112 research outputs found

    Wireless Backhaul Architectures for 5G Networks

    Get PDF
    This thesis investigates innovative wireless backhaul deployment strategies for dense small cells. In particular, the work focuses on improving the resource utilisation, reliability and energy efficiency of future wireless backhaul networks by increasing and exploiting the flexibility of the network. The wireless backhaul configurations and topology management schemes proposed in this thesis consider a dense urban area scenario with static users as well as an ultra-dense outdoor small cell scenario with vehicular traffic (pedestrians, bus users and car users). Moreover, a diverse range of traffic types such as file transfer, ultra-high definition (UHD) on-demand and real-time video streaming are used. In the first part of this thesis, novel dynamic two-tier Software Defined Networking (SDN) architecture is employed in backhaul network to facilitate complex network management tasks including multi-tenancy resource sharing and energy-aware topology management. The results show the proposed architecture can deliver efficient resource utilisation, and QoS guarantee. The second part of the thesis presents wireless backhaul architectures that serve ultra-dense outdoor small cells installed on street-level fixtures. The characteristics of vehicular communications including diverse mobility patterns and unevenly distributed traffic are investigated. The system-level performance of two key technologies for 5G backhaul are compared: massive MIMO backhaul using sub-6GHz band and millimetre (mm)-wave backhaul in the 71 – 76 GHz band. Finally, innovative wireless backhaul architectures delivered from street fibre cabinets for ultra-dense outdoor small cells with vehicular traffic is proposed, which can effectively minimise the need for additional sites, power and fibre infrastructure. Multi-hop backhaul configurations are presented in order to bring in an extra level of flexibility, and thus, improve the coverage of a street cabinet mm-wave backhaul network as well as distribute traffic loads

    Enhancement in Network Architectures for Future Wireless Systems

    Get PDF
    This thesis investigates innovative wireless deployment strategies for dense ultra-small cells networks. In particular, this thesis focuses on improving the resource utilisation, reliability and energy efficiency of future wireless networks by exploiting the existing flexibility in the network architecture. The wireless backhaul configurations and topology management schemes proposed in this thesis consider a dense urban area scenario with static outdoor users. In the first part of this thesis, a novel mm-wave dual-hop backhaul network architecture is investigated for future cellular networks to achieve better resource utilization and user experience at the expense of path diversity available in dense deployment of base stations. The system-level performance is analysed and compared for the backhaul section using mm-wave band. Followed by the performance of the network model which is validated using a Markov Model. The second part of the thesis illustrates a topology management strategy for the same dual-hop backhaul network architecture. The same path diversity is also utilized by the topology management technique to achieve high energy savings and improvement in performance. The results show that the proposed architecture facilitates the topology management process to turn-off some portion of the network in order to minimize the power consumption and can deliver Quality-of-Service guarantee. Finally, the methodology to admit new users into the system, to best control the capacity resource, is investigated for radio resource management in a multi hop, multi-tier heterogeneous network. A novel analytical Markov Model based on a two-dimensional state-transition rate diagram is developed to describe system behaviour of a coexistence scenarios containing two different sets of users, which have full and limited access to the network resources. Different levels of restriction to access the network by specific groups of users are compared and conclusions are drawn

    Millimetre wave frequency band as a candidate spectrum for 5G network architecture : a survey

    Get PDF
    In order to meet the huge growth in global mobile data traffic in 2020 and beyond, the development of the 5th Generation (5G) system is required as the current 4G system is expected to fall short of the provision needed for such growth. 5G is anticipated to use a higher carrier frequency in the millimetre wave (mm-wave) band, within the 20 to 90 GHz, due to the availability of a vast amount of unexploited bandwidth. It is a revolutionary step to use these bands because of their different propagation characteristics, severe atmospheric attenuation, and hardware constraints. In this paper, we carry out a survey of 5G research contributions and proposed design architectures based on mm-wave communications. We present and discuss the use of mm-wave as indoor and outdoor mobile access, as a wireless backhaul solution, and as a key enabler for higher order sectorisation. Wireless standards such as IEE802.11ad, which are operating in mm-wave band have been presented. These standards have been designed for short range, ultra high data throughput systems in the 60 GHz band. Furthermore, this survey provides new insights regarding relevant and open issues in adopting mm-wave for 5G networks. This includes increased handoff rate and interference in Ultra-Dense Network (UDN), waveform consideration with higher spectral efficiency, and supporting spatial multiplexing in mm-wave line of sight. This survey also introduces a distributed base station architecture in mm-wave as an approach to address increased handoff rate in UDN, and to provide an alternative way for network densification in a time and cost effective manner

    5G Radio Access above 6 GHz

    Get PDF
    Designing and developing a millimetre-wave(mmWave) based mobile Radio Access Technology (RAT) in the 6-100 GHz frequency range is a fundamental component in the standardization of the new 5G radio interface, recently kicked off by 3GPP. Such component, herein called the new mmWave RAT, will not only enable extreme mobile broadband (eMBB) services,but also support UHD/3D streaming, offer immersive applications and ultra-responsive cloud services to provide an outstanding Quality of Experience (QoE) to the mobile users. The main objective of this paper is to develop the network architectural elements and functions that will enable tight integration of mmWave technology into the overall 5G radio access network (RAN). A broad range of topics addressing mobile architecture and network functionalities will be covered-starting with the architectural facets of network slicing, multiconnectivity and cells clustering, to more functional elements of initial access, mobility, radio resource management (RRM) and self-backhauling. The intention of the concepts presented here is to lay foundation for future studies towards the first commercial implementation of the mmWave RAT above 6 GHz.Comment: 7 pages, 5 figure

    Max-Min Fair Resource Allocation in Millimetre-Wave Backhauls

    Get PDF
    5G mobile networks are expected to provide pervasive high speed wireless connectivity, to support increasingly resource intensive user applications. Network hyper-densification therefore becomes necessary, though connecting to the Internet tens of thousands of base stations is non-trivial, especially in urban scenarios where optical fibre is difficult and costly to deploy. The millimetre wave (mm-wave) spectrum is a promising candidate for inexpensive multi-Gbps wireless backhauling, but exploiting this band for effective multi-hop data communications is challenging. In particular, resource allocation and scheduling of very narrow transmission/ reception beams requires to overcome terminal deafness and link blockage problems, while managing fairness issues that arise when flows encounter dissimilar competition and traverse different numbers of links with heterogeneous quality. In this paper, we propose WiHaul, an airtime allocation and scheduling mechanism that overcomes these challenges specific to multi-hop mm-wave networks, guarantees max-min fairness among traffic flows, and ensures the overall available backhaul resources are fully utilised. We evaluate the proposed WiHaul scheme over a broad range of practical network conditions, and demonstrate up to 5 times individual throughput gains and a fivefold improvement in terms of measurable fairness, over recent mm-wave scheduling solutions

    White Paper for Research Beyond 5G

    Get PDF
    The documents considers both research in the scope of evolutions of the 5G systems (for the period around 2025) and some alternative/longer term views (with later outcomes, or leading to substantial different design choices). This document reflects on four main system areas: fundamental theory and technology, radio and spectrum management; system design; and alternative concepts. The result of this exercise can be broken in two different strands: one focused in the evolution of technologies that are already ongoing development for 5G systems, but that will remain research areas in the future (with “more challenging” requirements and specifications); the other, highlighting technologies that are not really considered for deployment today, or that will be essential for addressing problems that are currently non-existing, but will become apparent when 5G systems begin their widespread deployment

    Energy Efficiency of Ultra-Dense Small Cell Radio Access Networks for 5G and Beyond

    Get PDF
    Small cell base station (BS) densification in the radio access network (RAN) is an effective solution to improve the RAN capacity. However, small cell BS densification by adding more non-zero energy-consuming BSs increases energy consumption, compromising energy efficiency, which can be mitigated by adopting sleep mode. A comprehensive evaluation framework is applied in this research to analyse the capacity, energy consumption, and energy efficiency performance of the ultra-dense small cell RANs as a complete energy efficiency assessment, which is lacking in the literature. The impact of advanced techniques millimetre wave (mmWave), antenna array beamforming, and integrated access and backhaul (IAB) on RAN energy efficiency are also investigated. MATLAB- based simulation results show that the ultra-dense small cell RANs, where the number of BSs greatly exceeds the number of active user equipment (UEs), can only be energy efficient if all the empty cells without UE association are turned off completely. Energy efficiency enhancement comes from capacity improvement and energy consumption constraint. Specifically, the ultra-dense small cell RANs can achieve maximum performance improvement of 7.56-fold and 2.35-fold regarding capacity, 3780.11-fold and 32.38-fold regarding energy consumption using the current power model, and 28591.53-fold and 75.97-fold regarding energy efficiency in homogeneous and heterogeneous infrastructures, respectively, comparing the cases with and without the sleep mode. In addition, mmWave and IAB trade energy consumption and energy efficiency for capacity improvement and backhaul cost reduction. With mmWave and IAB, dense small cell RAN can achieve a maximum of 2.55-fold and 1.70-fold for capacity improvement, 2.46-fold and 2.89-fold for energy consumption reduction using the current power model, and 6.27-fold and 8.34-fold energy efficiency enhancement for UE densities of 900 and 300 UEs/km2, respectively, comparing the cases with and without the sleep mode
    • 

    corecore