8,842 research outputs found

    Parallel accelerated cyclic reduction preconditioner for three-dimensional elliptic PDEs with variable coefficients

    Full text link
    We present a robust and scalable preconditioner for the solution of large-scale linear systems that arise from the discretization of elliptic PDEs amenable to rank compression. The preconditioner is based on hierarchical low-rank approximations and the cyclic reduction method. The setup and application phases of the preconditioner achieve log-linear complexity in memory footprint and number of operations, and numerical experiments exhibit good weak and strong scalability at large processor counts in a distributed memory environment. Numerical experiments with linear systems that feature symmetry and nonsymmetry, definiteness and indefiniteness, constant and variable coefficients demonstrate the preconditioner applicability and robustness. Furthermore, it is possible to control the number of iterations via the accuracy threshold of the hierarchical matrix approximations and their arithmetic operations, and the tuning of the admissibility condition parameter. Together, these parameters allow for optimization of the memory requirements and performance of the preconditioner.Comment: 24 pages, Elsevier Journal of Computational and Applied Mathematics, Dec 201

    Solving optimal control problems governed by random Navier-Stokes equations using low-rank methods

    Full text link
    Many problems in computational science and engineering are simultaneously characterized by the following challenging issues: uncertainty, nonlinearity, nonstationarity and high dimensionality. Existing numerical techniques for such models would typically require considerable computational and storage resources. This is the case, for instance, for an optimization problem governed by time-dependent Navier-Stokes equations with uncertain inputs. In particular, the stochastic Galerkin finite element method often leads to a prohibitively high dimensional saddle-point system with tensor product structure. In this paper, we approximate the solution by the low-rank Tensor Train decomposition, and present a numerically efficient algorithm to solve the optimality equations directly in the low-rank representation. We show that the solution of the vorticity minimization problem with a distributed control admits a representation with ranks that depend modestly on model and discretization parameters even for high Reynolds numbers. For lower Reynolds numbers this is also the case for a boundary control. This opens the way for a reduced-order modeling of the stochastic optimal flow control with a moderate cost at all stages.Comment: 29 page

    Probabilistic error estimation for non-intrusive reduced models learned from data of systems governed by linear parabolic partial differential equations

    Full text link
    This work derives a residual-based a posteriori error estimator for reduced models learned with non-intrusive model reduction from data of high-dimensional systems governed by linear parabolic partial differential equations with control inputs. It is shown that quantities that are necessary for the error estimator can be either obtained exactly as the solutions of least-squares problems in a non-intrusive way from data such as initial conditions, control inputs, and high-dimensional solution trajectories or bounded in a probabilistic sense. The computational procedure follows an offline/online decomposition. In the offline (training) phase, the high-dimensional system is judiciously solved in a black-box fashion to generate data and to set up the error estimator. In the online phase, the estimator is used to bound the error of the reduced-model predictions for new initial conditions and new control inputs without recourse to the high-dimensional system. Numerical results demonstrate the workflow of the proposed approach from data to reduced models to certified predictions

    Space-time domain decomposition for advection-diffusion problems in mixed formulations

    Get PDF
    This paper is concerned with the numerical solution of porous-media flow and transport problems , i. e. heterogeneous, advection-diffusion problems. Its aim is to investigate numerical schemes for these problems in which different time steps can be used in different parts of the domain. Global-in-time, non-overlapping domain-decomposition methods are coupled with operator splitting making possible the different treatment of the advection and diffusion terms. Two domain-decomposition methods are considered: one uses the time-dependent Steklov--Poincar{\'e} operator and the other uses optimized Schwarz waveform relaxation (OSWR) based on Robin transmission conditions. For each method, a mixed formulation of an interface problem on the space-time interface is derived, and different time grids are employed to adapt to different time scales in the subdomains. A generalized Neumann-Neumann preconditioner is proposed for the first method. To illustrate the two methods numerical results for two-dimensional problems with strong heterogeneities are presented. These include both academic problems and more realistic prototypes for simulations for the underground storage of nuclear waste

    Diffusion maps embedding and transition matrix analysis of the large-scale flow structure in turbulent Rayleigh--B\'enard convection

    Full text link
    By utilizing diffusion maps embedding and transition matrix analysis we investigate sparse temperature measurement time-series data from Rayleigh--B\'enard convection experiments in a cylindrical container of aspect ratio Γ=D/L=0.5\Gamma=D/L=0.5 between its diameter (DD) and height (LL). We consider the two cases of a cylinder at rest and rotating around its cylinder axis. We find that the relative amplitude of the large-scale circulation (LSC) and its orientation inside the container at different points in time are associated to prominent geometric features in the embedding space spanned by the two dominant diffusion-maps eigenvectors. From this two-dimensional embedding we can measure azimuthal drift and diffusion rates, as well as coherence times of the LSC. In addition, we can distinguish from the data clearly the single roll state (SRS), when a single roll extends through the whole cell, from the double roll state (DRS), when two counter-rotating rolls are on top of each other. Based on this embedding we also build a transition matrix (a discrete transfer operator), whose eigenvectors and eigenvalues reveal typical time scales for the stability of the SRS and DRS as well as for the azimuthal drift velocity of the flow structures inside the cylinder. Thus, the combination of nonlinear dimension reduction and dynamical systems tools enables to gain insight into turbulent flows without relying on model assumptions
    • …
    corecore