11,309 research outputs found

    An experimental/analytical program to assess the utility of lidar for pollution monitoring

    Get PDF
    The development and demonstration of lidar techniques for the remote measurement of atmospheric constituents and transport processes in the lower troposphere was carried out. Particular emphasis was given to techniques for monitoring SO2 and particulates, the principal pollutants in power plant and industrial plumes. Data from a plume dispersion study conducted in Maryland during September and October 1976 were reduced, and a data base was assembled which is available to the scientific community for plume model verification. A UV Differential Absorption Lidar (DIAL) was built, and preliminary testing was done

    Labour Administration Reforms in China

    Get PDF
    [Excerpt] This publication provides an explanation of the comprehensive labour administration system in China, including its recent advances, with emphasis on its public services functions, such as public employment, labour inspection and social insurance services. With the recent improvements to both the legal framework and the institutions of labour administration, it is believed that these public services will play bigger and more active roles in ensuring compliance with legislation and protecting the legitimate rights and interests of employers and workers alike

    Opt: A Domain Specific Language for Non-linear Least Squares Optimization in Graphics and Imaging

    Full text link
    Many graphics and vision problems can be expressed as non-linear least squares optimizations of objective functions over visual data, such as images and meshes. The mathematical descriptions of these functions are extremely concise, but their implementation in real code is tedious, especially when optimized for real-time performance on modern GPUs in interactive applications. In this work, we propose a new language, Opt (available under http://optlang.org), for writing these objective functions over image- or graph-structured unknowns concisely and at a high level. Our compiler automatically transforms these specifications into state-of-the-art GPU solvers based on Gauss-Newton or Levenberg-Marquardt methods. Opt can generate different variations of the solver, so users can easily explore tradeoffs in numerical precision, matrix-free methods, and solver approaches. In our results, we implement a variety of real-world graphics and vision applications. Their energy functions are expressible in tens of lines of code, and produce highly-optimized GPU solver implementations. These solver have performance competitive with the best published hand-tuned, application-specific GPU solvers, and orders of magnitude beyond a general-purpose auto-generated solver

    DESIGN AND EVALUATION OF RESOURCE ALLOCATION AND JOB SCHEDULING ALGORITHMS ON COMPUTATIONAL GRIDS

    Get PDF
    Grid, an infrastructure for resource sharing, currently has shown its importance in many scientific applications requiring tremendously high computational power. Grid computing enables sharing, selection and aggregation of resources for solving complex and large-scale scientific problems. Grids computing, whose resources are distributed, heterogeneous and dynamic in nature, introduces a number of fascinating issues in resource management. Grid scheduling is the key issue in grid environment in which its system must meet the functional requirements of heterogeneous domains, which are sometimes conflicting in nature also, like user, application, and network. Moreover, the system must satisfy non-functional requirements like reliability, efficiency, performance, effective resource utilization, and scalability. Thus, overall aim of this research is to introduce new grid scheduling algorithms for resource allocation as well as for job scheduling for enabling a highly efficient and effective utilization of the resources in executing various applications. The four prime aspects of this work are: firstly, a model of the grid scheduling problem for dynamic grid computing environment; secondly, development of a new web based simulator (SyedWSim), enabling the grid users to conduct a statistical analysis of grid workload traces and provides a realistic basis for experimentation in resource allocation and job scheduling algorithms on a grid; thirdly, proposal of a new grid resource allocation method of optimal computational cost using synthetic and real workload traces with respect to other allocation methods; and finally, proposal of some new job scheduling algorithms of optimal performance considering parameters like waiting time, turnaround time, response time, bounded slowdown, completion time and stretch time. The issue is not only to develop new algorithms, but also to evaluate them on an experimental computational grid, using synthetic and real workload traces, along with the other existing job scheduling algorithms. Experimental evaluation confirmed that the proposed grid scheduling algorithms possess a high degree of optimality in performance, efficiency and scalability

    JBendge: An Object-Oriented System for Solving, Estimating and Selecting Nonlinear Dynamic Models

    Get PDF
    We present an object-oriented software framework allowing to specify, solve, and estimate nonlinear dynamic general equilibrium (DSGE) models. The imple- mented solution methods for nding the unknown policy function are the standard linearization around the deterministic steady state, and a function iterator using a multivariate global Chebyshev polynomial approximation with the Smolyak op- erator to overcome the course of dimensionality. The operator is also useful for numerical integration and we use it for the integrals arising in rational expecta- tions and in nonlinear state space lters. The estimation step is done by a parallel Metropolis-Hastings (MH) algorithm, using a linear or nonlinear lter. Implemented are the Kalman, Extended Kalman, Particle, Smolyak Kalman, Smolyak Sum, and Smolyak Kalman Particle lters. The MH sampling step can be interactively moni- tored and controlled by sequence and statistics plots. The number of parallel threads can be adjusted to benet from multiprocessor environments. JBendge is based on the framework JStatCom, which provides a standardized ap- plication interface. All tasks are supported by an elaborate multi-threaded graphical user interface (GUI) with project management and data handling facilities.Dynamic Stochastic General Equilibrium (DSGE) Models, Bayesian Time Series Econometrics, Java, Software Development

    Scenario-based forecast for the electricity demand in Qatar and the role of energy efficiency improvements

    Get PDF
    We model the electricity consumption in the market segment that compose the Qatari electricity market. We link electricity consumption to GDP growth and Population Growth. Building on the estimated model, we develop long-range forecasts of electricity consumption from 2017 to 2030 over different scenarios for the economic drivers. In addition, we proxy for electricity efficiency improvements by reducing the long-run elasticity of electricity consumption to GDP and Population. We show that electricity efficiency has a crucial role in controlling the future development of electricity consumption. Energy policies should consider this aspect and support both electricity efficiency improvement programs, as well as a price reform
    corecore