27,037 research outputs found

    A front-end system to support cloud-based manufacturing of customised products

    Get PDF
    In today’s global market, customized products are amongst an important means to address diverse customer demand and in achieving a unique competitive advantage. Key enablers of this approach are existing product configuration and supporting IT-based manufacturing systems. As a proposed advancement, it considered that the development of a front-end system with a next level of integration to a cloud-based manufacturing infrastructure is able to better support the specification and on-demand manufacture of customized products. In this paper, a new paradigm of Manufacturing-as-a-Service (MaaS) environment is introduced and highlights the current research challenges in the configuration of customizable products. Furthermore, the latest development of the front-end system is reported with a view towards further work in the research

    Cloud-based manufacturing-as-a-service environment for customized products

    Get PDF
    This paper describes the paradigm of cloud-based services which are used to envisage a new generation of configurable manufacturing systems. Unlike previous approaches to mass customization (that simply reprogram individual machines to produce specific shapes) the system reported here is intended to enable the customized production of technologically complex products by dynamically configuring a manufacturing supply chain. In order to realize such a system, the resources (i.e. production capabilities) have to be designed to support collaboration throughout the whole production network, including their adaption to customer-specific production. The flexible service composition as well as the appropriate IT services required for its realization show many analogies with common cloud computing approaches. For this reason, this paper describes the motivation and challenges that are related to cloud-based manufacturing and illustrates emerging technologies supporting this vision byestablishing an appropriate Manufacturing-as-a-Service environment based on manufacturing service descriptions

    Integrating web services into data intensive web sites

    Get PDF
    Designing web sites is a complex task. Ad-hoc rapid prototyping easily leads to unsatisfactory results, e.g. poor maintainability and extensibility. However, existing web design frameworks focus exclusively on data presentation: the development of specific functionalities is still achieved through low-level programming. In this paper we address this issue by describing our work on the integration of (semantic) web services into a web design framework, OntoWeaver. The resulting architecture, OntoWeaver-S, supports rapid prototyping of service centred data-intensive web sites, which allow access to remote web services. In particular, OntoWeaver-S is integrated with a comprehensive web service platform, IRS-II, for the specification, discovery, and execution of web services. Moreover, it employs a set of comprehensive site ontologies to model and represent all aspects of service-centred data-intensive web sites, and thus is able to offer high level support for the design and development process

    EbbRT: a framework for building per-application library operating systems

    Full text link
    Efficient use of high speed hardware requires operating system components be customized to the application work- load. Our general purpose operating systems are ill-suited for this task. We present EbbRT, a framework for constructing per-application library operating systems for cloud applications. The primary objective of EbbRT is to enable high-performance in a tractable and maintainable fashion. This paper describes the design and implementation of EbbRT, and evaluates its ability to improve the performance of common cloud applications. The evaluation of the EbbRT prototype demonstrates memcached, run within a VM, can outperform memcached run on an unvirtualized Linux. The prototype evaluation also demonstrates an 14% performance improvement of a V8 JavaScript engine benchmark, and a node.js webserver that achieves a 50% reduction in 99th percentile latency compared to it run on Linux

    EbbRT: a customizable operating system for cloud applications

    Full text link
    Efficient use of hardware requires operating system components be customized to the application workload. Our general purpose operating systems are ill-suited for this task. We present Genesis, a new operating system that enables per-application customizations for cloud applications. Genesis achieves this through a novel heterogeneous distributed structure, a partitioned object model, and an event-driven execution environment. This paper describes the design and prototype implementation of Genesis, and evaluates its ability to improve the performance of common cloud applications. The evaluation of the Genesis prototype demonstrates memcached, run within a VM, can outperform memcached run on an unvirtualized Linux. The prototype evaluation also demonstrates an 14% performance improvement of a V8 JavaScript engine benchmark, and a node.js webserver that achieves a 50% reduction in 99th percentile latency compared to it run on Linux
    • …
    corecore