SPL.

Volume is the apparent size or extensity of a sound. Volume’s existence as

an independent tonal attribute is questionable. It has no parallel relationship

with any single physical attribute in the way that loudness is related to intensity

or pitch is related to frequency.

As referred by [Radocy and Boyle, 2003, pg.52–65], experiments by Stevens

[1934] show that an increase in intensity level brought a more rapid volume

increase at higher than at lower frequencies. In later research Stevens and

Terrace [1962] plotted frequency-intensity combinations used for equal volume

judgements and formed a “vol” scale of measurement in which 1 vol equals the

apparent volume of 1000 Hz at 40 decibels of sound pressure level. They found

that regardless of frequency, at around 140 decibels all tones sounded equal in

volume. In general, higher frequencies required greater intensities for equivalent

volume, and the rate of growth in volume (as intensity increased) varied with

frequency.

Studies by Fletcher and Munson [1933] yield equal loudness contours that

are represented by the Munson-Fletcher curves shown in Figure 2.1. Each point
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on any curve represents a particular frequency-intensity information and any

point on an equal loudness curve is as loud as any other point on the same

curve. The curves represent the auditory behaviour, but they enable loudness

comparisons only at the less than, equal to, or greater than level.

Figure 2.1: Sample equal loudness curves. The curves connect frequency-
intensity level combinations which are judged to be equally loud as a 1000Hz
standard of a given intensity level ([Radocy and Boyle, 2003, pg.58]). Figure
derived from website https://blogs.msdn.microsoft.com/audiofool/2007/

02/07/louder-sounds-better/, accessed 20th December 2016.

Each curve has a phon value. Phons is a measurement unit for loudness level

(not loudness), thus are measures of equivalence to the intensity level of some

standard. Phons are arbitrarily set to be equivalent to decibels at 1000 Hz; e.g.,

a 1000 Hz tone of 60 decibels is also 60 phons. Any other frequency judged as

equal in loudness to the 1000 Hz–60 decibels standard is also 60 phons.

2.1.1 Signal properties and its relationship to perceived

loudness

Apart from the integration along a perceptual frequency axis as described above,

perceived loudness is related to a few other essential properties of the auditory

system in either frequency or time domain, as presented by Nielsen and Skoven-

borg [2004]. The properties that are related to the frequency domain include

the phenomenon of masking, that is the affection of the perception of one sound

when a louder sound is present at the same time. Also, the phenomenon of

spreading, closely related to masking, describes a complex interaction between
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different frequencies that are sounded simultaneously: not only the actual fre-

quencies of a signal contribute to the loudness, but also to some extent the

higher and lower neighbouring frequencies.

Another property of loudness perception is the spectral loudness summation

which is associated with the concept of critical bandwidth; the loudness of a

signal within one critical band is independent of its bandwidth, however when

the signal’s bandwidth grows outside the critical band there is an increase in

loudness despite the consistency of the total level.

Applying varying degrees of multi-band dynamics compression affects on

loudness which is contrary to the resulting fluctuation depth as Moore [2005]

describes in his study to speech signals. Nielsen and Skovenborg [2004] points

out that “one of the interesting conclusions was that the long-term loudness,

for a given signal, increases with the degree of dynamics compression applied,

and with the RMS value held constant”, where RMS is the Root Mean Square

of the audio signal that is obtained by squaring the amplitude at each instant,

acquiring the average of the squared values over the interval of interest, and

then taking the square root of this average.

Filtering processes in hearing that influences the loudness perception include

the direction dependent filtering, the phenomenon of binaural loudness summa-

tion which is the result of having two sensors of sound (ears), and the altering

of the sound signal by certain characteristics of the environment, for example

the reverberation characteristic.

Properties that are related to the time domain affect the way we perceive

loudness. There is a delay between the appearance of an audio signal and

the reaction to it by human hearing. Also the post-masking effect is the phe-

nomenon of the perception of a sound fading out, although its source instanta-

neous stopped producing it. The hearing ability is reduced for a period of time

when we are exposed to loud sound for a certain duration. Both the bandwidth

and the duration of a burst or tone affect the perceived loudness, however “no

simple time constant can be specified for the temporal loudness integration.”

(Nielsen and Skovenborg [2004])

2.1.2 Sone values as source of loudness information

Laboratory attempts to measure loudness in terms of how much louder one

sound is than another have used observers’ productions and/or estimations of

various loudness distances or ratios. A sone scale of loudness, based on estimates

of apparent ratios, and a lambda scale, based on equal-appearing intervals and

ratios, are alternative ways of describing apparent loudness relationships (Beck

and Shaw [1967]). The reference of the sone scale in particular is that a 1000
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Hz sine tone with a level of 40 dB SPL (decibels in reference to sound pressure

level) has a loudness of one sone and it is defined by the following equation:

Ψ(sones) =
1

15.849

( I
I0

)0.3
, (2.3)

where I0 = 10−12W/m
2

(Hartmann [2004]).

In our research we have used the sone values at the loudness extraction

process from the audio signals. One main reason was the fact that the sone

scale is linear, so in this way we can normalise in a more accurate and easy

way across different recorded environments. Another equally important reason

is that we wanted to train our models on audio that is pre-processed based on

the basic psychoacoustic concept of the equal loudness curves, and not to make

any other compression or modification. If we want a machine to listen like a

human, then it needs a similar input to the one that a listener has.

For the experiments that are presented in this thesis, the loudness infor-

mation is extracted from each audio signal using the ma sone function in Elias

Pampalk’s Music Analysis toolbox1. The specific loudness sensation in sones

per critical-band is calculated by following the process as explained by Pampalk

et al. [2002]:

We calculate the power spectrum of the audio signal using a Fast Fourier

Transformation. We use a window size of 256 samples, hopsize of 128, and

a Hanning window with 50% overlap. The frequencies are bundled into 20

critical-bands and these frequency bands “reflect characteristics of the human

auditory system, in particular of the cochlea in the inner ear” (Pampalk et al.

[2002]). Then we calculate the Spectral masking effects, based on the research

by Schroeder et al. [1979]. Then we calculate the loudness as dB-SPL unit

and from these values we calculate the equal loudness levels in Phon. From

these values we detect the values in sones, following the calculation described

by Bladon and Lindblom [1981]: if loudness level in phons is L, then it is

converted to loudness level in sones S following the formula:

S =

2(L−40)/10, P ≥ 40

(L/40)2.642, P < 40.
(2.4)

The extracted loudness time series have been smoothed by local regression

using a weighted linear least squares and a 2nd degree polynomial model (the

“loess” method of MATLAB’s smooth function2). The loudness time series for

each recording is normalised by dividing with its maximum loudness value. In

1www.pampalk.at/ma/documentation.html, accessed 20 February 2016.
2http://uk.mathworks.com/help/curvefit/smooth.html?refresh=true, accessed 20

February 2016.
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this way we are able to compare different recording environments.

2.1.3 Alternative loudness extraction techniques from mu-

sic signal

Below we present two techniques that exist and are used for extracting the

loudness from a music signal. The first one is called “Power curve”3 from the

plugins that have been created through the Mazurka project4. At the synopsis

they describe it as measuring the power over time of a signal. They get the

average power in decibels for a region of audio data following the equation

Pavg = 10 log10

( 1

N

∑
n

x2n

)
, (2.5)

where N is the number audio samples to average over, and xn are the individual

audio samples. In addition the plugin can provide a more sophisticated outcome,

such as a time-symmetric exponentially smoothed function of the average raw

power for each input signal region block, a smoothed power slope of the power

curve, as well as a scaled power slope of the smoothed power curve.

The second one is the “intensity” plugin from the BBC audio plugins5. It

calculates the intensity of a signal following the work by Lu et al. [2006]. As

it is described at the plugin documentation, firstly the signal is divided into i

subbands with the following frequency ranges:

[
0,
ω0

2i

)
,
(ω0

2i
,
ω0

2i−1

)
, . . . ,

(ω0

22
,
ω0

21

]
, (2.6)

where ω0 refers to the sampling rate. The intensity of each signal frame n

is calculated by:

I(n) =

ω0/2∑
k=0

A(n, k),

summing the magnitude A of each frequency bin k.

2.1.4 Psychological studies of loudness perception in mu-

sic

Several studies included in psychoacoustical literature have been attempted to

obtain relationships between the subjective magnitude of loudness change and

the physical magnitude of intensity change using pure tones or noise (see, for

3http://sv.mazurka.org.uk/MzPowerCurve/, accessed 18 October 2016
4http://mazurka.org.uk/, accessed 18 October 2016
5https://github.com/bbc/bbc-vamp-plugins, accessed 18 October 2016
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example Moore et al. [1997] and references therein). However studies using

music stimuli in their experiments (see, for example Geringer [1993] and refer-

ences therein) showed that music stimuli in context were perceived somewhat

differently than were the pure tone and noise-band stimuli of previous research.

Following the concept of dynamic changes using music stimuli, the study con-

tacted by Geringer [1995] investigated listener perception of dynamic change

within a musical context, regarding both stimulus presentations and subject-

response procedures. Musician and non-musicians responded continuously dur-

ing excerpts using the Continuous Response Digital Interface (CRDI) to indicate

perceived loudness levels. Excerpts were selected from different music genres,

including instrumental jazz, popular vocal, symphonic orchestra, solo piano, and

synthesizer examples. The results revealed that musician subjects indicated a

significantly smaller magnitude of dynamic change than non-musician subjects

did.

2.2 The concept of score notation

“We call it music, but that is not music:

that is only paper.”

—Leopold Stokowski

The concept of music notation, that is the methods of writing down music

so that it can be performed, was not involved for a long period in the world’s

music history. However, it was one of the key points for the development of the

European classical music.

An early system of notation was the neumatic notation. Neumes, from the

Greek word “neuma”, meaning “gesture” or “sigh”, was the system of musical

notation used from the 7th to 14th century that evolved from representing grave

and accute accents to forming a system of a precise indication of pitch for

singing (Rutherford-Johnson et al. [2012]). [Cook et al., 2009, pg.11] refers to a

conclusion for neumatic notation from a study by Sam Barrett (Barrett [2008]),

mentioning that “‘music is in other words conceived platonically, as an abstract

and enduring entity that is reflected in notation, with the notation itself being

reflected in singing (since mistakes in singing can be corrected by reference to

the notation).”

During the development of the notation to the form we know today, there

were changes mostly on the representation of the duration and the pitch of

the notes that are sounded. Innovations included the development of nota-

tional symbols for different playing techniques and performance actions. The

composer who specified dynamics for the first time in a score was Giovanni
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Gabrieli (1954-1612) in the Sonata pian e forte from the Sacrae symphoniae

(1597) ([Sadie, 1998, pg. 28–29]). Annotation of dynamics, such as piano, “has

remained relatively constant, although contemporary composers have explored

its extremes.” (Rutherford-Johnson et al. [2012])

An example of the latter statement could be the notation that has been es-

tablished by the composer Anestis Logothetis for his avant-garde music6. Fig-

ure 2.2 that shows the notation for changes in expression and Figure 2.3 that

shows his composition Agglomeration are attached in order to display his idea.

Figure 2.2: Part of notation developed by Logothetis for his graphic scores.

Figure 2.3: The score of Logothetis’s piece Agglomeration.

6http://anestislogothetis.musicportal.gr/the_graphic_notation/?lang=en
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The concept of score notation can reveal an extra dimension, the one corre-

sponding to the time the score is created. One example is the Instant Composers

Pool (ICP) orchestra 7, a project where each of the musicians who participate in

an improvisation session creates the score of the instruments he or she plays in

a special annotation system. The pieces that are created following this process

are treated as “found objects” to be used in new and creative ways during per-

formances. As Schuiling [2013] states, “this provides an opportunity to rethink

the concept of compositions as actors in the musical process, and simultane-

ously to see the practical aspects of creativity and the importance of practically

engaging with one’s working material.”

Considerable efforts have been devoted to finding new ways of representing

western music score notation making it suitable for parsing and recognising by

computer software. The most popular digital formats it can be converted to are

the music form of XML (eXtensible Markup Language) and the kern format.

2.3 Articulation in Chopin’s works and notation

“Put all your soul into it,

play the way you feel!”

—Frédéric Chopin

Elements of Chopin’s compositions can be understood by giving a nuance

of his core inspirations, the prime one being traditional Polish music; even in

solo piano works, the dance impulse can be found in his Mazurka or Polonaise

pieces (Thomas [1994]). Eigeldinger [1994] states that Chopin has been affected

by late baroque and pre-classical composers, however his great influencer J. S.

Bach imprints on Chopin’s later works: contrary motion between parts, the

sharing of the melody between upper part and bass, the octave imitation of

an upper part by the bass are some of the common elements found in Ballade

Op. 47 and Mazurka Op. 56 No. 3 among other pieces. Also Tristanesque

harmonies, popular during the Baroque period, appear in Ballade Op. 47.

Shaffer [1994], searching for the characteristics that make a performance

‘musical’, analyses piano recordings of Chopin’s Prelude Op. 28 No. 8 in F#

minor and looks through the structural tension as well as the tempo and dy-

namics variations whether the performance “conveys an insight into the musical

meaning.”[p.184] For him, the combination of melodic, harmonic and rhythmic

processes identify structure, while they operate on different levels or within or

across levels. The results of the study show the use of a phrasing gesture where

7http://www.icporchestra.com/
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there is an acceleration and increase in dynamics into a musical unit and the

respected deceleration and decrease towards its boundary. Focusing on the ex-

pressive intentions that go beyond simply conveying phrase grouping, we see

that related features include chord progressions, melody alterations among the

phrases, and even a repeat of the same harmonization in positions where ff and

p markings appear, which helps emphasise the dynamic contrast.

In terms of dynamics, Thomas [1994] refers to accents and dynamic contrasts

in Mazurka pieces as emphasising the “foot-stamp or heel-clicking leap”; if they

are located on the first beat they may emphasise a long-breathed four-bar phrase

or a short-breathed two-bar phrase. If they are located on the second bar

they are usually combined with expressive harmonic or melodic stresses or with

combined with the case of having accompaniment rests on the first beat. Finally

if they are located on the third bar they may either give a quiet understatement

of the third movement–an example being the accompaniment rests on the first

and second beat followed by a chord on the third one in Mazurka Op. 63 No.1–or

emphasising the opening of a new section.

Chopin himself preferred pianos capable for depicting refined nuances rather

than ones constructed based on providing sharpness and high intensity (Methuen-

Campbell [1994]). Although markings such as ff and fff have been illustrated

in his works, we acknowledge that “all his contemporaries agree in reporting

that his dynamics did not exceed the degree of forte, without however losing a

single bit of shading” ([Einstein, 1975, p.215]).

Other aspects of articulation have to do with pedaling and timing. A feature

found in many of the Mazurka pieces is the use of one pedal-point joining usually

four-bar chord progressions which produced the sense of a dominant introduction

(Thomas [1994]). In the case of features related to timing, we should consider

that a characteristic of Chopin’s music is that it draws inspiration from singing,

which translates to a style of piano playing ([Rink, 1994, pg. 216]). This style

brings the strong sense of rubato, by keeping a more steady rhythm with the left

hand while freeing the other by pushing forward or holding back. Carl Mikuli,

One of his pupils, “complimented Chopin’s rubato for its naturalness and its

‘unshakeable emotional logic’” ([Khoo, 2007, p.91]).

29



2.4 Related studies

In this section we present a review of studies related to our aim. In order to

better distinguish them, we have created the subcategories containing studies

that mapped loudness with score information (Section 2.4.1), or dealt with the

interconnection of changes in loudness and tempo (Section 2.4.2), or explored

how expression features interact with the structure of the musical piece (Sec-

tion 2.4.3).

2.4.1 Mapping between audio loudness and score

Precious little work exists that examines the mapping from score to audio loud-

ness and vice versa, an exception being our preliminary study on the meanings

of dynamic markings in performances of five of Chopin’s Mazurkas Kosta et al.

[2014].

A dynamic-contrast driven study followed score dynamic annotation has

been presented by Geringer [1993]. This study analysed data sampled from 60

commercial recordings of choral, orchestral, and piano compositions mostly from

the 19th century and from composers including L. W. Beethoven, F. Chopin,

and R. Schumann among others. The dynamic changes within the music samples

was recorded using a Bruel and Kjaer Graphic Level Recorder which allows the

continuous measurement of relative intensity changes. Across the music excerpts

sampled, the results indicated a larger dynamic range from p to f, averaged to

13.42 dB change, than from f to p, averaged to 11.97 dB change.

Another example is the MUDELD (MUsic Dynamics Extraction through

Linguistic Description) algorithm proposed by Ros et al. [2016] that uses lin-

guistic description techniques to categorise the dynamic label of separate musical

phrases into three levels labeled as piano (p), mezzo (m), and forte (f). The

process that was followed in this study was to extract the loudness information

from the audio input by computing the Root Mean Square (RMS–short descrip-

tion in 2.1.1) of the signal and normalise the values in the range of [0, 1]. Then

the music signal was manually segmented where each segment is represented

by its average loudness value. Then, “disagreement values” were computed in

order to form the distance between the segment’s value label and the reference

label, i.e. the music score, as well as the relevance between segments’ labels.

As an initial experiment, they retrieved eight commercial recordings of De-

bussy’s Syrinx. The musical piece was manually segmented into phrases. The

outcome of their experiment indicates that the resulted labels were similar to

the score indications.

Other related studies are the following two by Grachten et al. The first

study is devoted to the creation of a linear basis framework (LBM) designed
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to account for expressive variations as well as to model the effect of expressive

markings in the score on music performances (Grachten and Widmer [2012]).

Their approach is described by the creation of a number of hand crafted numer-

ical descriptors, or “basis functions”, to encode certain structural aspects of the

score. Each of the basis functions convey one score marking and represents the

activation of the marking in the scale of real values from zero–non- active, to

one–active. The basis functions can be indicators for note attributes, such as

stacatto, polynomial models for fitting the dynamics-note pitch relationship and

indicators of expressive markings, either for gradual changes (e.g. crescendo) or

constant changes (e.g. piano).

Essentially, LBM provides a way to determine the optimal influence of each

of a set of basis functions with a set of weights to better approximate the exam-

ined expressive parameter. Two experiments were formed; the first examined

how accurately expressive dynamics can be represented and predicted imple-

menting LBM, using as dataset the Magaloff corpus (Flossmann et al. [2010])

which is constituted by recordings of various pieces by the same pianist on a

Bösendorfer piano. The results showed that for both representation and pre-

diction, the correlation ranges from weak to medium for many combinations

of various number of basis functions and for both cases of forming the weights

globally (same in all pieces) or locally (different for each piece), however having

better results in the latter case. Also, the variance of the prediction is substan-

tially lower than that of the observation, “meaning that expressive effects in the

predicted performance are less pronounced.” (Grachten and Widmer [2012])

The second experiment examined how well the LBM framework can reveal

differences between performers by using loudness curves of commercial record-

ings of various pieces played by different pianists. The results showed that

across pieces the variance of coefficients from the basis functions is too large to

indicate direct relationships between performers and coefficients, in contrast of

the observations detected within pieces. The last observation can be associated

with our results presented in Chapter 7.

The second study is a machine learning approach concerned with the score-

based prediction of note intensities in performed music (Grachten and Krebs

[2014]). Our approach to the issue of dynamic variations is categorical, meaning

that we analyse the relative dynamic changes in a musical piece as in forming a

loudness level representation.

2.4.2 The interconnection of changes in loudness and tempo

Much research has focused on proposing and establishing the relationship be-

tween tempo and loudness (see, for example Widmer and Goebl [2004] and
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references therein.) Simple rules for this kind of interconnection can be found

in the literature, an example being “the louder the faster” by Repp [1996]. A

representation of the performance changes in tempo (as Inter Onset Interval

measure) and dynamics (as sound pressure level, measured in decibels) is the

“performance worm”, a real time implementation which displays the changes in

a two dimensional space over time (Dixon et al. [2002]).

Assuming that timing and amplitude are the principal parameters the per-

former can vary in a piano performance, Bhatara et al. [2011] have examined

which one of the two parameters serves to communicate emotion more. Their

stimuli was piano performances of six nocturnes by Chopin. In an experiment

where timing and amplitude were manipulated independently, they showed that

timing and amplitude variations both affect emotionality judgements: “Gene-

rally, more systematic (but not random) variation in timing or amplitude trans-

lates to greater subjective ratings of emotionality.”

2.4.3 Expression features used for structure extraction

Other trends for conceptualising expressiveness from the performer’s perspec-

tive are based on the fact that there are many ways of interpreting a music piece

utilising both compositional and expressive parameters, with respect to struc-

tural aspects such as phrase structure (Bennett [1993]). Following this direction,

various techniques are used by composers as well as by performers to introduce

articulation to music in order to create hierarchical grouping structures (Large

and Palmer [2002]).

A few models exist to extract phrases by taking information from expressive

parameters. The models include the work by hua Chuan and Chew [2007]

Stowell and Chew [2012] where the changes in tempo were used to examine how

well they correspond to phrase boundaries; the tempo shapes were modelled by

a quadratic model and a spline curve in the first study and as a sequence of

tempo arcs in the second one.

The work by Cheng and Chew [2008] presents the Local Maximum Phrase

Detection method which employs information from tempo and loudness varia-

tions creating multiple layers of boundary measures. One of their findings was

that loudness is more consistent as indicator of phrasing strategies than tempo.
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Chapter 3

Data acquisition

This chapter describes the music material and the computational methods that

form the basis of the data used for this thesis. In order to understand the

range of expressive possibilities for each dynamic marking, we have required a

significant number of recordings for each piece. For this study, we have drawn

data from the CHARM1 Mazurka project, which consists of known recordings

of Chopin’s Mazurkas amassed for the purpose of studying performance styles.

For the majority of pianists, the romantic repertoire remains the chief resource

for expressive possibilities ( Benetti Jr. [2013]). Hence, our choice to focus on

Chopin’s Mazurkas.

We have created a score-beat loudness mapping from the data, that is, we

have matched positions of score markings with their corresponding loudness lev-

els in recordings. In order to obtain reliable measurements and scalable analyses,

we rely on computational audio analysis tools, which despite their imperfections

are becoming part of the standard equipment for empirical musicologists [Goebl

et al., 2014, p. 225–233]. To speed up the labour-intensive process of annotating

beat positions for each recording, we developed a heuristic for automating the

alignment of multiple audio files. Loudness values are extracted and analysed

using standard audio processing and statistical techniques.

The data that has been created for the purpose of the thesis can be found

here: https://github.com/katkost/MazurkaBL. The files include information of

score-beat time position and corresponding dynamics of the Mazurka recordings,

as well as information of the position of score markings.

The chapter is organised as follows: Section 3.1 describes the dataset that

corresponds to the audio and score information, Section 3.2 presents the multiple

alignment strategy used to synchronize audio and score, and Section 3.3 analyses

the dynamic marking information.

1http://www.charm.rhul.ac.uk/index.html, accessed 9 October 2016
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3.1 Audio and score information

For the purpose of this thesis, we have focused on a part of the Mazurka dataset

containing 2000 audio recordings of performances of forty-four pieces. The final

number of recordings selected from each Mazurka is presented in Table 3.1. We

have included the audio recordings that follow the repetitions in the score, and

we have excluded the ones that do not, as well as the noisy recordings. By

noising recordings, we include either the ones that have got distortions of the

signal at the post-production process and old recordings as most of the cases,

or the ones that are live recordings and have got additional sounds from the

audience that could not be extracted.

For our main analysis, we focus on the behaviour of the following markings:

S = {pp, p, mp, mf, f, ff }. (3.1)

We note that pp occurs 63 times, p 234, mf 21, f 169, and ff 43 times,

making a total of 530 markings. The mp marking does not occur in the data

we analyse. The number of markings that appear in each piece individually is

shown in Table 3.1.

Mazurka index M06-1 M06-2 M06-3 M07-1 M07-2 M07-3 M17-1 M17-2 M17-3 M17-4 M24-1
# recordings 34 42 42 41 35 58 45 50 36 67 46
# markings 18 13 22 13 13 18 7 6 9 7 5

Mazurka index M24-2 M24-3 M24-4 M30-1 M30-2 M30-3 M30-4 M33-1 M33-2 M33-3 M33-4
# recordings 56 39 54 45 50 54 55 48 50 23 63
# markings 12 7 33 8 14 25 18 5 16 4 12

Mazurka index M41-1 M41-2 M41-3 M41-4 M50-1 M50-2 M50-3 M56-1 M56-2 M56-3 M59-1
# recordings 35 42 39 33 45 40 67 34 48 51 41
# markings 12 5 6 7 15 14 17 14 7 16 8

Mazurka index M59-2 M59-3 M63-1 M63-3 M67-1 M67-2 M67-3 M67-4 M68-1 M68-2 M68-3
# recordings 56 56 42 62 35 31 40 42 38 48 42
# markings 8 11 9 4 17 10 13 11 12 21 8

Table 3.1: Chopin Mazurkas used in this research, the number of recordings
for each one, and the number of dynamic markings that appear in each one.
Mazurkas are indexed as “M<opus>-<number>.”

We are aware of the fact that all the recordings are from different time

periods, ranging from 1902 to the early 2000’s, and that information of the

score edition used by each performer is unknown. As mentioned in [Bailie, 1998,

p.56], “since most of his [Chopin’s] works were published in simultaneous ‘first’

editions in France, Germany and England, and since he also made alterations

in the scores of various pupils, there are inevitably many discrepancies.”

Tracing the actual score used in the preparation of each performance is

unrealistic. Multiple editions of Chopin’s Mazurkas exist, and the particular
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edition used in each recording is not known. For the purposes of obtaining

score-based dynamic markings as a basis for this study, we used the edition

by Paderewski, Bronarski and Turczynski, as it is one of the most popular

and readily available editions. We created an XML version of the scores and

the information concerning the exact location of each dynamic marking was

extracted automatically using the Music21 software package ( Cuthbert and

Ariza [2010]). In addition, we extracted the location of the score notations that

are presented in Table 3.2.

Dynamics
Marking: p, pp, mf, f, ff, sf, fz, accent (>), crescendo, decrescendo
Text:
sotto voce, dolce, dolcissimo, con anima, con forza, calando,
espressivo, risoluto, leggiero, perdendosi, maestoso, gajo, smorzando
Tempo

Marking: fermata
Text: ritenuto, a tempo, Tempo I., lento, vivo, Allegro ma non troppo,
Allegro, legato, legato assai, legatissimo, moderato, animato,
rubato, scherzando, stretto, agitato, rallentando, tenuto

Table 3.2: Dynamic and tempo markings/text that appear in the scores.

A long ‘>’ appears in the score edition mentioned above, which serves as an

indication of an “agogic” accent: “an emphasis created by a slight lengthening

rather than dynamic emphasis on a note or chord” Bailie [1998] (p.53). However

this marking could not be in our XML edition as it is not supported by the

Music21 software.

In the next section we explain how we dealt with the problem of linking the

beat positions in the score with the corresponding ones in each recording.

3.2 Audio recording to score alignment

Since dynamic markings are notated in the score, their positions can be specified

using the musical time axis of beats and measures. To study how a specific

pianist realizes a given dynamic marking in a performance, we need to locate

its corresponding position in the recording in seconds. A common way to do

this it to manually annotate the position of each musical beat in each available

recording, either by tapping while listening to the music (Sapp [2011]) or by

using specialized tools such as Sonic Visualiser2. While manual annotations are

typically quite reliable and accurate, creating them is a very time consuming

process. For example, for this research, the manual annotation and correction

2http://sonicvisualiser.org/, accessed 23 September 2016
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by inspecting the spectrogram of a single recording of Mazurka Op.6 No. 2 took

35 minutes on average.

To automate much of this annotation process, one can employ computa-

tional music alignment methods. Given a beat position in one version of a piece

of music, such synchronization methods automatically locate the corresponding

position in another version. In this way, for each piece, we only need to anno-

tate a single recording, as we can use the automatically computed alignments

to find, for each beat position in the annotated recording, the corresponding

position in another recording. We call this recording as the reference audio for

each Mazurka. Then the beat positions have been transferred automatically

to the remaining recordings using a multiple performance alignment heuristic

that is described in Section 3.2.2. The multiple performance alignment heuris-

tic employs the pairwise alignment algorithm by Ewert et al. [2009], which is

based on Dynamic Time Warping (DTW) applied to chroma features. This

pairwise alignment technique extends previous synchronization methods by in-

corporating features that indicate onset positions for each chroma. The authors

report a significant increase in alignment accuracy resulting from the use of

these chroma-onset features and the average onset error for piano recordings is

44 milliseconds.

While alignment errors and corresponding inaccuracies in the derived anno-

tations cannot be completely avoided, the synchronization enables the re-use

of manually created annotations for a relatively small number of recordings to

efficiently mass-annotate large databases. Some audio files may result in better

alignment accuracies than others though. In order to achieve the best choice of

a reference audio, we created our ground truth database, which is the manually

detected score beat positions of Mazurka Op. 6 No. 2, find the best reference

audio candidate, then create a heuristic method to automatically detect it so

that we can apply the same method on the other Mazurkas.

As it has been mentioned in 2.3, the melody may be displaced from the

corresponding beat position in the accompaniment so as to convey fluidity of

expressive timing. As a rule, in our manual annotations, we have chosen to

follow the melody line so as to capture the lyricism of the rubato.

The goal of the multiple performance alignment heuristic is to optimize the

choice of a reference audio with which we can obtain better alignment accuracies

than with another audio file. In order to understand the characteristics of

such an audio, in Section 3.2.1 we present the analysis of the reference audio

identification, and in Section 3.2.2 we present the heuristic method to detect it.
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3.2.1 Optimizing the reference audio choice

For this section, we use as ground truth the manual annotations of score-beat

positions in forty-two recordings of Mazurka Op. 6 No. 2, and our goal is to

detect the audio file (reference audio) that predicts most accurately the score-

beat positions of the other recordings.

The following steps have been implemented. We removed silences in the

beginnings and ends of the recordings by discarding any audio at the beginning

and end for which the amplitude value was < 0.002. Next, we located 177 beat

positions per recording, excluding the beats where no notes were played, which

were 11 in total. We implemented the algorithm described in Ewert et al. [2009]

for audio-to-audio alignment and the annotations from each candidate reference

audio recording were used for detecting the positions for the others in a pairwise

fashion.

Let n be the number of recordings. We get in total n × (n − 1) new anno-

tations generated from all the candidate reference audio files. To determine the

audio that performed best in providing the alignments with the lowest error in

accuracy, we compared the alignment results to our ground truth. The Jarque-

Bera test showed that not all the groups of values that included the alignment

errors for each pair of recordings followed the normal distribution, hence every

alignment result is described by the median error for each alignment pair. For

each recording, we thus arrive at n− 1 median error values. Then, in these new

groups of values we implemented the non-parametric Friedman test, where the

small p-value (p = 3.1546 · 10−31) indicates that at least one column’s sample

median is significantly different from the others. The multiple comparison test

reveals the audio with the lowest median error value for being the best refer-

ence audio (bold vertical line in Figure 3.1); as shown in Figure 3.1 Sztompka’s

recording has the lowest median error value, followed very closely by the median

error value of Kiepura’s recording.

3.2.2 Reference audio detection heuristic

The pairwise alignment algorithm creates a match between two audio files, say

i and j, using dynamic time warping. The matched result is presented in the

form of two column vectors pi and qj , each with m entries where m depends on

the two recordings chosen, i and j. Each vector presents a nonlinear warping of

the chroma features for the corresponding audio file, and represents the timing

difference between the two recordings. A pair of entries from the two vectors

gives the indices of the matching time frames of the two audio files. We compute

the Euclidean distance between each pair of the dynamic time warped audio files
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Figure 3.1: Comparison of the groups constituted by the median error values
per recording, implementing the Friedmann test correlation rank for the 42
recordings of Mazurka Op.6 No. 2. Each point of the x-axis presents one
recording–“name of pianist (year of recording)”. The recording with the lowest
correlation rank is highlighted in bold (pianist: Sztompka, year of recording:
1959) and it is identified as the reference audio for the specific Mazurka.

as follows:

di,j =

√√√√ m∑
k=1

(qj,k − pi,k)2, ∀i 6= j, (3.2)

where m ∈ N is the size of the vectors. In this way, each audio has a profile

corresponding to its alignment to all other audio recordings which is di = [di,j ].

The average value of all the alignment accuracies for the ith recording in relation

to the remaining ones is di.

We consider the best reference file to be one that minimizes the average

distance to other audio files and without extreme differences from more than

two other audio recordings as measured by the norm distance; in this way, after

exploring alternative values of outliers, a quick test using the method provided

above on Mazurka Op. 6 No. 2 found the same reference audio as did the formal

analysis in Section 3.2.1. Mathematically, the problem of finding the reference

audio can be expressed as one of solving the following problem:

min
i

di

s.t. # {j : |di,j | > q3(di) + 1.5[q3(di)− q1(di)]} ≤ 2,

where q`(di) is the `-th quantile of di, and the left hand side of the inequality

uses an interquartile-based representation of an outlier. The reference audio is

then given by arg mini di.
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We manually adjust the beat positions for the reference audio and we infer

the beat positions of the remaining recordings by using the alignment method

as mentioned above. In order to evaluate the method, we compared the derived

beat positions with the manually annotated positions of the reference audio for

forty-four recordings of the Mazurka Op. 6 No. 2. The average error was 37

milliseconds.

3.3 Loudness information of dynamic markings

In Section 2.1.2 we address the way we get the loudness information from the

audio recordings, which includes the extraction and normalisation of the sone

values along the music pieces. In the dataset described in Section 3.1, pp occurs

63 times, p 234, mf 21, f 170, and ff 43 times, giving a total of 530 dynamic

markings. The loudness value corresponding to each marking is estimated as the

average sone value at the aligned beat position and the two subsequent beats.

More formally, if {yn} ∈ R is the sequence of loudness values in sones for each

score beat indexed n ∈ N in one piece, then the loudness value associated with

the marking at beat b is

`b =
1

3
(yb + yb+1 + yb+2). (3.3)

Sometimes the actual change in response to a new dynamic marking does not

take place immediately, but is rather observed in subsequent beats. It is clear

from the data that loudness varies considerably between transitions of dynamic

markings. Thus, we additionally aim to have the smallest window possible to

capture dynamic changes that occur in response to a marking. Consequently,

we have chosen a three-beat window as the loudness time frame for this study,

because it corresponds to the ternary time signature of 3/4 found in Mazurkas.

The markings that are analysed are marked in Fig. 3.2—bottom as black x’s.
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Figure 3.2: Loudness representation of a single Mazurka Op. 6, no. 1 recording
(pianist: Csalog, recording year: 1996). Top: Smoothed curve (orange) of raw
data of sone values (blue); the score beat positions are highlighted by yellow x’s
(zoomed-in representation of excerpt at top-right). Bottom: Normalized score
beats curve; the averaged final loudness values for each marking are highlighted
by x’s.
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Chapter 4

Dynamics and relativity:

Is piano always piano?

Summary: This chapter focuses on the meaning and practical manifestations

of expressive markings in the music score, specifically those markings that cor-

respond to loudness levels—such as p (piano), mf (mezzo forte), and ff (for-

tissimo). We present results showing how the absolute meanings of dynamic

markings change, depending on the intended (score defined) and projected (ac-

tual performed) dynamic levels of the surrounding musical context. The analysis

of recorded performances shows different realisations of the same dynamic mark-

ings throughout a recording of a piece of music. Reasons for this phenomenon

include the score location of the markings, such as the beginning of a piece, and

the marking’s location in relation to that of previous ones. Observations show

that more often than not, the transition between the two markings is more con-

sistent when pianists move from a louder to a softer marking, or move between

markings that both represent a high intensity, or when the markings show high

levels of contrast. For markings that appear in the score more than once, most

of the time, there is a significant difference in the ways they are interpreted in

a recording.
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Dynamic levels in musical expressivity are represented in the score by mark-

ings such as p (piano, meaning soft), and f (forte, meaning loud). These sym-

bols are interpreted in performance and communicated through the varying of

loudness levels. If we were to order the set of dynamic markings in increasing

loudness, yielding the following sequence, termed Ordinal Loudness Sequence

(OLS) in the following,

pp < p < mp < mf < f < ff , (4.1)

we would assume that the loudness level corresponding to a low-rank marking

in the OLS is lower than the level corresponding to a higher-rank marking in

the OLS. As we shall see this is not the case. The expected loudness of dynamic

markings may be superseded by their local context so that a p dynamic might

objectively be louder than a f at another part of the piece.

In this chapter we examine the dynamic markings in the OLS and we consider

two types of relativity in the interpretation of these markings, one dealing with

the overall loudness level of a particular marking throughout the times that is

present in the score of one piece, and the other dealing with the distinct loudness

level of a particular marking at a single position in the score. In order to gather

the information we need for the first type of relativity, for each Mazurka, we

compute the average loudness levels over all recordings for all markings that

are the same, and compare the resulting averages. About the second type of

relativity, for each Mazurka, we compute the change in loudness for each pair

of different consecutive markings. For example, assume that a piece has the

sequence of markings (p1, p2, f1, ff, p3, f2), in the order as they appear in

the score. Then for each performance recording we get the loudness values

that correspond to each of the markings. For the first type of relativity, each

recording has a loudness level of the p’s which is computed by taking the average

of the loudness values that correspond to the three p positions, and the same

process is followed for all the remaining markings. Then these average values

are compared (more details about the comparison method in Section 4.1.1.) For

the second type of relativity, for each recording we compare the loudness change

between the different consecutive markings in pairs (p2, f1), (f1, ff), (ff, p3),

and (p3, f2), individually.

Additionally we analyse how the distance of the markings in OLS affects

the transition from one loudness level to another, and finally we observe the

different patterns of the manifestation of the same markings as they appear in

a score sequence of one piece.
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More precisely, we seek to answer the following questions:

(i) Do the aggregate dynamics of pairs of dynamic markings conform to the

expected order?

(ii) Do pairs of individual instances of dynamics at markings conform to the

expected order?

(iii) How does the average loudness change vary related to the ordinal distance

between dynamic markings?

(v) How are the same dynamic markings realised as they recur throughout

the piece?

Another challenge of conducting systematic research on expressive param-

eters is the lack of audio data and annotations for analysis and for training.

In order to understand the range of expressive possibilities for each dynamic

marking, we required a significant number of recordings for each piece. For this

chapter, we have used the data set presented in Chapter 3, which is the cre-

ation of a score-beat loudness mapping from the audio recordings by matching

positions of score markings with their corresponding loudness levels.

This chapter is organized as follows: Section 4.1 presents the results of the

studies where each subsection corresponds to each research question displayed

above, respectively. Section 4.2 presents the conclusions and further discussion.

4.1 Performed Loudness Study

4.1.1 Ordinal Loudness Sequence Preserved On Average?

In this section we explore the general behaviour of pianists’ responses to the

dynamic markings of the set S. More specifically, this section addresses the issue

of whether the dynamic level of a softer marking could be higher on average

in a recording than that of a louder marking. We define the expected rank

order sequence for loudness behaviour, and use Kendall’s tau rank correlation

coefficient test to show that the average dynamic levels in each recording does

not always abide by the expected rank ordering.

In a recording, each dynamic marking is represented by a dynamic value

(in sones), as described in Section 3.3. Some markings appear in a score more

than once. We compute the aggregate value for each marking in a recording by

taking the average of the dynamic values whenever the same marking appears

in the score. For a symbol s ∈ S that appears n times in the score at the beat

positions {s1, s2, . . . , sn},

E(s) =
1

n

n∑
i=1

`si . (4.2)
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We first consider for each recording the average dynamic levels E(pp), E(p),

E(mp), E(mf), E(f), and E(ff) for the markings pp, p, mp, mf , f , and ff ,

respectively. It so happens that mp does not occur in the scores we consider in

this study.

The results of Kendall’s tau rank correlation coefficient test are summarized

in Table 4.1 for a given Mazurka. Each τ value shows the agreement between

pairwise mean dynamic values and their expected ordering according to the

OLS. A value of 1 indicates perfect rank agreement with the OLS, and a value

of −1 indicates the converse. Patterns contrary to the expected are analysed in

the following subsections. More specifically, in the next subsections we further

examine the values in bold (and red) that are those for which τ < 0.

The graphs below show the dynamics at all beats, not only the ones at the

dynamic markings. The variety of curves in the background shows the diversity

of dynamic responses from the pianists at the same score beats (x axis). The

graphs also show how the responses vary for each marking. Wherever a symbol

in a pair of markings is present, a boxplot indicates the spread of loudness values

at that position. The eye in the middle of each boxplot marks the median, and

the top and bottom edges indicate the 75th and 25th percentiles; the whiskers

extend to the most extreme data points excluding the outliers.

Mazurka cases where E(f) > E(ff)—marking pair f -ff is only one with

negative τ value.

There are two cases, Mazurka Op. 30 No. 3 in D[ major, and Mazurka Op. 68

No. 3 in F major, where there is only one negative τ value, which occurs at the

marking pair f -ff , meaning that a significant number of individual recordings

have E(f) > E(ff). Fig. 4.1 shows the dynamic values for all recordings of these

Mazurkas in score time, and the distribution of the pianists’ responses to the

markings f and ff in particular.

In Mazurka Op. 68 No. 3, we notice that the average dynamic of the first f

is louder than that of any other marking, including that of ff . One reason for

this much higher first f may be its location on the first beat of the piece, the

result of giving extra emphasis to the beginning.

In Figure 4.2, the first two bars show the score area where a f marking

is located, while the last two bars show another f marking; it is noticeable

that although both locations belong to the start of effectively the same two-

bar phrase, the slight difference in the patterns makes pianists use different

fingerings, which may add to the diverse response. Another point of note is

that before the second f marking there is a twelve-bar new phrase at the key

of B[ major (not shown).

In Mazurka Op. 30 No. 3 the average loudness value of the three ff ’s is
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Mazurka
Pair {pp,p} {pp,mf } {pp,f } {pp,ff } {p,mf } {p,f } {p,ff } {mf ,f } {f ,ff }

M06-1 0.941 0.941 1 0.353 1 1
M06-2 1
M06-3 0.952 1 1 1 1 0.714
M07-1 0.707 1 1 1 1 1
M07-2 1
M07-3 1 1 1 0.966 0.966 0.828
M17-1 0.956
M17-2 0.480 0.880 0.960
M17-3 0.389
M17-4 0.075 1 1
M24-1 1 1 0.696
M24-2 0.964 0.964 0.536
M24-3 0.536
M24-4 0.889 1 1 0.926 1 1
M30-1 1
M30-2 0.920
M30-3 0.407 1 1 0.963 0.815 -0.333
M30-4 0.636 1 1 1 1 0.927
M33-1 0.917
M33-2 1 1 0.960
M33-1 0.826
M33-4 -0.556 0.810 1
M41-1 0.829 1 1 1 1 1
M41-2 0.429 -0.190 1 -0.476 1
M41-3 0.949 1 0.949
M41-4 0.515 1 1 0.879 1 0.939
M50-1 -0.200 0.911 0.911
M50-2 0.750
M50-3 0.134 1 -0.672 1 -0.940 -1
M56-1 1 1 0.176
M56-2 0.833
M56-3 -0.255 1 0.961
M59-1 1
M59-2 1 1 1 0.964 1 0.893
M59-3 1
M63-1 0.952 1 0.952
M63-3 1
M67-1 0.886 -0.429 0.829 0.943 -0.886 0.086 0.429 0.943 0.714
M67-2 -0.484 -0.290 0.032 0.419 0.613 0.226
M67-3 -1 0.450 0.900 1 1 0.900
M67-4 0.286 0.952 0
M68-1 0.947
M68-2 -0.125 0.958 1 1 1 1
M68-3 0.952 1 -0.095

Table 4.1: The Kendall’s τ values for pairwise comparisons of the mean dynamic
values that correspond to the dynamic markings for each Mazurka. The negative
values are highlighted in bold and red coloured.
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Figure 4.1: The Mazurka cases where only the f -ff pair has negative τ value.
The dynamic values of the markings belonging to the pair in Mazurka Op. 30
No. 3 (top), and Mazurka Op. 68 No. 3 (bottom) are presented as box plots.
Positions of other markings s ∈ S appear in x-ticks as in score sequence. At the
background the curves represent the score—beat dynamic values per recording.

less than that for the eleven f ’s in a significant number of recordings. The

position of the ff ’s in the score offer an explanation for this result. The three

ff markings belong to the same repeated phrase which is shown in Figure 4.3

and they are located between two pp markings. Their duration is one score

bar. In every recording, the average pp is significantly softer than the average

Figure 4.2: The repeated phrase where the f appears in Mazurka Op. 68 No.
3 (left part: score beats 1–2, right part: score beats 133–134.)
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Figure 4.3: The repeated phrase where the ff appears in Mazurka Op. 30 No.
3 and its relation to the neighbouring markings pp, and f (score beats 25–54,
73–102, and 283–312.)

ff (τ = 1). This means that there is indeed a loudness change during the score

sequence pp-ff -pp. The average f ’s are louder, perhaps because the ff did not

have to be so much louder than the pp’s to make a large contrast.

The response to the f ’s nearest the pp-ff -pp trios are louder on average

than the fs’s, as shown in Figure 4.3. Reasons for this include the crescendo

(<) marking right after each f , an instruction to increase in loudness, and the

fact that almost all pianists apply a crescendo right after the second pp in this

excerpt, which amplifies the dynamic level of the f that follows.

Mazurka cases where E(pp) > E(p)—marking pair pp-p is only one

with negative τ value.

There are three cases, Mazurka Op. 33 No. 4 in B minor, Mazurka Op. 67

No. 3 in C major, and Mazurka Op. 68 No. 2 in A minor, where there is

only one negative τ value which is at the marking pair pp-p, meaning that

a significant number of individual recordings have E(pp) > E(p). Figure 4.4

shows the dynamic values for all recordings of these Mazurkas in score time,

and the distribution of the pianists’ responses to the marking pairs pp-p in

particular.

In Mazurka Op. 33 No. 4, there is one pp marking played louder than

the two p markings on average. One explanation is the loudness progression

throughout the duration of the pp (in the gap between the pp and p markings),

as it can be observed in the top plot of Figure 4.4. Many bars separate the pp

and the ensuing p, as shown in Figure 4.5, the first half of these intermediate

bars are louder than the second half, resulting in a significant loudness drop

that leads into the p marking.

In Mazurka Op. 67 No. 3, there are four pp’s in a row which are louder on
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Figure 4.4: The Mazurka cases where only the pp-p pair has negative τ value.
Box plots of the dynamic values of the markings belonging to the pair in
Mazurkas Op. 33 No. 4, Op. 67 No. 3, and Op. 68 No. 2 are presented.
Positions of other markings s ∈ S appear in x-ticks as in score sequence. At the
background the curves represent the score–beat dynamic values per recording.

average than the three p’s. More specifically, the three p’s are located at the

beginning of the same phrase which is repeated, a fact that likely explains the

very similar loudness level at the location of all the p’s. As Figure 4.6 shows,

every pp is preceded by a sustained note in sf , which might be the reason for

the higher loudness level.
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Figure 4.5: The position of the pp marking in Mazurka Op. 33 No. 4. The
response of the recordings at this position is higher than the response at the
position of the p marking on average.

Figure 4.6: The pp markings in Mazurka Op. 67 No. 3. The response of the
recordings at these positions is higher than the response at the positions of the
p markings on average.

In Mazurka Op. 68 No. 2, there is a middle part, where there are four closely

clustered humps in Figure 4.4 corresponding to a repeated section, where there

are pp and p markings. In this middle part, the pp’s are indeed softer than the

p’s on average. However, these pp’s are on average louder than the average of

the remaining p’s.

Mazurka cases where E(p) > E(mf)—marking pair p-mf is only one

with negative τ value.

There are two cases, Mazurka Op. 50 No. 1 in B minor, and Mazurka Op.

56 No. 3 in C major, where there is only one negative τ value which is at the

marking pair p-mf, meaning that a significant number of individual recordings

have E(p) > E(mf). Figure 4.7 shows the dynamic values for all recordings of

this Mazurka in score time, and the distribution of the pianists’ responses to
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the marking pairs p-mf in particular.
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Figure 4.7: The Mazurka cases where only the p-mf pair has negative τ value.
The dynamic values of the markings belonging to the pair in Mazurka Op. 50
No. 1 (top), and Mazurka Op. 56 No. 3 (bottom) are presented as box plots.
Positions of other markings s ∈ S appear in x-ticks as in score sequence. At the
background the curves represent the score–beat dynamic values per recording.

In the case of Mazurka Op. 50 No. 1 the loudness values at the single mf

are lower than the ones at the p’s on average. Observe Figure 4.7 that the p

marking that precedes the mf is shown to be louder, but there is a loudness

drop in the intervening measures, meaning that there is indeed an increase in

loudness at the mf in most recordings. Figure 4.8 shows the score position for

both markings. The loudness value decreases as the phrase closes before the

mf , and is locally ascending around the mf , but this change is not captured

when considering only loudness at the markings.

In the case of Mazurka Op. 56 No. 3, the single mf marking is located at

the beginning of the piece and it is reported as being less loud than the average

of the p markings. In all but one case, the marking preceding a p is f , and in

three of these cases, the f is in the bar immediately before the p. When the
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Figure 4.8: The mf marking in Mazurka Op. 50 No. 1 and its relation with
the preceded p marking.

markings are very close, there is too little time to realise a p and the effect of

the drop in loudness can only be detected in later bars.

The case of Mazurka Op. 41 No. 2: E(p) > E(f) and E(mf) > E(f).

In Mazurka Op. 41 No. 2, E(p) > E(f), and E(mf) > E(f). For the p-f , and

mf -f pairs in this Mazurka, the τ value is negative, meaning that a significant

number of individual recordings have E(p) > E(f), and E(mf) > E(f). Figure

4.9 shows the dynamic values for all recordings of this Mazurka in score time,

and the distribution of the loudness values at the markings p, mf , and f in

particular.

Note that the first f marking is generally played softer than the second one,

and this affects the average level of the response to this specific marking. In

order to explore this behaviour, we present in Figure 4.10 the location of the two

f ’s as they appear in the score. The first one is preceded by the text indicator

(dim.), which lowers the threshold for change perception at the f . This is

followed by a short Crescendo, which allows the f to expand in loudness after

the marking; in this case, the pianist must allow room for this expansion. The

section concludes with the text indicator (dim.). Next, we examine the next

two observations following the f . The p marking, which is relatively loud, is

located at the beginning of the score, where pianists are more likely to place

more emphasis on the opening notes. Also, the mf marking, which can be seen

at the bottom part of Figure 4.10, is inside parentheses, which suggests freedom

on how it could be interpreted.
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Figure 4.9: Box plots of the dynamic values of the markings belonging to the
pairs p-f , and mf -f in Mazurka Op. 41 No. 2. Positions of other markings s ∈
S appear in x-ticks as in score sequence. At the background the curves represent
the score–beat dynamic values per recording.

Figure 4.10: The location of the first f marking (top), and the location of the
second f marking in Mazurka Op. 41 No. 2 (bottom), score—beats 40–57, and
103–126, respectively.

The case of Mazurka Op. 50 No. 3: E(pp) > E(ff), E(p) > E(ff), and

E(f) > E(ff).

In Mazurka Op. 50 No. 3, an irregularity that is related to the interpretation of

the ff marking is observed. More specifically, the single ff marking, located at

the penultimate score measure, is reported as lower in loudness level than the

average loudness of the pp’s, p’s, and f ’s, respectively. The counter-intuitive

loudness transitions (negative τ values) for the pairs pp–ff , p–ff , and f –ff is

caused by the fact that the single ff at the end is played extraordinarily soft.

Figure 4.11 shows this finding, as well as the score progression for extremely

well-behaved (τ equals 1) loudness pairs pp–f , and p–f , and the relatively

small agreement (τ value equals to 0.134) for the pair pp–p.
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Figure 4.11: Box plots of the dynamic values of the markings belonging to the
pairs pp—ff , p—ff , and f —ff in Mazurka Op. 50 No. 3. Positions of other
markings s ∈ S appear in x-ticks as in score sequence. At the background the
curves represent the score–beat dynamic values per recording.

The case of Mazurka Op. 67 No. 1: E(pp) > E(mf), and E(p) >

E(mf).

In Mazurka Op. 67 No. 1, the marking pairs pp-mf , and p-mf have negative τ

values, meaning that a significant number of individual recordings have E(pp) >

E(mf), and E(p) > E(mf). Figure 4.12 shows the distribution of the loudness

levels throughout the recordings at the positions where the specific markings

appear in the score. As a side note we should highlight that this is the only

Mazurka from the ones we test which includes all the markings ∈ S at least

once.
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Figure 4.12: Box plots of the dynamic values of the markings belonging to the
pairs pp—mf , and p—mf in Mazurka Op. 67 No. 1. Positions of other
markings s ∈ S appear in x-ticks as in score sequence. At the background the
curves represent the score–beat dynamic values per recording.
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In order to explore the reason why the p markings seem louder in average

than the mf marking, we could focus on the fact that all p’s, except from the

third one, are followed by a Crescendo marking directly after the beat in which

they appear. Consider the first p marking, which is followed by a Crescendo,

and preceded by a f marking one-score beat away. The pp markings are each

preceded by a ff marking two score-beats away, which may affect the overall

higher response to the pp’s, although the balance of E(pp) < E(p) is kept in

most of the recordings.

The case of Mazurka Op. 67 No. 2: E(pp) > E(p), and E(pp) >

E(mf).

In Mazurka Op. 67 No. 2, the marking pairs pp-p, and pp-mf have negative τ

values, meaning that a significant number of individual recordings have E(pp) >

E(mf), and E(p) > E(mf). Figure 4.13 shows that the average response to pp

is louder than the response to mf , and to p in most of the recordings. Both pp’s

location in a repeated phrase in the score is shown in Figure 4.14. Observing

how the loudness changes have been reported throughout the recordings, we

notice that the second p in the repeated phrase is softer than the pp although

there is a crescendo marking in the previous measure. This may be related

to the fact that in most recordings the pianists choose to emphasise the phrase

closing, which is where the specific marking is located. Then the mf marking

that follows is louder than the p, but it fails to supersede the robust loudness

values of the pp’s.

p f

p
p p p

p
p p p

m
f f

Markings

0

0.2

0.4

0.6

0.8

1

S
o
n
e
s
 (

n
o
rm

a
lis

e
d
)

Mazurka Op. 67 No. 2

Figure 4.13: Box plots of the dynamic values of the markings belonging to the
pair pp–p and the pair pp–mf in Mazurka Op. 67 No. 2. Positions of other
markings s ∈ S appear in x-ticks as in score sequence. At the background the
curves represent the score–beat dynamic values per recording.
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Figure 4.14: The repeated phrase in Mazurka Op. 67 No. 2 which includes the
pp marking, and the two p markings that follow up.

In summary, the case studies in this section have shown that we cannot assign

fixed thresholds for the different dynamic markings. Rather, the important

factors are the relative loudness of neighbouring markings, the inter-relations

of nearby markings and other score information, the structural location of the

markings, the local shaping of loudness, and generally the creative license of the

performer. The results also suggest that how well the use of loudness complies

with the OLS is related not so much to the number of different markings present,

but rather the local context and memory.

In order to deepen the understanding of the way in which markings are

expressed, the next section focuses on pair-wise marking comparisons as repre-

sented by dynamic change values for each pair of consecutive markings.

4.1.2 Is the Ordinal Loudness Sequence Preserved In Pair-

wise Instances?

In this section we examine individual responses to consecutive pairs of distinct

dynamic markings. We investigate consecutive responses to markings, for ex-

ample, (p, f ) and (f , p), that indicate an ascending or descending dynamic

change, highlighting results contrary to the OLS, meaning that the recordings

follow the loudness change from one dynamic marking to another in the order

as it is defined in Equation 4.1. In the analysis of this section, we consider only

pairs of distinct consecutive markings.

Figure 4.15 shows the log loudness ratios for pairs of distinct consecutive

dynamic markings throughout the forty-four Mazurkas. For each pair of dy-

namic markings, the agreement with the OLS may vary depending on different

expression strategies. Suppose the loudness of the (k− 1)-th dynamic marking,

say a p, is expressed by a pianist as `k−1, and the loudness of the k-th dynamic

marking, say a f , is expressed as `k, then the log ratio (as summarized in Fig-

ure 4.15) is log( `k
`k−1

). The data is found to be more easily compared with the
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log representation.

Observe that there are cases where the mean value of the ratios in the top

(left) plot is lower than 0, meaning that a good number of recordings do not

respect the OLS at those specific markings. Subsequently, there are cases where

the mean value of the ratios in the bottom (right) plot is higher than 0, meaning

that good number of recordings do not adhere to the OLS at those specific

markings.

In Table 4.2 we show the Mazurkas that have marking pairs in which the

average loudness change contradicts the OLS. These correspond to marking

pairs with below 0 log ratios in the top (left) plot and those with above 0 log

ratios in the bottom (right) plot of Figure 4.15. In the parentheses we present

the proportion of the outlier pairs over all consecutive marking pairs present in

that specific Mazurka. We do not consider the sequential pairs that consist of

the same marking.

Ascending pair Mazurka (proportion of outlier pairs)
(pp,p) M33-4 (0.25) M41-1 (0.25) M67-3 (0.11) M68-2 (0.05)
(p,mf ) M50-1 (0.17)
(mf ,f ) M41-2 (0.75)
(p,f ) M41-2 (0.75) M50-1 (0.17) M50-2 (0.14) M67-1 (0.09)

Descending pair Mazurka (proportion of outlier pairs)
(p,pp) M17-2 (0.25) M50-3 (0.08) M67-2 (0.14)
(f ,mf ) M41-2 (0.75)

Table 4.2: List of marking pairs that contradict the OLS with information on
Mazurkas where the pairs appear as well as their proportion with respect to the
total number of pairs in that Mazurka.

Mazurka Op. 41. No. 2 has the largest proportion of outlier pairs. More

specifically, the sequence of the markings in this Mazurka is {p, f , mf , f , ff },
and in all transitions except for the last one, the average loudness change ratio

over all recordings contradicts the OLS. The unpredictability of the loudness

progressions is evidenced in the drastic variations in the loudness curves of the

recordings of this Mazurka as presented in Figure 4.9 in Section 4.1.1.

Moving on, Figure 4.16 shows the average standard deviation of the log

loudness ratios for different marking pairs over all Mazurkas. One would expect

that, as the distance between markings in the OLS increases, the ratio of the

loudness change would also increase. But, this is not the case, as illustrated by

the following observations.

In all cases except for the pairs f –ff and mf –f the average SD is larger in

the ascending direction than the descending one. This means that, more often

than not, the transition between the two markings is more consistent when
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Figure 4.15: The log ratio of the loudness in the transition from a marking mk−1
to a marking mk in the score sequence (mk−1,mk) where `k−1 < `k (top-left)
and `k < `k−1 (bottom-right) following the OLS.
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pianists move from a louder to a softer marking.

pp p mf f ff
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0.2535                       0.2662                                                         0.2146

  0.2921                       0.3219                      0.3406                                                         0.2583

 0.3443                      0.3896                                                         0.4646

  0.3446                                                        0.3564                       0.3159                       0.2349

                                 0.3292                      0.2003                        0.2850                      0.2497

Figure 4.16: The average standard deviation values of the log loudness ratio for
each marking—transitions are from the x-axis to the y-axis.

Note that the five smallest SD values can be found for the sequences (mf ,

pp), (f , ff ), (ff , p), (ff , pp), and (pp, ff ) with corresponding values 0.2003,

0.2146, 0.2349, 0.2497, and 0.2535. This means that the dynamic change is

more consistent for pairs of markings near the upper limit of the OLS upper

limit and at the extremes of the OLS (those having the greatest distance on the

OLS scale).

The above observations relate to loudness transitions between consecutive

and distinct markings, thus dealing with local behaviour. Having considered

the average behaviours of individual markings in the previous section, the next

section will study the evolution of these individual markings over the course of

a performance of a piece.

4.1.3 Analysis of different manifestations of the same dy-

namic markings throughout a piece

We have already observed from the previous findings that the dynamic markings

are not performed in the same way when they appear in the score more than

once. In this section, we answer the question: “How different is the performance

of the same dynamic marking over the course of a piece?” In response to this
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question, we compare the dynamic values corresponding to the same marking

whenever it appears, using two kinds of Analysis of Variance (ANOVA). A one-

way ANOVA is used to compare the means of the dynamic values whenever a

specific dynamic marking appears in the score more than once, while a two-way

ANOVA is used to compare the means of the dynamic values whenever a specific

dynamic marking appears in the score more than once, and the means of each

performer’s response over the observations.

Both ANOVA types test the hypothesis that the data samples are drawn from

populations that do not have the same mean against the null hypothesis that

there is no difference between the groups. A result is statistically significant

if it allows us to reject the null hypothesis. In order to measure statistical

significance of the results, we use the P–value which evaluates how well the

data supports that the null hypothesis is true. A low P–value suggests that

your sample provides enough evidence that you can reject the null hypothesis

for the entire population, meaning in our case that the population means are

likely different.

It is worth noting that, in defense of our use of the P–value, we have merely

used the P–value to determine if there is an effect, and not to quantify the effect

(Nuzzo [2014]). In the future, the effect size and the confidence interval can be

used to convey the magnitude and the relative importance of the effect; this is

currently out of scope of this research.

The two sets of ANOVA results are presented in the “P–value 1” and the

“P–value 2” columns respectively in Table 4.3. P–values less than the chosen

significance level α = 0.05 are highlighted in bold (and coloured red). P > 0.05

means that there is no significant difference between the dynamic values of the

same markings.

Two cases exist where the P–value1 is in bold (and red) and P–value2 is

not. The two cases are the two ff ’s in Mazurka Op. 6 No. 1, and the three

f ’s in Mazurka Op. 67 No. 3. No significant difference was found according

to the one-way ANOVA (P > 0.05), but the groups indeed differ according to

the two-way ANOVA (P < 0.05). This means that the group means across

recordings are similar, but the means diverge when considering the treatments

of markings across recordings.

Figure 4.17 illustrates the responses to the ff ’s in Mazurka Op. 6 No. 1

and to the f ’s in Mazurka Op. 67 No. 3 in separate graphs. The x-axis indexes

the recordings. The y-axis shows the loudness values. In each graph, horizontal

lines show the mean loudness values for each instance of each marking. Different

shapes indicate the dynamic at which each performer realises each marking.

Note in both graphs that the means for each performer differ greatly across

performers, which explains why P–value2 is less than 0.05 for these two cases.
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Mazurka # P–value 1 P–value 2 Mazurka # P–value 1 P–value 2
pp mf

M06-1 5 < 10−10 < 10−10 M17-3 3 9.4285·10−7 < 10−10

M07-1 2 0.3473 0.1574 M67-4 2 2.3081·10−6 < 10−10

M07-3 4 < 10−10 < 10−10 M68-2 7 < 10−10 < 10−10

M24-2 2 0.0134 0.0038 f

M24-4 7 < 10−10 < 10−10 M06-1 3 0.6376 0.5168

M30-3 10 < 10−10 < 10−10 M06-2 6 < 10−10 < 10−10

M30-4 2 0.2532 0.1297 M06-3 5 < 10−10 < 10−10

M33-2 2 0.0015 < 10−10 M07-1 7 < 10−10 < 10−10

M41-1 2 0.5410 0.4526 M07-2 5 6.0140·10−7 ¡·10−10

M50-3 2 < 10−10 < 10−10 M07-3 3 < 10−10 < 10−10

M67-1 2 0.2452 0.0625 M17-1 6 < 10−10 < 10−10

M67-2 2 0.7054 0.4278 M17-2 3 2.3741·10−5 6.3259·10−6

M67-3 4 0.0137 < 10−10 M24-2 5 8.7497·10−7 < 10−10

M68-2 5 < 10−10 < 10−10 M24-4 4 < 10−10 < 10−10

p M30-1 3 2.3096·10−9 < 10−10

M06-1 8 < 10−10 < 10−10 M30-2 4 0.2580 0.0762

M06-2 7 2.4228·10−5 < 10−10 M30-3 11 < 10−10 < 10−10

M06-3 12 < 10−10 < 10−10 M30-4 3 < 10−10 < 10−10

M07-1 3 1.1657·10−4 3.3299·10−8 M33-1 2 6.1271·10−9 < 10−10

M07-2 8 2.0958·10−7 < 10−10 M33-2 7 < 10−10 < 10−10

M07-3 9 < 10−10 < 10−10 M33-4 9 < 10−10 < 10−10

M17-2 2 < 10−10 < 10−10 M41-1 4 < 10−10 < 10−10

M17-3 6 0.0026 7.3828·10−6 M41-2 2 0.0114 < 10−10

M17-4 5 < 10−10 < 10−10 M41-4 3 < 10−10 < 10−10

M24-1 3 3.1148·10−9 1.0286·10−8 M50-1 6 < 10−10 < 10−10

M24-2 5 7.0718·10−6 1.9338·10−9 M50-2 4 3.3993·10−6 < 10−10

M24-3 6 3.4907·10−6 < 10−10 M50-3 5 < 10−10 < 10−10

M24-4 11 < 10−10 < 10−10 M56-1 5 < 10−10 < 10−10

M30-1 5 < 10−10 < 10−10 M56-2 3 < 10−10 < 10−10

M30-2 10 3.3254·10−7 10−10 M56-3 8 < 10−10 < 10−10

M30-4 11 < 10−10 < 10−10 M59-1 3 < 10−10 < 10−10

M33-1 3 0.0014 5.9449·10−5 M59-2 3 < 10−10 < 10−10

M33-3 3 0.3044 0.1860 M59-3 5 < 10−10 < 10−10

M33-4 2 4.3868·10−7 < 10−10 M63-1 4 < 10−10 < 10−10

M41-1 5 < 10−10 < 10−10 M63-3 2 0.2103 0.1473

M41-3 4 < 10−10 < 10−10 M67-1 5 3.7128·10−7 2.7101 ·10−9

M41-4 2 < 10−10 < 10−10 M67-2 2 0.0030 5.3387·10−5

M50-1 8 < 10−10 < 10−10 M67-3 3 0.1370 < 10−10

M50-2 10 < 10−10 < 10−10 M67-4 4 2.4282·10−6 < 10−10

M50-3 9 < 10−10 < 10−10 M68-1 6 < 10−10 < 10−10

M56-1 8 < 10−10 < 10−10 M68-2 2 0.4895 0.2835

M56-2 4 < 10−10 < 10−10 M68-3 2 < 10−10 < 10−10

M56-3 7 < 10−10 < 10−10 ff

M59-1 5 < 10−10 < 10−10 M06-1 2 0.0937 0.0044

M59-2 2 < 10−10 < 10−10 M06-3 4 0.0510 8.3895·10−5

M59-3 6 < 10−10 < 10−10 M07-3 2 0.5328 0.3838

M63-1 4 < 10−10 < 10−10 M24-4 11 < 10−10 < 10−10

M63-3 2 0.1518 0.1277 M30-3 3 5.2395·10−5 < 10−10

M67-1 5 < 10−10 < 10−10 M30-4 2 0.2045 0.0601

M67-2 5 < 10−10 < 10−10 M33-2 3 1.9163·10−8 < 10−10

M67-3 3 0.4995 0.2927 M59-2 2 0.0096 1.1610·10−4

M67-4 5 < 10−10 < 10−10 M67-1 4 0.9314 0.8267

M68-1 6 < 10−10 < 10−10 M67-3 3 0.7174 0.6024

M68-2 7 < 10−10 < 10−10

M68-3 5 9.8827·10−6 < 10−10

Table 4.3: Results for one-way (P–value 1) and two–way (P–value 2) ANOVA
tests for marking groups per Mazurka. P < 0.05 indicates the conclusion that
the data means of the groups of values that correspond to a specific dynamic
marking differ. Symbol “#” indicates the number of the same markings that
appear in the specific Mazurka.
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Figure 4.17: The case of the loudness values of groups of dynamic markings (ff ’s
in Mazurka Op. 6 No. 1—top, and f ’s in Mazurka Op. 67 No. 3—bottom)
that the one-way ANOVA shows no significant difference in the marking group
means (dotted lines), but the two-way ANOVA which adds the diversity in the
marking group means per pianist, shows the opposite.

In order to further analyse the cases where the markings appeared in the

score of the same Mazurka more than once and their treatments are found to

be different, we implement the multiple comparison test of means. Specific

cases are highlighted in Figure 4.18. In each plot in Figure 4.18, the confidence

interval of an instance of a marking is shown as a horizontal line. The length of

each line for each figure is the same because the confidence interval is computed

for the marking in that Mazurka. The vertical lines delineate author-selected

highlight regions. We consider each plot in turn:

Mazurka Op. 6 No. 3, p’s: the markings between the vertical bars—p4,

p5, p6, and p7—are part of a repeated phrase with alternating ff ’s and p’s, as

shown in Figure 4.19; as a result, their treatment is starkly different than that

for the other p’s. Mazurka Op. 24 No. 4, p’s: the first and last marking are

almost perfectly aligned, giving the impression of an overall loudness stability,

but the dynamics of this marking varies greatly in between.

Mazurka Op. 63 No. 1, f ’s: the first f is significantly louder than the ones
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Figure 4.18: Multiple comparison of the means for the groups of the same
markings: twelve p’s in Mazurka Op. 6 No 3, eleven p’s in Mazurka Op. 24
No. 4, four f ’s in Mazurka Op. 63 No. 1, five pp’s in Mazurka Op. 68 No. 2,
four pp’s in Mazurka Op. 7 No. 3, and three f ’s in Mazurka Op. 17 No. 2 .
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Figure 4.19: The repeated phrase in Mazurka Op. 6 No. 3 where the markings
p4, p5, p6 (repetition of p4), and p7 (repetition of p5) appear.

that follow. Mazurka Op. 68 No. 2, pp’s: the first pp is significantly softer than

the ones that follow. In both cases, except for the outlying starting response,

the means of the responses to other instances of the marking are similar.

Mazurka Op. 7 No. 3, pp: the responses to the pp markings are decreasing

over time. Mazurka Op. 17 No. 2, f : the responses to the f markings are

increasing over time. These two cases demonstrate two possible responses to

sequences of the same markings.

In summary, we have studied the ways in which dynamics evolve over time

using one- and two-way ANOVA tests and multiple comparison tests of means.

We have shown that, most of the time, there exists a significant difference

between dynamic values for the same markings that appear in the score more

than once. We rejected the hypothesis that the means are drawn from the same

population when analysing mean responses to the same marking, as well as

variations in individual recordings. Also, we have shown the kinds of patterns

that emerge in responses to sequences of the same dynamic markings across

scores.
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4.2 Conclusions - Discussion

In this chapter we have investigated the relationship between loudness levels

and dynamic markings in the score. The statistical analysis presented rejects

hypotheses such as ”a dynamic marking is performed in the same way when

it appears in the score more than once” and “each performance follows the

dynamic structure of the piece as indicated by the score markings”. Our findings

underpin the statement that while modern interpretations are more faithful to

the score [Rink, 2002, p.4],the manifested sound for the same effect, such as

a crescendo, can be distinct and vary greatly between performers, between

performances, and within the same performance.

In addition, our findings reveal that one simple rule for each dynamic mark-

ing cannot suffice to define its possible dynamic levels; in fact, the realised dy-

namics are constrained by many other factors, the most important ones of which

are: the current, previous, and next dynamic markings; the distance from the

current marking to the previous and next markings; the nearest non-dynamic

marking annotated between the previous and current or next dynamic marking,

such as crescendo; and, any qualifying annotation appearing simultaneously

with the current dynamic marking, such as dolcissimo.

The factors above have played an important role in the study that is pre-

sented in Chapter 7 (Kosta et al. [2016]); they constitute the list of features

that have been extracted in order to implement machine-learning approaches

firstly to predict loudness values corresponding to different dynamic markings

and musical contexts and secondly to predict dynamic markings corresponding

to different loudness levels and musical contexts.

Two important points considering our analysis are the following. Firstly,

possible deviations from the score occur, mostly playing notes in different oc-

tave as written or applying rubato in position that is not indicated. Secondly,

it is not clear what an analysis of the dynamics of a performance represents

when based on an audio recording. Are dynamics either the performer’s inten-

tion or the audio engineer’s perception? The mastering of the sound during

the production process can indeed affect the result of what we actually per-

ceive while listening to the recording, which could be different from what was

actually played. In our case, the data is taken from studio or professional live

recordings and the musician’s consent to the final result is assumed. The above

point to the inherent complexity of the subject matter under investigation; as

such, the results reported should be seen as providing a sound basis for a more

sophisticated approach to understanding the relativity of expression of dynamic

markings.
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Chapter 5

Interlude: An analysis of

outliers in performed

loudness transitions

In this chapter, we investigate the relationship between dynamic markings in

the score, such as p (piano), and performed loudness. In particular, we exam-

ine the performed loudness for consecutive pairs of distinct dynamic markings.

The main aim of this study is to understand expressive variations in a musi-

cian’s playing style relative to other musicians by analysing outliers in the ways

performers navigate transitions between dynamic markings.

More specifically, we have conducted two experiments, the first one explores

unusual (sometimes contrarian) interpretations of dynamic changes from one

marking to the next, and the second investigates unusual interpretations of

dynamic changes through entire performances. This study is not the first to

explore extreme performances. An example in case is a detailed explanation

of Cortot’s unique playing style in his recording of Chopin’s Berceuse, Op. 57

interpretation (Leech-Wilkinson [2015]).

For this study, the whole dataset as described in Chapter 3 has been used.

By the time we have the dynamic value that corresponds to each marking, we

create our data in a pairwise manner by subtracting from the dynamic value lb

of marking b the dynamic value l(b−1) of the previous marking. The result is

discretised as follows:
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f(x) =



2, x > 0.5

1, 0 < x ≤ 0.5

0, x = 0

−1, −0.5 ≤ x < 0

−2, x < −0.5

(5.1)

where the input x = lb − l(b−1) for every marking position b in each Mazurka.

The methodology relies on the linearity of the sone values so that we are able

to create levels of a same linear distance. This discretisation steps allows us to

handle the noisy loudness data.

This chapter describes two experiments: the first deals with outliers in in-

terpretations of dynamic changes from one marking to the next; the second

investigates unusual interpretations of dynamic changes for entire recordings.

A marking pair is considered an outlier if the value of its corresponding dy-

namic change from one marking to the next lies in the top or bottom quartile

of the distribution of the dynamic change values. A recording is considered an

outlier if it is grouped into a cluster having the least number of recordings for

that piece.

The remainder of this chapter is organized as follows: In Sections 5.1, and 5.2

we present the description and the results from the two experiments, respec-

tively; finally in Section 5.3 we present the conclusions and further discussion.

5.1 Outliers in individual marking pair transi-

tion

This experiment explores unusual interpretations of loudness changes across

marking pairs. We compare dynamic levels at different pairs of markings that

appear in the scores. We consider consecutive pairs (l(b−1), lb), which represent

the transition from the marking at position b1 to that at position b. A marking

pair is an outlier if its corresponding dynamic change lies in the upper or lower

quartile of such changes. Thus, outliers represent unusual changes in dynamics

from a particular marking to the following one, for example getting softer in a

transition where in most recordings the music gets louder.

The results indicate that the highest proportion of outliers appear at the

transitions (p, f), (f, p), (pp, f), and (p, pp), with proportions over the total

number of outliers equal to 0.1969, 0.1710, 0.0774, and 0.0651, respectively. We

observe two ways for outliers to occur: the first is to overshoot or undershoot

the change from one marking to the next in relation with the most common
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trends; the second is to contradict the change from one marking to the next in

opposition to the most common behaviour. Figure 5.1 shows how the outliers are

distributed, giving their proportions for every marking-pair over all Mazurkas

where the specific transition occurs. Note that no data points exist for the pairs

(mf, ff), (mf, pp), and (ff, mf) as these marking pairs do not appear in the

Mazurkas we analyse.
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Figure 5.1: Distribution of outlier transitions between each dynamic marking
pair (circle=undershoot, rhombus=overshoot, square=contradictory).

A transition that includes many outliers is the (f, p) at the beginning of

Mazurka Op. 59 No. 3. This transition had a mean value of −1, but over

fifty-six recordings, eleven recordings overshot to −2, ten recordings made a

contradictory +1 transition, and one recording even had an extreme contra-

dictory transition of +2. The score where the specific markings are located is

presented in Figure 5.2. It is worth mentioning that the specific pair has the

biggest portion of outliers.

If we consider only pianists that have recorded more than thirty (out of the

forty-four) Mazurkas, Cortot is the pianist with the highest number of outliers,

as shown in Table 5.1.

Pianist # Outliers # Recordings # Pairs Ratio
Cortot 74 42 472 0.1568
Magin 43 35 379 0.1135
Rangell 47 37 416 0.1130

Table 5.1: Pianists whose recordings had the highest proportion of outlier tran-
sitions.

Table 5.2 presents the recordings with the highest rate of outliers. Rubin-

stein’s recording of Mazurka Op. 30 No. 1, Ashkenazy’s Op. 59 No. 2, and
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Figure 5.2: Score excerpt from Mazurka Op. 59 No. 3 where the markings
of the first pair (f, p) appears. This transition has the highest proportion of
outliers.

Block’s Op. 68 No. 3 appear on the list.

Mazurka Pianist (year of recording) # Outliers # Pairs Ratio
M30-1 Rubinstein (1952) 5 7 0.714
M59-2 Ashkenazy (1999) 5 7 0.714
M68-3 Block (1995) 5 7 0.714

Table 5.2: Recordings having the highest proportion of outlier transitions.

Mazurka Op. 24 No. 2 has the highest proportion of outliers. Figure 5.3

displays the dynamic values for all recordings of Mazurka Op. 24 No. 2; outlying

transitions are highlighted with solid lines. In some cases, like the transition

from the second to the third marking, there are no outliers despite the diversity

of the dynamic behaviour. The reason is that two distinct sub-populations of

the values have been created at the specific cases.

5.2 Recordings in outlier dynamic clusters

One question that follows naturally from the experiment that is described in

Section 5.1 is how varied the loudness behaviour across single recordings is.

In order to investigate this question, we map each recording to a time series
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Figure 5.3: Loudness graphs for performances of Mazurka Op. 24 No. 2 (the
one having the highest proportion of outliers); highlighted in bold are outlier
transitions.

of discretised values of the function f defined in Section 5.1. Each recording

then becomes a curve with discretised points in score time. The purpose of

the procedure above is to create meaningful clusters of curves so as to further

analyse the resulting shapes, and distinguish unusual behaviours.

To cluster the curves obtained, we implemented the k-means machine learn-

ing method. The number of clusters, k, is defined using the “gap statistic”

by Tibshirani et al. [2001]; we further limit k to the range [3, 8] to ensure a

reasonable number of recordings appear in each cluster, but also provide the

flexibility of detecting clusters that include curves of an unusual behaviour at

the same time.

The result of this process is a number of loudness behaviour clusters for each

Mazurka. Clusters with the least number of recordings are labelled as outliers;

then, we create a list of pianists that appear at these outlier clusters. Table 4

presents the top three outlier cluster pianists whose recordings appear in more

than thirty different Mazurkas.

Pianist (year of recording) # Outlier clusters # Recordings Ratio
Cortot (1951) 12 42 0.2727
Poblocka (1999) 9 33 0.2727
Sztompka (1959) 8 38 0.2105

Table 5.3: Pianists having the highest proportion of recordings in outlier clus-
ters.

Magin is the only pianist whose recordings were the single element which was

contained in a cluster at the cases of Mazurka Op. 7 No. 1 and Mazurka Op.

33 No. 3. Figure 5.4 highlights the loudness behaviour of Magin’s recordings

of both Mazurkas, and how they differ from the other recordings. Figure 5.4
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shows the centroid for each cluster, thus the discretised dynamic value may not

be equal to an outcome of the function f .

Magin appears to differ from the other recordings in interpreting the two

last transitions in Mazurka Op. 7 No. 1, these are from f to pp and pp to

f of the last three markings over thirteen markings in total. This observation

essentially shows that however the values of Magin’s cluster are relatively close

to the corresponding centroids of other clusters, the miss-interpretation of the

last pp marking was crucial for separating the whole recording from the others.

In Mazurka Op. 33 No. 3 Magin interprets all four markings in a contrary way of

the centroid points that most of the other recordings form and this observation

explains the reason why a separate cluster forthe unique recording has been

created.
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Figure 5.4: Loudness transition clusters found for Mazurka Op. 7 No. 1 (top)
and Op. 33 No. 3 (bottom); in each case, the cluster comprising of only Magin’s
recording is shown in solid bold lines, the cluster having the highest number of
recordings is shown as dotted bold lines.

Next, we focus on when there are commonalities in unusual interpretations.

For this, we consider pianists whose recordings are in outlier clusters for every

Mazurka, and we compute the number of times two pianists’ recordings are
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classified into the same outlier cluster for all Mazurkas. The results are shown

in Table , where we give the number of outlier clusters containing the specific

pianist pairs. We focus on pairs that co-occur in outlier clusters for more than

twenty Mazurkas.

Pianist Fliere Milkina Ezaki Barbosa
Chiu 0 21 0 21
Smith 27 0 0 0

Rubinstein 0 26 0 0
Kushner 0 0 21 0

Czerny-Stefanska 0 0 0 21

Table 5.4: Pianists whose recordings co-occur in more than twenty outlier clus-
ters.

Table 5.4 shows higher degrees of similarity in performed loudness between

pianists Chiu–Milkina, Chiu–Barbosa, Smith–Fliere, Rubinstein–Milkina,

Kushner–Ezaki, and Czerny-Stefanska–Barbosa. Thus, although certain pi-

anists are more often in outlier clusters, the ways in which they differ in their

loudness interpretations often follow shared patterns.

5.3 Discussion

In this study we have analyzed outliers in loudness interpretations in piano

recordings. The results show that we are able to distinguish specific dynamic

marking pairs which have a high proportion of outliers. In addition, we are

able to detect recordings for which the interpretations do not follow the emerg-

ing patterns. There is considerable agreement between an interpretation and

information derived from a score, nevertheless it is a matter of the pianists’

musical choices to control a sense of longer-term intensity modulation. In any

case, the different choices followed by the pianists hold the key to a performance

stimulated by creativity and imagination.
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Chapter 6

A change-point approach

towards representing

musical dynamics

Summary: This chapter proposes a novel application of change-point tech-

niques to the question of how dynamic markings in a score correspond to per-

formed loudness. Firstly, an exploratory study is presented: we apply and com-

pare two change-point algorithms −Killick, Fearnhead, and Eckley’s Pruned Ex-

act Linear Time (PELT) method, and Scott and Knott’s Binary Segmentation

(BS) approach−to detecting changes in dynamics in the Mazurka recordings.

Dynamic markings in the score, assumed to correspond to change points, serve

as ground truth. The PELT algorithm has a higher average best F-measure

compared to the BS algorithm, it also results in a smaller average Hausdorff

distance. Secondly, a study is presented for a thorough analysis on the change-

point positions derived using PELT and their relation to the corresponding

score position. The results show that significant dynamic score markings do

indeed correspond to change points, position of a text indication for change in

expression or tempo can be a change point, and change points at score positions

without dynamic markings demarcate salient structural events.
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The aim of the studies presented in this chapter are to understand the con-

nection between absolute loudness values and intended dynamics, which includes

but are not only the notated markings.

In the first exploratory study, we evaluate the following steps: we analyze the

dynamic values time series extracted from music audio. Using a change-point

detection method, we estimate the position where the statistical properties of

the sequence change. We compare and contrast the output of two change-point

algorithms: the Pruned Exact Linear Time (PELT) algorithm by Killick et al.

[2012] and the Binary Segmentation (BS) algorithm by Scott and Knott [1974].

We evaluate the algorithms by comparing the change points detected with the

location of the dynamic markings obtained from the score as ground truth.

In the second study, we do not use the position of the dynamic markings as

ground truth data; instead, the evaluation of the results focuses on the analysis

of the meaning of the change point positions found, without using the dynamic

marking locations as ground truth.

The chapter is organized as follows: Section 6.1 explains the change-point

techniques that have been explored; Section 6.2 presents the methodology fol-

lowed for extracting the change points; Section 6.3 provides the results of the

comparison between the change-point methods. Section 6.4 presents the analy-

sis of the change-points positions derived from PELT. The latter sections include

discussion subsections (Section 6.3.1 and Section 6.4.1, respectively).

6.1 Change-points techniques

In this section, we present the techniques for detecting changes in our data that

have been explored in our studies.

Binary Segmentation (BS) versus Pruned Exact Linear Time (PELT)

Using loudness time series, our aim is to detect points where changes to the

underlying statistical properties of the data occur. The null hypothesis H0 cor-

responds to the non-existence of a change point. Detection of a change point

negates the null hypothesis H0. The general likelihood ratio-based approach

to change-point detection provides the asymptotic distribution of the likelihood

ratio test statistic for a change in the mean and in the variance of normally

distributed observations (Killick et al. [2010]).

We use the R package “changepoint” by Killick and Eckley [2014] to in-

vestigate the application of two multiple change-point search methods, BS and

PELT, to the loudness time series. For both algorithms, the “meanvar” function

was implemented, meaning that we detect the changes for both mean and vari-

ance for the datasets. Essentially, through variance, we capture the horizontal
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density of the data, an example being the audio excerpt presented in Figure 6.1):

The same raw sone values have been segmented by levels from changes in mean

(a), levels from changes in variance (b), and levels from changes in both mean

and variance combined. The highlighted box in all sub-figures show that there

is a possibility an extra change point to been detected in (c), following the

information from the variance shown in (b).

Figure 6.1: An example change-point detection result from the same audio
excerpt (raw data in sones). (a): levels from changes in mean; (b): levels
from changes in variance; (c): levels from changes in both mean and variance
combined.

In both the BS and PELT algorithms, the aim is to minimize

m+1∑
i=1

[C(y(τi−1+1):τi)] + βf(m), (6.1)

where τ is a time point which separates two groups of data {y1, ...yτ} and

{yτ+1, ..., yn} having different statistical properties, C is the log-likelihood cost

function for a segment, and βf(m) is a penalty to avoid over fitting, where

f(m) = m.

The BS algorithm applies a binary divide and conquer approach. It divides

the data each time a change point is found, and applies the same process to the

two new subsets. It is computational efficient; however, because the location of

a change point depends on that of other change points, the BS algorithm gives

an approximate solution as the whole data set is not scanned each time.

The PELT algorithm, on the other hand, provides an exact solution as it

is based on dynamic programming. The dynamic programming approach is

further helped by a pruning step which makes its computational cost linear in

the data Killick et al. [2012]. As the data set grows, the number of change

points increases, meaning that the change points thus obtained also tend not to

be closely bunched.
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6.2 Change-points extraction

For the purpose of the experiment, we follow the set up as described in Sec-

tion 6.1 for both BS and PELT methods: in order to extract the change points,

we use the R package “changepoint” by Killick and Eckley [2014], choosing

the options BinSeg (for BS) and PELT (for PELT) and we implement the

“meanvar” function. We use the raw sone values for the whole dataset of audio

recordings as it is presented in Chapter 3.

In the case of the PELT method, we set the penalty values to alter in

[90, 1200] for every time series. In order to accommodate an adaptive estimation

of the number of change points for each time series, we have implemented the

heuristic described by Lavielle [2005]: the method introduces a contrast function

J and the number of change points can be estimated by minimizing a penalized

version of J ; the minimum penalized contrast (MPC) estimate of the number

of change points is defined as the greatest value of this number such that the

second derivative of J is greater than a given threshold S. Intuitively when a

true change-point is added to a segmentation then the fit of the model to the

data is much improved. As more and more true change-points are added the

fit continues to improve. In contrast, when a false change-point is added the

improvement to the fit is small. Thus if we look at the rate of change of the

fit this can help indicate what the true number of changes for a series is. This

is what we do using the threshold S to determine the cut-off between true and

false changes.

For an nth recording of an mth Mazurka having a frame sequence (Amn
) and

length |(Amn
)|, the threshold value is calculated by the following formula:

S = k · |(Amn
)| · log |(Amn

)|. (6.2)

The selection of the k values is defined for each Mazurka as shown in Table 6.1.

Mazurka M06-1 M06-2 M06-3 M07-1 M07-2 M07-3 M17-1 M17-2 M17-3 M17-4 M24-1
index

k 7 · 10−7 9 · 10−7 1 · 10−7 3 · 10−7 5 · 10−6 1 · 10−7 2 · 10−7 2 · 10−7 9 · 10−7 4 · 10−6 8 · 10−7

Mazurka M24-2 M24-3 M24-4 M30-1 M30-2 M30-3 M30-4 M33-1 M33-2 M33-3 M33-4
index

k 8 · 10−6 4 · 10−6 3 · 10−6 1 · 10−7 9 · 10−7 2 · 10−7 7 · 10−7 1 · 10−7 3 · 10−7 1 · 10−8 3 · 10−6

Mazurka M41-1 M41-2 M41-3 M41-4 M50-1 M50-2 M50-3 M56-1 M56-2 M56-3 M59-1
index

k 1 · 10−7 7 · 10−7 1 · 10−7 2 · 10−7 4 · 10−7 7 · 10−7 9 · 10−7 6 · 10−7 1 · 10−7 9 · 10−7 1 · 10−7

Mazurka M59-2 M59-3 M63-1 M63-3 M67-1 M67-2 M67-3 M67-4 M68-1 M68-2 M68-3
index

k 9 · 10−7 9 · 10−7 6 · 10−7 9 · 10−6 1 · 10−6 4 · 10−6 2 · 10−6 2 · 10−7 1 · 10−6 9 · 10−6 2 · 10−7

Table 6.1: The value of the parameter k in the threshold formula that has been
used for all the recordings per Mazurka. Mazurkas are indexed as “M<opus>-
<number>.”

Essentially, we want to constrain the number of detected change points in all
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the corresponding recordings by adjusting a single k value per Mazurka. The k

values above provide a small standard deviation of the total number of change

points detected in all the respective recordings. The average of these standard

deviation values is 9.94.

In the case of the BS method, we compute the change points using the

selected penalty value derived from the result of the PELT method. We also

consider as maximum number of change points detected the number of change

points selected from the PELT method. This is due to the fact that we want to

extract results that are comparable.

6.3 Comparison results

In this section, we describe and report the results of the tests we conducted using

the PELT and BS algorithms in answering the question of whether change points

are located on the same score beat locations as dynamic markings. Assuming

that change points correspond to the dynamic markings in the score and the

dynamic markings are change points, the positions of the score markings serve

as ground truth for the change points that have been derived for each recording

as described in 6.2. Comparing the change points detected and the positions

of the score dynamic markings, we identify the test that returns the highest

F-measure:

F =
2PR

P + R
, (6.3)

where precision value P, is the number of true positives (i.e. the number of

change points that are in locations of markings) divided by the total number of

change points, and recall value R, is the number of true positives divided by the

total number of markings. A value of 1 for F-measure indicates that all change

points are markings, a value of 1 for the precision value P indicates that all the

change points correspond to dynamic markings and a value of 1 for the recall

value R indicates that all markings are captured by change points.

Table 6.2 reports the F-measure, the precision value P and the recall value

R as an average of all recordings per Mazurka. Also it reports the maximum

values that have been captured per Mazurka.

In all pieces, the average F-measure value for the PELT algorithm (10.8%)

is better than that of the BS algorithm (8.3%). Bold numbers indicate which

method has the highest average F-measure per Mazurka.

To determine how closely the change points estimate the dynamic marking

positions, we compute the Hausdorff distance between the change points and
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BS PELT

Mazurka F P R Hd F P R Hd

index avg max avg max avg max avg avg max avg max avg max avg

M06-1 0.09 0.22 0.08 0.19 0.11 0.35 32.94 0.11 0.31 0.08 0.27 0.17 0.41 29.03

M06-2 0.14 0.33 0.12 0.50 0.19 0.50 35.71 0.13 0.32 0.09 0.26 0.22 0.50 22.52

M06-3 0.26 0.45 0.25 0.43 0.29 0.52 22.38 0.32 0.55 0.28 0.64 0.41 0.67 16.55

M07-1 0.11 0.28 0.08 0.25 0.17 0.50 40.63 0.11 0.18 0.06 0.11 0.36 0.67 35

M07-2 0.14 0.32 0.12 0.26 0.19 0.50 60.11 0.15 0.30 0.10 0.19 0.31 0.75 33.40

M07-3 0.14 0.30 0.14 0.36 0.16 0.41 29.31 0.19 0.34 0.16 0.31 0.26 0.41 23.67

M17-1 0.10 0.24 0.07 0.25 0.22 0.67 36.09 0.13 0.30 0.08 0.18 0.40 1 35.84

M17-2 0.03 0.15 0.02 0.10 0.08 0.40 33.32 0.06 0.21 0.04 0.14 0.19 0.60 29.80

M17-3 0.02 0.14 0.01 0.10 0.03 0.22 83.72 0.02 0.10 0.02 0.08 0.06 0.22 50.44

M17-4 0.01 0.10 0.01 0.07 0.03 0.17 60.82 0.03 0.14 0.02 0.08 0.12 0.50 51.57

M24-1 0.06 0.14 0.03 0.08 0.20 0.75 176.57 0.05 0.12 0.03 0.07 0.26 0.50 187.63

M24-2 0.05 0.19 0.04 0.22 0.07 0.25 60.88 0.06 0.18 0.04 0.11 0.10 0.42 55.34

M24-3 0.03 0.18 0.02 0.13 0.06 0.33 47.87 0.12 0.32 0.07 0.19 0.39 1 38.21

M24-4 0.08 0.20 0.12 0.33 0.07 0.19 96.02 0.13 0.24 0.11 0.21 0.17 0.31 24.26

M30-1 0.16 0.52 0.12 0.38 0.29 0.86 31.98 0.21 0.36 0.14 0.23 0.49 0.86 26.18

M30-2 0.07 0.28 0.07 0.25 0.08 0.31 35.74 0.15 0.35 0.12 0.29 0.20 0.46 25.78

M30-3 0.22 0.39 0.21 0.35 0.23 0.50 35.35 0.30 0.52 0.25 0.47 0.39 0.67 31.20

M30-4 0.04 0.17 0.03 0.20 0.04 0.24 42.76 0.08 0.22 0.06 0.18 0.11 0.35 30

M33-1 0.12 0.44 0.07 0.31 0.28 0.80 52.06 0.09 0.28 0.05 0.17 0.27 0.80 56.19

M33-2 0.10 0.30 0.09 0.28 0.13 0.40 71.36 0.12 0.31 0.08 0.20 0.27 0.73 68

M33-3 0.03 0.18 0.02 0.11 0.10 0.67 46.30 0.05 0.16 0.03 0.09 0.29 1 46.17

M33-4 0.12 0.50 0.10 0.46 0.18 0.64 100.87 0.12 0.38 0.09 0.33 0.22 0.55 81.29

M41-1 0.06 0.23 0.04 0.20 0.09 0.27 45.69 0.08 0.24 0.06 0.16 0.15 0.45 42.89

M41-2 0.06 0.20 0.04 0.12 0.17 1 38.02 0.07 0.19 0.04 0.11 0.24 1 41.21

M41-3 0.07 0.28 0.05 0.17 0.18 0.80 31.54 0.09 0.24 0.05 0.14 0.28 0.80 27.92

M41-4 0.04 0.42 0.03 0.33 0.06 0.57 66.73 0.04 0.24 0.03 0.17 0.08 0.43 66.73

M50-1 0.10 0.28 0.09 0.25 0.13 0.36 33.89 0.14 0.31 0.11 0.28 0.21 0.43 23.36

M50-2 0.04 0.19 0.03 0.17 0.06 0.36 57.55 0.07 0.23 0.05 0.17 0.12 0.36 42.75

M50-3 0.04 0.12 0.03 0.09 0.06 0.24 77.18 0.05 0.15 0.03 0.11 0.08 0.24 83.87

M56-1 0.04 0.13 0.02 0.09 0.07 0.23 38.44 0.07 0.16 0.05 0.10 0.17 0.38 39.21

M56-2 0.07 0.30 0.05 0.21 0.15 0.67 95 0.07 0.29 0.04 0.18 0.21 0.83 95

M56-3 0.02 0.10 0.01 0.08 0.02 0.13 99.75 0.02 0.11 0.01 0.08 0.03 0.20 93.98

M59-1 0.02 0.09 0.01 0.06 0.05 0.29 159.34 0.03 0.11 0.02 0.07 0.13 0.43 155

M59-2 0.05 0.16 0.03 0.11 0.10 0.38 63.95 0.06 0.19 0.04 0.13 0.15 0.38 64.04

M59-3 0.03 0.20 0.02 0.13 0.06 0.40 65.05 0.06 0.24 0.04 0.17 0.14 0.40 64.04

M63-1 0.19 0.37 0.14 0.28 0.29 0.56 53.79 0.19 0.37 0.13 0.28 0.33 0.67 53.88

M63-3 0.03 0.20 0.02 0.14 0.07 0.33 63.29 0.02 0.17 0.01 0.10 0.11 0.67 63.58

M67-1 0.10 0.33 0.17 0.67 0.08 0.22 49.34 0.18 0.35 0.15 0.38 0.23 0.50 14.80

M67-2 0.06 0.26 0.05 0.22 0.09 0.56 40.68 0.06 0.20 0.04 0.13 0.12 0.44 30.97

M67-3 0.11 0.30 0.08 0.27 0.16 0.58 22.70 0.18 0.37 0.13 0.33 0.35 0.92 19.68

M67-4 0.04 0.19 0.03 0.15 0.07 0.27 51 0.07 0.18 0.05 0.11 0.17 0.45 33.6

M68-1 0.11 0.53 0.10 0.63 0.13 0.73 45.29 0.12 0.45 0.08 0.35 0.27 0.73 26.89

M68-2 0.09 0.24 0.08 0.24 0.11 0.35 29.02 0.17 0.40 0.12 0.29 0.29 0.65 23.06

M68-3 0.17 0.40 0.12 0.38 0.33 0.71 23 0.20 0.45 0.13 0.33 0.52 0.86 23

Table 6.2: Average and maximum F-measure, average and maximum precision
value P, average and maximum recall value R and average Hausdorff distance
values for the change points detected to all recordings per Mazurka. Mazurkas
are indexed as “M<opus>-<number>.
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the marking positions:

dH(M,C) =

{
sup
m∈M

inf
c∈C

d(m, c), sup
c∈C

inf
m∈M

d(m, c)

}
, (6.4)

where M and C are the sets of score-beat positions of the markings and the

change points, respectively. The distance is equal to zero when there is a perfect

match, and it is small when the maximum distance from m ∈M to the closest

point c ∈ C is small.

For each threshold in BS and PELT, we report the minimum Hausdorff

distance in Table 6.2. For the PELT algorithm, the average Hausdorff distance

is 48.2 and for BS is 56.4.

6.3.1 Conclusions and discussion

In this study we have introduced the use of change-point detection methods

to determining changes in performed dynamic levels. We have shown that the

PELT change-point algorithm performs better on average for identifying the

positions of dynamic markings than the BS method. The Hausdorff distance

shows that the PELT algorithm results in change points that are closer to the

dynamic marking positions.

It is noticeable that the F-measure values are low in any case, however this is

a first attempt to explore such music boundaries. One direction to interpret the

results is the following observation. A common phenomenon was the presence of

change points that appear in many recordings however they are not near to the

markings that were tested. We found that a number of these popular change

points corresponded to events such as the start of a crescendo, a calando or

a poco rit. In the following section we present a more systematic analysis of

such cases.

6.4 Analysis of change-points locations

In this section we provide a thorough analysis of the meaning of change points

extracted by PELT in terms of what they represent in the score. Each plot in

Appendix B shows the bar chart of the change points across score-time in beats

for all recordings per Mazurka, as well as the local maxima that are established,

represented as peaks. The peaks that amass a number of change points being

equal or more than the 2
5 of the total number of recordings are highlighted by

inserting the expressive score marking appearing in the specific beats. In the

cases of Mazurka Op. 24 No. 2 and Mazurka Op. 63 No. 3 there was not any

peak amassing such number of change points. In the cases where there is no
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marking in that beat, we present the closest marking appearing in the range of

a bar. In the cases where there is no marking in the range of a bar, a dash line is

inserted. In Table 6.3 we have gathered all the score markings and expressions

that have been present in change-point peak locations.

Dynamic markings pp, p, mf, f, ff
crescendo, diminuendo

Expressions calando, con forza, dolce, perdendosi, espressivo
sotto voce, poco piu vivo

Tempo markings ralletando, ritenuto, tenuto, a tempo, Tempo I
rubato, slentando

Accents sf, fermata

Table 6.3: Markings that have been present in the score in positions of change-
point peaks; by peaks we define the positions that amass a number of change
points being equal or more than the 2

5 of the total number of recordings in
a specific Mazurka, meaning that more than this amount of recordings had a
change point at that specific position.

Figure 6.2 presents the distribution of the meaning of all peaks of the change-

points bar charts according to what appears in the score at the given position. A

dynamic marking is more likely to appear, followed by a crescendo or diminuendo

boundary position. The distribution of an accent follows up, the options of which

are presented in Table 6.3, then the indication “other” which refers to unlabeled

score positions, mostly a phrase or a motif boundary. These are followed by the

distribution of a change point being a tempo marking or an expression, again

the options of which are presented in Table 6.3.

Figure 6.2: The distribution of what each of the peaks at change-point positions
represent in the score.
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Next we further investigate the locations where there is a peak however there

is not any specific marking that indicate a change in the expressive style at the

specific position (option “other” in Figure 6.2). More specifically, we count

sixty-two such situations in our results. If we look through the score, we notice

that most of the cases these positions indicate either a boundary of a phrase or

a boundary of a motif in the melody. For each of the two cases, we introduce

an example. In Figure 6.3 a phrase boundary from Mazurka Op. 33 No. 2 is

presented; the position of the beat which is identified by a box was a change

point for thirty-one out of fifty recordings. This example of a phrase boundary

represents most of such events as it highlights the end of the melody, followed

by score beats that include only the accompaniment. In Figure 6.4 a motif

boundary from Mazurka Op. 30 No. 1 is presented where the box identifies

the position of the score beat that was a change point for thirty-three out of

fourty-five recordings.

Figure 6.3: One phrase boundary detected in Mazurka Op. 33 No. 2 in beat
23–highlighted in box.

Figure 6.4: One motif boundary detected in Mazurka Op. 30 No. 1 in beat
155–highlighted in box.

6.4.1 Discussion

In the expanded study we introduce a more systematic way of detecting the

change points in the loudness time series of our data. We then analyse the

most popular locations of the change points across the recordings. The results

show that positions having a dynamic marking in the score are captured. The
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positions where a motif or a phrase boundary appear mostly come along with

a change in tempo as well. This is a phenomenon that can be further analysed,

especially by investigating an analogy to a tipping point as described in Chew

[2013].
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Chapter 7

Mapping between dynamic

markings and performed

loudness:

A machine learning

approach

Summary: In this chapter, we investigate the relationship between dynamic

markings in the score and performed loudness by applying machine-learning

techniques—decision trees, support vector machines, artificial neural networks,

and a k-nearest neighbor method—to the prediction of loudness levels corre-

sponding to dynamic markings, and to the classification of dynamic markings

given loudness values. The methods are applied to forty-four recordings of

performances of Chopin’s Mazurkas each by eight pianists. The results show

that loudness values and markings can be predicted relatively well when trained

across recordings of the same piece, but fail dismally when trained across the pi-

anist’s recordings of other pieces, demonstrating that score features may trump

individual style when modeling loudness choices. Evidence suggests that all

the features chosen for the task are relevant, and analysis of the results reveal

the forms (such as the return of the theme) and structures (such as dynamic

marking repetitions) that influence predictability of loudness and markings.
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This chapter is organized as follows: In Section 7.1 we describe the data

set used for this study as well as the features extracted and in Section 7.2 the

learning task and the algorithms employed. Section 7.3 presents and discusses

the results obtained when predicting loudness levels at dynamic markings; and,

Section 7.4 does the same for results obtained when classifying loudness levels

into dynamic markings. Finally, Section 7.5 summarizes the conclusions with

some general discussions.

7.1 Material

For the purpose of this study, we wanted to get the biggest possible number of

Mazurka pieces played by the biggest possible number of same pianists, therefore

we examine recordings of eight pianists’ performances of forty-four Mazurkas.

The Mazurkas, the number of dynamic markings, as well as the method to

extract the loudness information for each marking are detailed in Chapter 3.

The eight pianists together with the recording’s year and index are identified in

Table 7.1.

Pianist Chiu Smith Ashkenazy Fliere Shebanova Kushner Barbosa Czerny
Year 1999 1975 1981 1977 2002 1990 1983 1989
ID P1 P2 P3 P4 P5 P6 P7 P8

Table 7.1: Pianist’s name, year of the recording, and pianist ID.

For each dynamic marking in the dataset, we have extracted the following

associated features:

1. label of the current dynamic marking (M);

2. label of the previous dynamic marking (MPR);

3. label of the next dynamic marking (MN);

4. distance from the previous dynamic marking (PRD);

5. distance to the next dynamic marking (ND);

6. nearest non-dynamic marking annotation between the previous and cur-

rent dynamic marking, e.g. crescendo (PRA);

7. nearest non-dynamic marking annotation between current and next dy-

namic marking, e.g. crescendo (NA); and,

8. any qualifying annotation appearing simultaneously with the current dy-

namic marking, e.g. dolcissimo (MA).
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In addition to the feature set described above, we also have an associated loud-

ness value, L, which is the `b value on the beat of the dynamic marking.

We consider at most one value each for the features “PRA,” “NA,” and

“MA.” If two different annotations occur on the same beat, we choose the one

related to dynamic changes, an exception being the case where the annotations

sf and a tempo appear simultaneously. In this case, to be consistent with the

time range of other non-dynamic marking annotations, we choose a tempo over

sf, as it applies to more than one score beat. In the case where there was an

annotation related to change in dynamics and a qualifying term such as poco

preceding it, we use the annotation without the qualifier, to limit the number

of dynamic terms.

7.2 Learning task and algorithms

In this chapter we explore different machine learning techniques to induce a

model for predicting the loudness level at particular points in the performance.

Concretely, our objective is to induce a regression model M of the following

form:

M(FeatureSet)→ Loudness

Where M is a function which takes as input the set of features (FeatureSet)

described in the previous section, and Loudness is the predicted loudness value.

In order to train M we have explored the following machine learning algorithms

(as implemented in Hall et al. [2009]):

Decision Trees (DT). Decision trees by Quinlan [1986] use a tree structure to

represent possible branching on selected attributes so as to predict an outcome

given some observed features. The decision tree algorithm recursively constructs

a tree by selecting at each node the most relevant attribute. The selection of

the most relevant attribute, at each node of the tree is based on the information

gain associated with each attribute and the instances at each node of the tree.

For a collection of loudness values, suppose there are b instances of class B and c

instances of class C. An arbitrary object will belong to class B with probability

b/(b + c) and to class C with probability c/(b + c). The expected information

needed to generate the classification for the instance is given by

I(b, c) = −
(

b

b+ c
log2

b

b+ c
+

c

b+ c
log2

c

b+ c

)
. (7.1)

Suppose attribute A can take on values {a1, a2, ..., av} and is used for the root

of the decision tree, partitioning the original dataset into v subsets, with the

i-th subset containing bi objects of class B and ci of class C. The expected in-
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formation required for the i-th subtree is I(bi, ci), and the expected information

required for the tree with A as root is the weighted average

E(A) =

v∑
i=1

bi + ci
b+ c

I(bi, ci), (7.2)

where the weight for the i-th subtree is the proportion of the objects in the

i-th subtree. The information gained by branching on A is therefore gain(A) =

I(b, c)− E(A), and the attribute chosen on which to branch at the next node is

thus arg maxA gain(A). Decision trees can also be used for predicting numeric

quantities. In this case, the leaf nodes of the tree contain a numeric value that is

the average of all the training set values. Decision trees with averaged numeric

values at the leaves are called regression trees.

Support Vector Machines (SVM). Support vector machines aim to find the

hyperplane that maximizes the distance from the nearest members of each class,

called support vectors. Cristianini and Shawe-Taylor [2000] use a nonlinear

function φ(·) to map attributes to a sufficiently high dimension, so that the

surface separating the data points into categories becomes a linear hyperplane.

This allows the model to predict nonlinear models using linear methods. The

data can be separated by a hyperplane and the support vectors are the critical

boundary instances from each class.

The process of finding a maximum margin hyperplane only applies to clas-

sification. However, support vector machine algorithms have been developed

also for regression problems, i.e. numeric prediction, that share many of the

properties encountered in the classification case. SVM for regression problems

also produce a model that can usually be expressed in terms of a few support

vectors and can be applied to nonlinear problems using kernel functions.

Artificial Neural Networks (ANN). Artificial neural networks are generally

presented as systems of interconnected “neurons” which exchange messages be-

tween each other. They are based on the idea of the perceptron which includes

an input, a hidden and an output layer of data points connected with nodes

having numeric weights. The nodes of the input layer are passive, meaning they

do not modify the data. The two aspects of the problem is to learn the structure

of the network, and to learn the connection weights. A multilayer perceptron

(MLP)–or ANN– has a linear activation function in all neurons, that is, a linear

function that maps the weighted inputs to the output of each neuron. More

formally, we assume that in one network there are d inputs, M hidden units

and c output units. As it is described by Bishop [1995], the output of the jth

hidden unit is obtained by first forming a weighted linear combination of the d
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input values, to give

aj =

d∑
i=1

w
(1)
ji xi, (7.3)

where w
(1)
ji denotes a weight in the first layer, going from input i to hidden unit

j. The activation of hidden unit j is then obtained by transforming the linear

sum above using an activation function g(·) to give

zj = g(aj). (7.4)

The outputs of the network are obtained by transforming the activations of

the hidden units using a second layer of processing elements. For each output

unit k, we construct a linear combination of the outputs of the hidden units of

the form

ak =

M∑
j=1

w
(2)
kj zj . (7.5)

We then obtain the activation of the kth output unit by transforming this linear

combination using a non-linear activation function g̃(·), which returns

yk = g̃(ak). (7.6)

We next consider how such a network can learn a suitable mapping from a given

dataset. Learning is based on the definition of a suitable error function, which is

minimized with respect to the weights and biases in the network. “If we define a

network function, such as the sum-of-squares error [...] which is a differentiable

function of the network outputs, then this error is itself a differentiable function

of the weights. We can therefore evaluate the derivatives of the error with

respect to the weights, and these derivatives can then be used to find weight

values which minimize the error function.” (Bishop [1995])

In this chapter, in order to determine the weights, that is, to tune the neural

network parameters to best fit the training data, we apply the gradient descent

back propagation algorithm of Chauvin and Rumelhart [1995]. The back propa-

gation algorithm is used for evaluating the derivatives of the error function and

learns the weights for a multi-layer perceptron, given a network with a fixed

set of units and interconnections. The idea behind this algorithm is that the

output corresponds to a propagation of errors backwards through the network.

We empirically set the momentum applied to the weights during updating to

0.2 and the learning rate, that is the amount of the weights that are updated, to

0.3. We use a fully-connected multi-layer neural network with one hidden layer

meaning that we have one input and one output neuron for each attribute.
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k-Nearest Neighborhood (k-NN). k-NN is a type of instance-based learn-

ing which instead of performing explicit generalization, compares the new data

instances with instances in the traning set previously stored in memory. In

k-NN generalization beyond the training data is delayed until a query is made

to the system. The algorithm’s main parameter is k, the number of considered

closest training vectors in the feature space. Given a query, the output’s value

is the average of the values of its k nearest neighbors. More formally, as it

is described by Hastie et al. [2001], given a set of measurements (xi, yi), the

k-nearest neighbor fit for the prediction Ŷ of the output Y is

Ŷ (x) =
1

k

∑
xi∈Nk(x)

yi, (7.7)

where Nk(x) is the neighborhood of the input instance x defined by the closest

points xi in the training sample.

In this chapter we report the results of the k-NN algorithm with k = 1

which finds the training instance closest in Euclidean distance to the given test

instance. If several instances are qualified as the closest, the first one found

is used. We tested the values of k equal to 1,2, and 3 and there was not a

significant difference on the regression results.

7.3 Performed loudness-level modeling

This section assesses the fit of the machine-learned models as they predict loud-

ness values in a pianist’s recording of a Mazurka, first given other recordings of

that Mazurka, and second given other recordings of that pianist. Two experi-

ments have been conducted for this purpose. In the first one, each prediction

model has been trained for each Mazurka separately. Then, each model has been

evaluated by performing a 8-fold training-test validation in which instances of

one pianist of the training set are held out in turn as test data while the in-

stances of the remaining seven pianists are used as training data. In the second

one, each prediction model has been trained for each pianist separately. Then

each model has been evaluated by performing a 44-fold training-testing valida-

tion in which instances of one Mazurka of the training set are held out in turn

as test data while the instances of the remaining forty-three Mazurkas are used

as training data.

Section 7.3.1 presents the machine-learning algorithms’ results of the first

experiment, when predicting loudness given other pianists’ recordings of the

target piece; Section 7.3.2 presents the machine-learning algorithms’ results of

the second experiment, when predicting loudness given the target pianist’s other
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recordings; Section 7.3.3 considers the extremes in prediction results for the

second experiment; Section 7.3.4 considers the degree of similarity in approach

to loudness between pianists; and, Section 7.3.5 considers the relevance of the

features selected.

7.3.1 Predicting loudness given other pianists’ recordings

of target piece

In the first experiment, we use the machine-learning methods described above

to predict the loudness values at the dynamic markings of one Mazurka, given

the loudness levels at the markings of the same Mazurka recorded by other

pianists. We test the machine-learning models by assessing their predictions at

points where the composer (or editor) has placed a dynamic marking because

this is our closest source of ground truth. The evaluations focus on how well a

pianist’s loudness choices can be predicted given those of other seven pianists

for the same Mazurka.

As a measure of accuracy, we compute the Pearson correlation coefficient

between predicted (X) and actual (Y ) loudness values using the formula

r =

∑n
i=1(xi −X)(yi − Y )√∑n

i=1(xi −X)2
√∑n

i=1(yi − Y )2
, (7.8)

where xi ∈ X, yi ∈ Y , and the size of X and of Y , n, varies from one Mazurka

to the next, and is given in Table 3.1.

For each Mazurka, we compute the mean Pearson correlation coefficients

over all recordings of that Mazurka to produce the graph in Figure 7.1. The re-

sults of each machine-learning algorithm—Decision Trees (DT), Support Vector

Machines (SVM), Artificial Neural Networks (ANN), and k-Nearest Neighbor

(k-NN)—is denoted on the graph using a different symbol.

Observe in Figure 7.1 that, with few exceptions, the mean Pearson correla-

tion coefficient is fairly high. When disregarding the two most obvious outliers,

Mazurka Op. 17 No. 3 and Mazurka Op. 24 No. 3, the mean Pearson corre-

lation value ranged from 0.5192 to 0.9667 over all machine learning methods.

Furthermore, the mean Pearson correlation coefficient, averaged over the four

machine-learning techniques, and over all Mazurkas is equal to 0.8083. This

demonstrates that, for most Mazurkas, the machine-learning methods, when

trained on data from other pianists’ recordings of the Mazurka, can reasonably

predict the loudness choices of a pianist for that Mazurka.

In the next sections, we inspect the anomalous situation of Mazurka Op. 17

No. 3 and Mazurka Op. 24 No. 3, and the special cases when one particular
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Figure 7.1: Pearson correlation coefficient between predicted and actual loud-
ness values for each Mazurka, averaged over all recordings of the Mazurka, for
each machine-learning method—Decision Trees (DT), Support Vector Machines
(SVM), Artificial Neural Networks (ANN), and k-Nearest Neighbor (k-NN).

pianist deviates from the behavior of other pianists for specific Mazurkas.

Cases of low correlation between predicted and actual loudness values

While the overall Pearson correlation measure of success is good for the predic-

tion of loudness values in a Mazurka recording when a machine-learning model is

trained on other pianists’ recordings of the Mazurka, two Mazurkas were found

to be outliers to this positive result: Mazurka Op. 24 No. 3 and Mazurka Op.

17 No. 3.

For Mazurka Op. 24 No. 3, the mean (over all recordings) Pearson correla-

tion value, when averaged over the four machine-learning techniques, is -0.347,

meaning that the predictions are weakly negatively correlated from the actual

loudness values. The mean Pearson correlation value for Mazurka Op. 17 No. 3,

when averaged over the four machine-learning methods, while positive, is low at

0.320, meaning that the predictions are only weakly correlated with the actual

loudness values.

Looking deeper into the case of these two Mazurkas, apart from the common

key of A[ major, they also share the property of having only the dynamic mark-

ings p and mf in the score, with extended mono-symbol sequences of p’s. The

other Mazurkas do not have the property of including only mf and markings.

In the case of Mazurka Op. 24 No. 3, the existing score markings are {mf,

p, p, p, p, p, p}; for Mazurka Op. 17 No. 3, the score markings are {mf, p,

mf, p, p, p, p, mf, p}. The narrow dynamic range of the notated symbols and

the consecutive strings of the same symbols both will almost certainly lead to a
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wide range of interpretations in order to create dynamic contrast and narrative

interest.

Consider the case of Mazurka Op. 24 No. 3: Figure 7.2 shows the actual

loudness values for the eight recordings at the points of the dynamic markings.

Note that, in this Mazurka, apart from the initial mf, the remaining dynamic

markings are uniformly p. The x-axis marks the sequence of dynamic markings

in the score, and the eight distinct symbols on the graphs mark the loudness

values (in sones) at these points in the recording. Note the wide range of

interpretation of the loudness level for mf; the loudness value ranges for the

p’s are often as wide as that for the mf, with the recordings exhibiting many

contradictory directions of change from one dynamic marking to the next. In

particular, note that in three out of the eight recordings, the p immediately

following the mf is actually louder than the mf.
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Figure 7.2: Representation of the loudness levels on the marking positions in
score time for Mazurka M24-3 for the eight pianists.

For the case of Mazurka Op. 24 No. 3, the Pearson correlation coefficient

between the predicted and actual loudness values, for each of the four machine-

learning methods, are uniformly negative. Next, we consider the cases when the

predictions are negatively correlated for only one recording of a Mazurka while

the remaining seven recordings of the same Mazurka had predictions positively

correlated with the actual loudness values.

Cases when one recording is negatively correlated while others are

not

The tests in the previous section showed that there can be a high degree of

divergence in loudness interpretation amongst recordings of a Mazurka. In this

section, we examine the special cases of solitary deviant behavior, when one pi-

anist chose starkly different loudness strategies than the others when recording a
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Mazurka. For this, we consider the cases when the predictions for one recording

has a negative average (over all four machine-learning techniques) Pearson cor-

relation value while those for the other seven have positive average correlation

coefficients between predicted and actual loudness values.

We identified four Mazurkas for which the predictions for one recording was

negatively correlated on average (over all the machine-learning algorithms) and

the other seven were positively correlated. The average Pearson correlation val-

ues for each pianist’s recordings of these four Mazurkas are plotted in Figure 7.3.

The average correlation value of the solitary deviant recording for each Mazurka

is highlighted with a red dot. For each red dot marking, the correlation value

of the worst-predicted pianist, the correlation values of the other pianists who

recorded the Mazurka are shown as grey squares in the same vertical column.
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Unpredicted pianists in specific Mazurkas

Figure 7.3: Pearson correlation coefficients of Mazurkas for which the worst pre-
dicted pianist’s recording scored, averaging over all machine-learning methods,
a negative r value (red dots): pianist P5 for M17-3, P7 for M24-1, P5 for M33-1,
and P1 for M67-2. The average coefficients for the remaining pianists are shown
as grey squares.

We can see from the display that even when the machine-learning algorithms

did poorly in the case of a particular pianist, they often did fairly well for other

pianists who recorded the same Mazurka. Figure 7.3 demonstrates why the

loudness values of certain Mazurka recordings cannot be predicted well when

machine-learning algorithms are trained on other pianists’ recordings of the

same Mazurka.

We next turn our attention to the extreme case of Mazurka Op. 24 No. 1, in

which the loudness value predictions for one recording, that of Barbosa (P7), are

almost perfectly negatively correlated with the actual values. Figure 7.4 shows

the loudness time series, in score time, for all eight recordings of Mazurka Op.

24 No. 1. The loudness time series for Barbosa, the worst-predicted pianist, is

highlighted in bold. The score dynamic markings for this Mazurka are labeled
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on the x-axis. The actual loudness values recorded for pianist P7 at these points

are marked by red dots. The actual loudness values of other pianists——Chiu

(P1), Smith (P2), Ashkenazy (P3), Fliere (P4), Shebanova (P5), Kushner (P6),

Czerny (P8)—at this point are marked by black symbols on the same vertical

line.
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Figure 7.4: Loudness time series in score-beat time for recordings of Mazurka
Op. 24 No. 1. Loudness time series for Barbosa’s recording (P7) is shown in
bold; loudness value for Barbosa’s recording at dynamic markings are indicated
by red dots, those of other pianists——Chiu (P1), Smith (P2), Ashkenazy (P3),
Fliere (P4), Shebanova (P5), Kushner (P6), Czerny (P8)—are shown as black
symbols.

As illustrated by the graph, in Barbosa’s recording, he employs a perfor-

mance strategy contrary to that of all or almost all of the other pianists. Fur-

thermore, the loudness level of Barbosa’s recording sampled at the points of

the first four dynamic markings are relatively level, in contrast to the strategies

exhibited by the other pianists.

Having considered the prediction of loudness values in a Mazurka recording

by training machine-learning algorithms on recordings of the same Mazurka by

other pianists, we next consider predictions of models trained on recordings of

other Mazurkas by the same pianist.

7.3.2 Predicting loudness given target pianist’s recordings

of other pieces

In the second experiment, we use the machine-learning methods to predict the

loudness values at the dynamic markings of one Mazurka, given the loudness

levels at the markings of other Mazurkas recorded by the same pianist. The

evaluations focus on how well a pianist’s loudness choices can be predicted

given those of them made in the other forty-three Mazurkas. For this purpose,
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a 44-fold training-testing validation has been implemented. As before, we use

as measure of prediction accuracy the Pearson correlation coefficient between

actual and predicted values.

The results are displayed in Figure 7.5, which shows the mean, minimum,

maximum, and median Pearson correlation coefficient values over all Mazurka

recordings by each of the pianists listed in Table 7.1; the results are broken

out into the four machine-learning methods employed—Decision Trees (DT),

Support Vector Machines (SVM), Artificial Neural Networks (ANN), and k-

Nearest Neighbor (k-NN).
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Figure 7.5: Pearson correlation coefficient mean, min, max, and median val-
ues for each method—Decision Trees (DT), Support Vector Machines (SVM),
Artificial Neural Networks (ANN), and k-Nearest Neighbor (k-NN)—for each
pianist—Chiu (P1), Smith (P2), Ashkenazy (P3), Fliere (P4), Shebanova (P5),
Kushner (P6), Barbosa (P7), Czerny (P8).

Contrary to the previous experiment, where the machine-learning models

were trained on other pianists’ recordings of the same Mazurka and did fairly

well, when training the models on the same pianist’s other Mazurka recordings,

the average cross-validation results for each pianist are close to zero. The mini-

mum is close to -1, implying that sometimes the loudness values of a recording

can be directly contrary to the predictions, and the maximum is close to 1,

implying that sometimes the loudness values behave as predicted. The results

thus demonstrate that it can be extremely difficult to predict loudness values in

a recording given the pianist’s past behavior in recordings of other pieces. The

results fare far better when training on other pianists’ recordings of the same

piece.

In Section 7.3.3, we seek to gain some insights into why the Pearson correla-

tion values were so highly variable between the predicted and actual values for

this experiment. In particular, we examine in detail the Mazurkas for which pre-

dicted and actual loudness values were most strongly and positively correlated
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and most strongly and negative correlated across all machine-learning methods.

The previous results have shown that while there may be some small vari-

ability in the prediction quality of the four machine-learning methods, they

agree on the prediction difficulty amongst the recordings. In the next section,

we perform a second check on the prediction quality using a Euclidean measure.

Comparing machine-learning methods

To check for variability in the prediction quality of the four machine-learning

algorithms, we compute the accuracy for each algorithm using the Euclidean

distance. The Euclidean distance between the predicted (X) and actual (Y )

loudness values (in sones) in the held out data is given by the formula

d(X,Y ) =

√√√√ n∑
i=1

(xi − yi)2, (7.9)

where xi ∈ X, yi ∈ Y , and n is the size of X, and Y , which varies from one

Mazurka to the next.

We average these Euclidean distances over all Mazurkas for a given pianist

to produce the results shown in Figure 7.6. The results are grouped by pianist:

Chiu (P1), Smith (P2), Ashkenazy (P3), Fliere (P4), Shebanova (P5), Kushner

(P6), Barbosa (P7), Czerny (P8). For each pianist, the graph shows accuracy

results for each of the four machine-learning methods—Decision Trees (DT),

Support Vector Machines (SVM), Artificial Neural Networks (ANN), and k-

Nearest Neighbor (k-NN)—averaged over all Mazurka recordings by that pianist.

The results show that the algorithms perform consistently one relative to

another. The span of average Euclidean distance between predicted and actual

values is relatively small. In comparison, the DT algorithm produced the best

results, followed closely by the SVM algorithm then the k-NN algorithm; the

ANN algorithm is a more distant fourth. While the ANN algorithm fared worse

in this exercise, we shall see in Section 7.4.2 that the ANN gives better results

when the machine-learning algorithms are applied to the problem of predicting

dynamic marking labels.

7.3.3 A pianist’s interpretation may not be predictable

based on his/her approach to other pieces

In this section, we dig deeper into the Pearson correlation results of the previous

section to consider the extreme cases of when the predicted and actual loudness

values are most consistently positively and consistently negatively correlated.

We consider the Mazurkas for which all methods produced loudness predictions
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Figure 7.6: Euclidean distance between predicted and actual loudness values
for each pianist——Chiu (P1), Smith (P2), Ashkenazy (P3), Fliere (P4), She-
banova (P5), Kushner (P6), Barbosa (P7), Czerny (P8)—for each method—
Decision Trees (DT), Support Vector Machines (SVM), Artificial Neural Net-
works (ANN), and k-Nearest Neighbor (k-NN)—averaged over all Mazurka
recordings by the pianist.

that were negatively correlated with the actual loudness values for all pianists;

we also single out the Mazurkas for which all methods produced predictions that

were positively correlated with the actual values for all pianists.

Most negatively and most positively correlated results

In the cross-validation, the highest Pearson correlation coefficient between pre-

dicted and actual loudness, 0.9981, is encountered in Chiu (P1)’s recording of

Mazurka Op. 63 No. 3 (M63-3), and the lowest correlation value, −0.9444, in

Fliere (P4)’s recording of Mazurka Op. 17 No. 2 (M17-2).

The four Mazurkas for which the Pearson correlation is negative for all the

machine-learning methods and for all eight pianists are Mazurkas Op. 7 No.

1 (M07-1), Op. 24 No. 2 (M24-2), Op. 24 No. 4 (M24-4), and Op. 50 No.

3 (M50-3). This means that, for these Mazurkas, the pianists’ recorded loud-

ness strategies are contrary to those gleaned from their recordings of the other

Mazurkas. The three Mazurkas for which the Pearson correlation coefficient over

all pianists and for all machine-learning methods was positive are Mazurkas Op.

30 No. 4 (M30-4), Op. 41 No. 2 (M41-2), and Op. 68 No. 2 (M68-2). For these

Mazurkas, the pianists’ recorded loudness strategies are in accordance to those

gleaned from their recordings of the other Mazurkas.

The results are summarized in Figure 7.7, which presents the Pearson cor-

relation result for each of the eight pianists for the Mazurkas mentioned; each

pianist’s data point for a Mazurka shows the average over the four machine-

learning methods. Note that, for each Mazurka, the correlation coefficients are
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relatively closely grouped for all pianists. In the next section, we shall examine

more closely the four Mazurkas having all-negative correlation values, i.e. the

ones to the left of the dividing line.
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Figure 7.7: Pearson correlation coefficient values for each pianist, averaged over
all machine-learning methods, for the Mazurkas having all negative (left: M07-1,
M24-2, M24-4, M50-3) and all positive (right: M30-4, M41-2, M68-2) correlation
values.

Cases of negative correlation

Here, we focus on the four Mazurkas with negative Pearson correlation coef-

ficients for all pianists and all machine-learning methods. Figure 7.8 shows

the predicted and actual loudness values at each dynamic marking in the four

Mazurkas, concatenated in sequence. The values shown are the average over all

pianists and all machine-learning methods for each marking and Mazurka.
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Figure 7.8: Average actual (circles) and predicted (squares) dynamic values at
dynamic marking positions for the Mazurkas M07-1, M24-2, M24-4, and M50-
3 where the average of the Pearson correlation coefficient over pianists and
methods was negative.
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As can be seen, for most dynamic markings in these four Mazurkas, the

actual loudness levels are the opposite of the predicted loudness values. The

difference in loudness strategy may be due to deliberate contrarian behavior, or

to aspects of the piece relevant to dynamic choices not being captured in the

selected features. A discussion on future directions for feature analysis will be

presented in Section 7.3.5.

There may also be score-inherent factors in these four Mazurkas that con-

tributed to the negative correlation results. These include the oscillatory nature—

and hence longer range dependencies—of some of the dynamic marking se-

quences, and the presence of sequences of identical markings—which lead to

greater variability in interpretation. Instances of oscillatory sequences include

the sequence (p, f, p, f, p, f) in Mazurka Op. 7 No. 1, the sequence (f, p, f,

p, f, p) in Mazurka Op.24 No. 2, and the sequence (pp, ff, pp, ff, pp, ff) in

Mazurka 24 No. 4. Examples of monosymbol sequences include the sequence

of three pp’s in Mazurka 24 No. 4, and the sequence of four p’s in Mazurka 50

No. 3.

The analysis of the results of the loudness value prediction experiments leads

us to suspect that the poor predictability of some of the Mazurka recordings may

be due to high variability in performed loudness strategies among the pianists

for the range of Mazurkas represented. Hence, in the next section, we describe

and report on an experiment to test the degree of similarity in the loudness

strategies employed by one pianist vs. that used by another.

7.3.4 Inter pianist similarity

To determine the degree of similarity in the loudness strategies employed by dif-

ferent pianists, machine-learning models were trained on all Mazurka recordings

by one pianist and used to predict the loudness values in all Mazurka recordings

by another pianist. The goodness of fit is measured using the mean (over all

Mazurka recordings) of the average (over all machine-learning methods) Pearson

correlation coefficient.

The results are shown in Figure 7.9 in the form of a matrix, where the

(i,j)-th element in the matrix represents the percentage of the mean averaged

Pearson correlation coefficient between the loudness value predictions of the

model trained on data of pianist i and the corresponding actual loudness data

of pianist j. The correlation values range from 68.36% to 78.43%. This shows

the high level of similarity between pianists for interpreting dynamic markings

in the pieces investigated.

Higher correlation values are observed in columns P1 and P5. We can de-

duce that Chiu (P1)’s interpretation model, followed closely by Shebanova P5’s
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Figure 7.9: Matrix displaying Pearson correlation coefficient values (in %), av-
eraged over all machine-learning methods, when applying a model trained on
recordings by one pianist to predict the loudness values of another pianist.

model, best predicts the loudness values of recordings by other pianists. Note

that Chiu’s recordings also achieved some of the highest correlation values,

meaning that they were most predictable. Furthermore, the loudness strategies

of pianists P1 and P5 best fit each other, i.e. the highest non-diagonal Pearson

correlation value is found when P1’s model is used to predict the loudness levels

in P5’s recording, and vice versa. On the other hand, the loudness strategies of

pianist P6 is the one most dissimilar to that in other recordings, as shown by

the almost white non-diagonal squares in column P6.

7.3.5 Discussion on feature analysis

The k-NN method is known to be highly sensitive to irrelevant features, i.e. it

performs considerably less well than other algorithms in the presence of irrele-

vant features. As the results show no demonstrable trend in this respect, this

leads us to think that all the extracted features in our feature set are indeed

relevant.

A natural question that follows is: which of the extracted features are more

salient for predicting performed loudness? To investigate this question, we apply

the RELIEF algorithm from Robnik-Sikonja and Kononenko [1997] to rank the

features according to relevance for predicting loudness. The RELIEF algorithm

evaluates the worth of an attribute by repeatedly sampling an instance and

considering the value of the given attribute for the nearest instance of the same

and different class.

The results are shown in Table 7.2, with features being ranked from most

important (1) to least important (8). The feature-relevance analysis indicates

that the current dynamic marking proved to be the most informative feature

for the task, followed by the text qualifiers, and the preceding dynamic mark-

ing. Interestingly, the ranking of features according to relevance for predicting

loudness is the same for all pianists, which may indicate that all the considered
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pianists give the same relative importance to the investigated features when

deciding loudness levels in their performances.

Ranking Feature Ranking Feature Ranking Feature

1 M 4 MN 7 ND
2 MA 5 PRD 8 NA
3 PRA 6 MPR

Table 7.2: Ranking of importance of the features for the loudness prediction
task.

In order to evaluate the incremental contribution of each of the features stud-

ied, we have implemented the machine learning models using different subsets of

features. More concretely, we have considered feature subsets by incrementally

adding features to the training set one at a time, starting with the most impor-

tant feature, i.e. the highest ranked, and continuing to add features according

to their rank order. In Figure 7.10 we present the results for each pianist’s

recording, averaged over all machine learning methods.

As can be seen in the figure, for all pianists, the loudness prediction accu-

racy for their recordings, with few exceptions, increases monotonically with the

number of features. This confirms our belief that all the features studied are

indeed relevant and contribute to the accuracy of the loudness level predictions

for all recordings. It is worth noticing that the highest ranked feature, i.e. the

dynamic marking, contains on its own substantial predictive power: the corre-

lation coefficient of the loudness models induced with only dynamic marking

information alone ranges from 0.64 (for pianist P6’s recordings) to 0.75 (for

pianist P1’s recordings).

7.4 Dynamic marking prediction

Classification remains one of the staple tasks of machine-learning algorithms.

This section assesses the fit of the machine-learned models as they are applied

to the classification of a Mazurka recording’s loudness values into loudness cate-

gories as indicated by dynamic markings. In particular, we examine the follow-

ing problem: given a loudness level in a recorded Mazurka, what is the dynamic

marking that best represents conceptually the loudness value at a particular

instance in time.

As in Section 7.3, we have conducted two experiments. In the first exper-

iment each classification model has been trained for each Mazurka separately

and a 8-fold cross-validation implemented for predicting the dynamic markings

given other pianists’ recordings of the target piece. In the second experiment
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Figure 7.10: Upper bound for average (over all machine learning methods) Pear-
son correlation coefficient as number of features considered increases; features
are added in the order given in Table 7.2. Numbers result from the optimal case
where the testing data is equal to the training data.

each classification model has been trained for each pianist separately and a 44-

fold cross-validation has been implemented for predicting the dynamic markings

of one Mazurka given the other Mazurka recordings of the same pianist. For

evaluation, we compute the percentage of correctly classified instances.

In the remaining part of this section we present the analysis of the results of

the two experiments. More specifically, Section 7.4.1 presents and discusses the

results for predicting dynamic markings given other pianists’ recordings of the

target piece; Section 7.4.2 does the same for predicting markings given the target

pianist’s recordings of other pieces; Section 7.4.3 looks at which of the dynamic

markings are more easily classified than others; and, Section 7.4.4 evaluates the

ease or difficulty of predicting the markings of a Mazurka using the ratio of

correctly classified markings.

7.4.1 Predicting dynamic markings given other pianists’

recordings of target piece

In the first experiment, we use the four machine-learning methods to predict

the dynamic-marking labels of loudness values given the loudness-marking data

of other pianists’ recordings of the target piece. The 8-fold cross-validation test

results of this task give us an average of 99.22% of Correctly Classified Instances

(CCI) over all methods. The result above means that it is highly plausible to

train a machine-learning algorithm on other pianists’ performance of a Mazurka

to predict the dynamic marking labels of the target recording. The constraints

imposed by the features available when making a prediction, such as the exact

labels in their values enhance this direction.
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We next move on to the complementary experiment in which the machine-

learning algorithms predict dynamic-marking labels based on loudness-marking

data of other Mazurka recordings by the target pianist.

7.4.2 Predicting dynamic markings given target pianist’s

recordings of other pieces

In this experiment, we train classifiers—using DT, ANN, SVM, and k-NN

algorithms—on the loudness-label mappings of other Mazurka recordings by

the same pianist in order to identify the dynamic marking corresponding to a

given loudness value in the target recording. Table 7.3 shows the results ob-

tained by the classifiers in terms of the mean percentage of Correctly Classified

Instances (CCI) over all Mazurkas.The highest mean CCI values for each pianist

are highlighted in bold.

Method
Pianist

P1 P2 P3 P4 P5 P6 P7 P8 AVG

DT 27.822 26.387 28.012 24.542 24.798 27.858 29.230 26.437 26.8858
SVM 27.735 25.283 23.962 22.830 25.283 24.717 26.227 25.670 25.2134
ANN 30.755 27.925 27.736 26.981 26.604 31.132 30.189 30.460 28.9727
k-NN 28.301 28.491 28.113 25.660 25.660 26.981 30.377 27.547 27.6412

Table 7.3: Percentage of Correctly Classified Instances (CCI). Maximum values
per pianist are highlighted in bold. The last column contains the average values
per row and the highest average of CCI is highlighted in bold.

As can be seen by the preponderance of numbers in bold in the ANN row,

the ANN algorithm gives slightly better results in terms of mean CCI than

other methods. In particular, it yields the best results for pianists Chiu (P1),

Fliere (P4), Shebanova (P5), Kushner (P6), and Czerny (P8), followed by the

k-NN algorithm that gives slightly better results for the pianists Smith (P2),

Ashkenazy (P3), and Barbosa (P7). The highest average value of the percentage

of correctly classified instances over all pianists is given by the ANN algorithm.

Recall that in Section 7.3.2, ANN had the lowest prediction correlation to actual

figures. That was for the case of loudness prediction; here, it performed best

for dynamic-marking label prediction.

The CCI’s reported in Table 4 are not high, given that a classifier that

always predicts p would achieve 42%. This suggests that more data is needed

for this task. One avenue for further analysis is to identify the markings that are

more easily classified by considering the ones that have been predicted correctly

by all recordings; this study is reported in Section 7.4.3. Another direction is

to identify the Mazurka which has the highest number of markings that are

more easily predicted, by observing for every Mazurka the ratio of the markings
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correctly classified for all recordings to the total number of markings in the

piece; this is reported in Section 7.4.4. We use the ANN algorithm as a basis

for both studies due to its better performance found here.

7.4.3 Easily predicted markings

In this section, we seek to determine which of the dynamic-marking labels are

more easily classified by the machine-learning algorithms when trained on other

Mazurka recordings by the target pianist. A specific marking in a Mazurka

is considered to be easily predicted if it has been classified correctly for all

recordings. In Table 7.4 we present the markings across all Mazurkas that have

been identified as being easily predicted according to this criterion.

Mazurka Marking Mazurka Marking Mazurka Marking
(position) (position) (position)

M06-3 p (1), p (16) M33-2 ff (5) M63-1 p (3), p (5)
M07-3 f (5) M50-2 p (2), p (4), p (6), p (7) M67-1 p (4), p (15)
M17-3 p (5), p (9) M50-3 p (12) M67-3 p (11)
M17-4 ff (5) M56-1 mf (12) M68-2 pp (2)
M24-4 f (6), f (11) M56-3 p (12) M68-3 p (2)
M30-3 pp (14) M59-3 p (11)

Table 7.4: Markings that have been predicted correctly for all recordings of
the Mazurka containing that marking; the numbers in parentheses indicate the
position of that marking in the sequence of dynamic markings in that Mazurka.

Two patterns emerge from Table 7.4: the first has to do with the range of

the dynamic markings in the Mazurka; the second has to do with the existence

of important structural boundaries such as key modulations or cadences near

the marking that impact the dynamics. We shall describe each case in greater

detail providing specific examples of each case.

In the first case, when considering the range of markings present in a score,

the marking at the edges of this range tend to correspond to extreme loudness

values in the recording. Thus, these dynamics at the extremes would be the

ones most easily categorized. For example, the ff marking in Mazurka Op. 17

No. 4 (M17-4) is a case in point. The markings that appear in this Mazurka

are: {pp, p, ff}. Clearly, ff is at the extreme of this marking set, and in the

loudness spectrum. Even in its position in the score, it is placed uniquely in

such a way as to highlight the extreme nature of its dynamic level. Figure 7.11

shows the score position of the marking: it is preceded by a crescendo and

followed by a p. It is no wonder that this marking is correctly classified in all

recordings of this Mazurka.

In the second case, structural boundaries are often inflected in performance
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Figure 7.11: Case of the ff marking in Mazurka Op. 17 No. 4 (M17-4), correctly
classified in all recordings of the Mazurka when the machine-learning algorithms
are trained on the markings in the remaining Mazurkas by the target pianist.

in such a way as to reinforce their existence: the dynamic may drop immediately

preceding or immediately after the boundary. As an example of a dynamic

marking following a key change, consider the second f marking of Mazurka Op.

24 No. 4 (M24-4), which is in the key of B[ minor. The score segment for

this example is shown in Figure 7.12. Just before this easily predicted marking

a phrase is repeated ending in the key of F major, and the repeat is marked

sotto voce (in an undertone). The f appears at the return of B[ minor; the

performer is thus encouraged to make a sharp distinction between the f and the

preceding sotto voce. Four bars after the f is a pp marking, which would bring

into sharper relief the f. These factors all conspire to make this f more easily

detectable.

Figure 7.12: Case of the f marking in Mazurka Op. 24 No. 4 (M24-4), correctly
classified in all recordings of the Mazurka when the machine-learning algorithms
are trained on the markings in the remaining Mazurkas by the target pianist.

An example of an extreme dynamic marking near a structural boundary is

the case of the marking pp in Mazurka Op. 30 No. 3 (M30-3), which is located

at a cadence prior to a return to the main theme of the piece. The score segment

for this example is shown in Figure 7.13. As can be seen in the score, the pp

is proceeded by the text indicator dim., for diminuendo; furthermore, the text

indicator slentando, meaning to become slower, is paired with the marking;

and, the marking is followed by a f marking paired with the text indicator
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risoluto, meaning bold, at the return of the main theme. The extra meaning

imputed to this pp as a signifier of the impending return of the f main theme

makes it again a more extreme kind of pp, and thus easier to classify.

Figure 7.13: Case of the pp marking in Mazurka Op. 30 No. 3 (M30-3),
correctly classified in all recordings of the Mazurka when the machine-learning
algorithms are trained on the markings in the remaining Mazurkas by the target
pianist.

In the next section, we consider the ease or difficulty of classifying dynamic

markings through a different study, this time on the ratio of correctly classified

markings.

7.4.4 Easy/hard to predict Mazurkas: ratio of correctly-

classified markings

We have observed over the course of the experiments that there were Mazurkas

for which the ratio of the markings that have been correctly classified is high for

each recording, while for others that same ratio is low. To study this ratio across

all Mazurkas, we have run a set of cross-validation experiments for which the

markings of a specific Mazurka constituted the testing set and the markings of

the remaining ones constituted the training set. The resulting ratio, averaged

over all recordings of the Mazurka, of correctly classified markings to total

markings is laid out in Figure 7.14 in a monotonically increasing order.

0

0.1

0.2

0.3

0.4

0.5

0.6

R
at

io

M24-1

M30-4

M07-1

M33-1

M17-1
M59-1

M24-4
M56-1

M33-3

M41-1

M59-2

M06-2

M30-1

M67-2

M30-2

M56-2

M50-1

M63-3

M24-2

M67-1

M17-2

M07-2

M30-3

M50-3

M06-3

M59-3

M63-1

M06-1

M56-3

M33-4

M41-3

M33-2

M67-3

M68-1

M68-3

M68-2

M07-3

M67-4

M41-2

M17-4

M41-4

M17-3

M24-3

M50-2

Figure 7.14: Average ratio, over all machine-learning methods, of correctly clas-
sified markings and number of markings per Mazurka over all pianists.

Note that Mazurka Op. 24 No. 1 has the lowest average ratio. Recall that

Mazurka Op. 24 No. 1 was also the one in which the loudness value predictions
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for one recording was almost perfectly and negatively correlated with the actual

values; this was described in Section 7.3.1.

In contrast, Mazurka Op. 50 No. 2 has the highest ratio, 0.5893, meaning

that this Mazurka has the highest number of correctly classified markings for

every recording. We then consider in detail the loudness values at dynamic

markings in Mazurka Op. 50 No. 2 for all eight recordings of that Mazurka.

In Figure 7.15 the markings that are correctly classified for all recordings are

highlighted with a solid vertical line, while the ones that are correctly classified

for seven out of eight recordings are highlighted with a dashed vertical line. The

loudness levels at these easily-classified markings follow the patterns established

by other recordings.
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Figure 7.15: Loudness values at dynamic marking positions for Mazurka Op.
50 No. 2. Solid vertical lines indicate markings that are correctly classified for
all eight recordings; dashed vertical lines indicate markings that are correctly
classified for seven out of eight recordings.

Recall that consecutive strings of the same symbol posed significant chal-

lenges to the prediction of loudness values described in earlier sections. Note

that Mazurka Op. 50 No. 2 again features a series of seven p’s, with high degrees

of variation in the loudness levels at these markings and in the f immediately

following the sequence.

7.5 Conclusions

In this chapter we have investigated the relationship between loudness levels

and dynamic markings in the score. To this end, we have implemented machine-

learning approaches for the prediction of loudness values corresponding to dif-

ferent dynamic markings and musical contexts, as well as for the prediction of

dynamic markings corresponding to different loudness levels and musical con-

texts. The methods—Decision Trees, Support Vector Machines, Artificial Neu-
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ral Networks, and a k-Nearest Neighbor algorithm—are applied to forty-four

recordings of performances of Chopins Mazurkas each by eight pianists.

The results in Section 7.3 highlight that, using any of the methods, loudness

values and markings can be predicted fairly well when training across recordings

of the same piece, but fail dismally when training across recordings of other

pieces by the same pianist. This happens possibly because the score is a greater

influence on the performance choices than the performers individual style for

this test set. More specifically, insights from the data structure come forward,

including Mazurkas in which loudness values can be predicted easier than others.

This finding is related to the range of the different markings that appear in a

piece as well as their position and function in the score in relation to structurally

important elements.

The results in Section 7.4 highlight the good performance of the methods

on predicting the dynamic markings given the loudness-marking data of the

pianists’ recordings of a target piece. When training across recordings of other

pieces by the same pianist, the results, while not exceptional with respect to

the prediction of dynamic markings, show notable trends on markings that are

classified correctly, and on pieces that have higher ratios of classified markings

over all markings. These trends are based mostly on the relationship between

the position of the markings and the structure of the piece.

Different tuning of the parameters in the existing machine learning tech-

niques for the prediction of loudness levels as well as for the prediction of dy-

namic markings may give better results. The scope of this study, however, is not

to find the optimal solution to the tuning issue, but to point out universal char-

acteristics of this kind of complex data. Improvements of the results may occur

by considering possible alterations in the feature set or the data set. From the

features set point of view, it would be especially interesting if the results were

to improve with more score-informed features, and features that correspond to

changes of other expressive parameters, such as tempo variations. From the

data set point of view, the poor results of the 44-fold-validation experiments

suggest that there may be insufficient data or features to train a model for such

a complicated task. The results may be a consequence of the choice of training

data, and perhaps training on a selection of pieces that include the desired or

similar sequence of markings could enhance the results. Alternatively, it may be

that musicians approach each new piece differently, and that there is little ben-

efit from training a model on recordings of other pieces to predict performance

features in a target piece.

Modeling expressive performance trends using artificial intelligence appears

to be a rather delicate matter. The models are limited by the particular rep-

resentations of changes that happen throughout a music piece with respect to
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the expression rendering. The results that are drawn from the current study

are likely to appear in similar studies for other instruments and data sets. Fu-

ture work in this direction should include the comparison of performances from

different eras, or performances of musicians from particular schools. At the

same time it should be kept in mind that the freedom of employing a particular

dynamic range in one interpretation is a matter of the performer’s idiosyncrasy.
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Chapter 8

Conclusions and further

work

8.1 Conclusions

The output of the thesis serves as the first novel steps of transcribing the dy-

namic markings pp, p, mf, f, ff from music audio to score by detecting salient

locations in loudness time series and labelling the corresponding position with

one of the dynamic markings. Also the output serves for investigating salient

performance parts, extracted patterns and similarities among different perfor-

mances.

This research is a step forward for solving problems of assigning salience to

musical features, the indicating of movements and arrivals, and the marking

of boundaries and change. This direction includes the automatic extraction of

signifiers having to do, apart from loudness, with tonality (Herremans and Chew

[2016]), timing (Li et al. [2016]), as well as vibrato and portamento (Yang et al.

[2015]).

The thesis explores two main research directions: a) From dynamic marking

to performed loudness. Observations are derived from the comparison of the

interpretation of same dynamic score markings, such as p (piano) and f (forte),

from different interpretations of the same piano pieces. b) From performed

loudness to score features. Implementation of Change-point statistical methods

from time series analysis have been applied and change points serve as dynamic

boundaries in the music audio.

We have created a list of factors that indicate salient characteristics for

identifying the dynamic level of a dynamic marking at a certain score location.

The factors serve as features for our bidirectional study for predicting loudness
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levels and classifying dynamic markings. Also we have shown that significant

dynamic score markings do indeed correspond to change points. Change points

in score positions without dynamic markings also serve to make salient and

focus the listener’s attention on certain changes.

8.2 Future Directions

This work can be used as inspiration for other projects, such as a visualisa-

tion tool for reflecting change points derived from famous pianists playing on

the corresponding score. Feature of the tool can involve the visualisation of

change points from an individual recording on the top of others, for comparing

performance styles. This type of tool can serve educational or musicological

purposes.

Another project can be the systematic exploration of the mapping between

timing and loudness changes. Our data has been created in such a way that a

direct mapping to the corresponding score beat position is feasible. Finally, a

data-driven machine learning approach for composing music can be benefited by

incorporating the expressive features provided by our data as well as the outcome

of our analysis. This approach can give more humanised characteristics to the

output music.

Future steps include the expansion of the current list of factors, by incor-

porating new parameters related to additional score notation. One parameter

could be the number of notes that are played simultaneously at a marking posi-

tion as this may affect the final loudness result. Also the extraction of structural

based parameters, such as the marking position related to the position where a

phrase starts could be of further investigation as there are many ways of inter-

preting a music piece utilizing both compositional and expressive parameters,

with respect to structural aspects.

Other future directions include the exploration of new ways in order to cap-

ture the loudness level that corresponds to one marking by expanding the win-

dow size of the three consecutive beats at a marking position or by using dif-

ferent loudness detection techniques. Also other change-point methods can be

considered and compared with the ones used.

While this research focussed on step changes in dynamics, more gradual

changes, such as the analysis of a crescendo or diminuendo could be a step-

forward for future contributions. Also the first steps towards understanding,

predicting and classifying tempo-related markings such as ritenuto or fermata,

as well as analysing their connection with dynamic markings have been done as

an expansion of our work (Vaquero et al. [2017 (to appear]).

We can consider as future work the same analysis in music audio recordings
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from a different composer or different period, as well as different instrumenta-

tion.
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Appendix A

Glossary of music terms

This appendix includes a glossary of music terms used in this thesis. Big part

of the definitions are taken from Rutherford-Johnson et al. [2012].

Agitato Agitated, restless.

Allegro ma non troppo Quick but not too quick.

Allegro A composition in allegro style or tempo.

Animato Animated, lively.

A tempo Return to the previous speed, after a slowing down or speeding up.

Con anima In a spirited manner.

Con forza With force.

calando Getting softer, dying away.

Dolce Soft, smooth.

Dolcissimo As soft and sweet as possible.

Espressivo Expressive.

Fermata A pause.

Gajo Joyful, merry.

Legato Bound together. Performance of music do that there is no perceptible

pause between notes, i.e. in a smooth manner, the opposite of staccato.

Indicated by slur or curved line. On string instruments, legato passages

are played with one stroke of the bow; in vocal music, the legato passage

is sung in one breath. Legato touch in piano playing requires holding down

one key until the finger is on another.

111



Legato assai Superlative of legato.

Legatissimo Superlative of legato.

Leggiero Light, nimble.

Lento At a slow tempo.

Maestoso Majestic and stately.

Moderato Moderate speed.

Motif The shortest intelligible and self-existent melodic or rhythmic figure.

Every ‘theme’ or ‘subject’ perhaps has several motifs, and almost every

musical passage will be found to be a development of some motif.

Perdendosi Dying away.

Phrase Short section of a composition into which the music, whether vocal or

instrumental, seems naturally to fall. Sometimes this is four measures,

but shorter and longer phrases occur. It is an exact term: sometimes a

phrase may be contained within one breath, and sometimes sub-divisions

may be marked. In notation, phrase-marks are the slurs placed over or

under the notes as a hint of their proper punctuation in a performance.

Portamento The currying of the sound from note to note smoothly and with-

out any break, hence very legato and momentarily sounding the pitches in

between any two indicated by the notation.

Rallentando Slowing down, gradually.

Risoluto Bold strong.

Ritenuto Held back, slower.

Rubato Robbed time. A feature in performance in which strict time is for a

while disregarded—what is ‘robbed’ from some note or notes being “paid

back’ later. When this is done with genuine artistry and instinctive music

sensibility, the effect is to impart an admirable sense of freedom and spon-

taneity. Done badly, rubato merely becomes mechanical. The question of

rubato in Chopin is particularly contentious, since its use in his music may

be dangerously open to abuse. Accounts of his playing (and of Mozart’s)

suggest that he kept the left-hand in strict time, and added rubato with

the right.

Scherzando Playful, joking.
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Sforzando Forced, accented.

Smorzando Extinguishing, gradually dying away.

Sotto voce Very softly, in an undertone.

Stretto Quicker tempo. In fugue: when entry of the answer occurs before

subject is completed, overlapping with it. Often a way of increasing ex-

citement.

Tempo I. A directive to perform the indicated passage of a composition in

the original tempo of the composition, usually after a diversion from that

original tempo.

Tenuto Held.

Vibrato A tremulous or pulsating effect produced in an instrumental or vocal

tone by minute and rapid variations in pitch.

Vivo Lively.
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Appendix B

Change-points plots across

the Mazurkas’ recordings

In this appendix we include the plots that are derived from the experiment

described in Section 6.4 of Chapter 6. They show the locations of the change

points across recordings as bar charts for each Mazurka separately. Also the

local maxima have been marked.
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