8,838 research outputs found

    Unsupervised Extraction of Representative Concepts from Scientific Literature

    Full text link
    This paper studies the automated categorization and extraction of scientific concepts from titles of scientific articles, in order to gain a deeper understanding of their key contributions and facilitate the construction of a generic academic knowledgebase. Towards this goal, we propose an unsupervised, domain-independent, and scalable two-phase algorithm to type and extract key concept mentions into aspects of interest (e.g., Techniques, Applications, etc.). In the first phase of our algorithm we propose PhraseType, a probabilistic generative model which exploits textual features and limited POS tags to broadly segment text snippets into aspect-typed phrases. We extend this model to simultaneously learn aspect-specific features and identify academic domains in multi-domain corpora, since the two tasks mutually enhance each other. In the second phase, we propose an approach based on adaptor grammars to extract fine grained concept mentions from the aspect-typed phrases without the need for any external resources or human effort, in a purely data-driven manner. We apply our technique to study literature from diverse scientific domains and show significant gains over state-of-the-art concept extraction techniques. We also present a qualitative analysis of the results obtained.Comment: Published as a conference paper at CIKM 201

    Comprehensive Review of Opinion Summarization

    Get PDF
    The abundance of opinions on the web has kindled the study of opinion summarization over the last few years. People have introduced various techniques and paradigms to solving this special task. This survey attempts to systematically investigate the different techniques and approaches used in opinion summarization. We provide a multi-perspective classification of the approaches used and highlight some of the key weaknesses of these approaches. This survey also covers evaluation techniques and data sets used in studying the opinion summarization problem. Finally, we provide insights into some of the challenges that are left to be addressed as this will help set the trend for future research in this area.unpublishednot peer reviewe

    Determining the Unithood of Word Sequences using Mutual Information and Independence Measure

    Full text link
    Most works related to unithood were conducted as part of a larger effort for the determination of termhood. Consequently, the number of independent research that study the notion of unithood and produce dedicated techniques for measuring unithood is extremely small. We propose a new approach, independent of any influences of termhood, that provides dedicated measures to gather linguistic evidence from parsed text and statistical evidence from Google search engine for the measurement of unithood. Our evaluations revealed a precision and recall of 98.68% and 91.82% respectively with an accuracy at 95.42% in measuring the unithood of 1005 test cases.Comment: More information is available at http://explorer.csse.uwa.edu.au/reference

    Efficient Multi-Template Learning for Structured Prediction

    Full text link
    Conditional random field (CRF) and Structural Support Vector Machine (Structural SVM) are two state-of-the-art methods for structured prediction which captures the interdependencies among output variables. The success of these methods is attributed to the fact that their discriminative models are able to account for overlapping features on the whole input observations. These features are usually generated by applying a given set of templates on labeled data, but improper templates may lead to degraded performance. To alleviate this issue, in this paper, we propose a novel multiple template learning paradigm to learn structured prediction and the importance of each template simultaneously, so that hundreds of arbitrary templates could be added into the learning model without caution. This paradigm can be formulated as a special multiple kernel learning problem with exponential number of constraints. Then we introduce an efficient cutting plane algorithm to solve this problem in the primal, and its convergence is presented. We also evaluate the proposed learning paradigm on two widely-studied structured prediction tasks, \emph{i.e.} sequence labeling and dependency parsing. Extensive experimental results show that the proposed method outperforms CRFs and Structural SVMs due to exploiting the importance of each template. Our complexity analysis and empirical results also show that our proposed method is more efficient than OnlineMKL on very sparse and high-dimensional data. We further extend this paradigm for structured prediction using generalized pp-block norm regularization with p>1p>1, and experiments show competitive performances when p[1,2)p \in [1,2)

    Building a semantically annotated corpus of clinical texts

    Get PDF
    In this paper, we describe the construction of a semantically annotated corpus of clinical texts for use in the development and evaluation of systems for automatically extracting clinically significant information from the textual component of patient records. The paper details the sampling of textual material from a collection of 20,000 cancer patient records, the development of a semantic annotation scheme, the annotation methodology, the distribution of annotations in the final corpus, and the use of the corpus for development of an adaptive information extraction system. The resulting corpus is the most richly semantically annotated resource for clinical text processing built to date, whose value has been demonstrated through its use in developing an effective information extraction system. The detailed presentation of our corpus construction and annotation methodology will be of value to others seeking to build high-quality semantically annotated corpora in biomedical domains

    Qualities, objects, sorts, and other treasures : gold digging in English and Arabic

    Get PDF
    In the present monograph, we will deal with questions of lexical typology in the nominal domain. By the term "lexical typology in the nominal domain", we refer to crosslinguistic regularities in the interaction between (a) those areas of the lexicon whose elements are capable of being used in the construction of "referring phrases" or "terms" and (b) the grammatical patterns in which these elements are involved. In the traditional analyses of a language such as English, such phrases are called "nominal phrases". In the study of the lexical aspects of the relevant domain, however, we will not confine ourselves to the investigation of "nouns" and "pronouns" but intend to take into consideration all those parts of speech which systematically alternate with nouns, either as heads or as modifiers of nominal phrases. In particular, this holds true for adjectives both in English and in other Standard European Languages. It is well known that adjectives are often difficult to distinguish from nouns, or that elements with an overt adjectival marker are used interchangeably with nouns, especially in particular semantic fields such as those denoting MATERIALS or NATlONALlTIES. That is, throughout this work the expression "lexical typology in the nominal domain" should not be interpreted as "a typology of nouns", but, rather, as the cross-linguistic investigation of lexical areas constitutive for "referring phrases" irrespective of how the parts-of-speech system in a specific language is defined

    The Odyssey Approach for Optimizing Federated SPARQL Queries

    Full text link
    Answering queries over a federation of SPARQL endpoints requires combining data from more than one data source. Optimizing queries in such scenarios is particularly challenging not only because of (i) the large variety of possible query execution plans that correctly answer the query but also because (ii) there is only limited access to statistics about schema and instance data of remote sources. To overcome these challenges, most federated query engines rely on heuristics to reduce the space of possible query execution plans or on dynamic programming strategies to produce optimal plans. Nevertheless, these plans may still exhibit a high number of intermediate results or high execution times because of heuristics and inaccurate cost estimations. In this paper, we present Odyssey, an approach that uses statistics that allow for a more accurate cost estimation for federated queries and therefore enables Odyssey to produce better query execution plans. Our experimental results show that Odyssey produces query execution plans that are better in terms of data transfer and execution time than state-of-the-art optimizers. Our experiments using the FedBench benchmark show execution time gains of at least 25 times on average.Comment: 16 pages, 10 figure
    corecore