71,445 research outputs found

    Optimal Elephant Flow Detection

    Full text link
    Monitoring the traffic volumes of elephant flows, including the total byte count per flow, is a fundamental capability for online network measurements. We present an asymptotically optimal algorithm for solving this problem in terms of both space and time complexity. This improves on previous approaches, which can only count the number of packets in constant time. We evaluate our work on real packet traces, demonstrating an up to X2.5 speedup compared to the best alternative.Comment: Accepted to IEEE INFOCOM 201

    A software framework for automated behavioral modeling of electronic devices

    Get PDF

    The impact of agricultural activities on water quality: a case for collaborative catchment-scale management using integrated wireless sensor networks

    No full text
    The challenge of improving water quality is a growing global concern, typified by the European Commission Water Framework Directive and the United States Clean Water Act. The main drivers of poor water quality are economics, poor water management, agricultural practices and urban development. This paper reviews the extensive role of non-point sources, in particular the outdated agricultural practices, with respect to nutrient and contaminant contributions. Water quality monitoring (WQM) is currently undertaken through a number of data acquisition methods from grab sampling to satellite based remote sensing of water bodies. Based on the surveyed sampling methods and their numerous limitations, it is proposed that wireless sensor networks (WSNs), despite their own limitations, are still very attractive and effective for real-time spatio-temporal data collection for WQM applications. WSNs have been employed for WQM of surface and ground water and catchments, and have been fundamental in advancing the knowledge of contaminants trends through their high resolution observations. However, these applications have yet to explore the implementation and impact of this technology for management and control decisions, to minimize and prevent individual stakeholder’s contributions, in an autonomous and dynamic manner. Here, the potential of WSN-controlled agricultural activities and different environmental compartments for integrated water quality management is presented and limitations of WSN in agriculture and WQM are identified. Finally, a case for collaborative networks at catchment scale is proposed for enabling cooperation among individually networked activities/stakeholders (farming activities, water bodies) for integrated water quality monitoring, control and management

    Importance sampling the union of rare events with an application to power systems analysis

    Full text link
    We consider importance sampling to estimate the probability ÎŒ\mu of a union of JJ rare events HjH_j defined by a random variable x\boldsymbol{x}. The sampler we study has been used in spatial statistics, genomics and combinatorics going back at least to Karp and Luby (1983). It works by sampling one event at random, then sampling x\boldsymbol{x} conditionally on that event happening and it constructs an unbiased estimate of ÎŒ\mu by multiplying an inverse moment of the number of occuring events by the union bound. We prove some variance bounds for this sampler. For a sample size of nn, it has a variance no larger than ÎŒ(Όˉ−Ό)/n\mu(\bar\mu-\mu)/n where Όˉ\bar\mu is the union bound. It also has a coefficient of variation no larger than (J+J−1−2)/(4n)\sqrt{(J+J^{-1}-2)/(4n)} regardless of the overlap pattern among the JJ events. Our motivating problem comes from power system reliability, where the phase differences between connected nodes have a joint Gaussian distribution and the JJ rare events arise from unacceptably large phase differences. In the grid reliability problems even some events defined by 57725772 constraints in 326326 dimensions, with probability below 10−2210^{-22}, are estimated with a coefficient of variation of about 0.00240.0024 with only n=10,000n=10{,}000 sample values

    Increasing resilience of ATM networks using traffic monitoring and automated anomaly analysis

    Get PDF
    Systematic network monitoring can be the cornerstone for the dependable operation of safety-critical distributed systems. In this paper, we present our vision for informed anomaly detection through network monitoring and resilience measurements to increase the operators' visibility of ATM communication networks. We raise the question of how to determine the optimal level of automation in this safety-critical context, and we present a novel passive network monitoring system that can reveal network utilisation trends and traffic patterns in diverse timescales. Using network measurements, we derive resilience metrics and visualisations to enhance the operators' knowledge of the network and traffic behaviour, and allow for network planning and provisioning based on informed what-if analysis

    Synchrophasor Assisted Efficient Fault Location Techniques In An Active Distribution Network

    Get PDF
    Reliability of an electrical system can be improved by an efficient fault location identification for the fast repair and remedial actions. This scenario changes when there are large penetrations of distributed generation (DG) which makes the distribution system an active distribution system. An efficient use of synchrophasors in the distribution network is studied with bidirectional power flow, harmonics and low angle difference consideration which are not prevalent in a transmission network. A synchrophasor estimation algorithm for the P class PMU is developed and applied to identify efficient fault location. A fault location technique using two ended synchronized measurement is derived from the principle of transmission line settings to work in a distribution network which is independent of line parameters. The distribution systems have less line length, harmonics and different sized line conductors, which affects the sensitivity of the synchronized measurements, Total Vector Error (TVE) and threshold for angular separation between different points in the network. A new signal processing method based on Discrete Fourier Transform (DFT) is utilized to work in a distribution network as specified in IEEE C37.118 (2011) standard for synchrophasor. A specific P and M classes of synchrophasor measurements are defined in the standard. A tradeoff between fast acting P class and detailed measurement M class is sought to work specifically in the distribution system settings which is subjected to large amount of penetrations from the renewable energy
    • 

    corecore