2,950 research outputs found

    Benchmarking and viability assessment of optical packet switching for metro networks

    Get PDF
    Optical packet switching (OPS) has been proposed as a strong candidate for future metro networks. This paper assesses the viability of an OPS-based ring architecture as proposed within the research project DAVID (Data And Voice Integration on DWDM), funded by the European Commission through the Information Society Technologies (IST) framework. Its feasibility is discussed from a physical-layer point of view, and its limitations in size are explored. Through dimensioning studies, we show that the proposed OPS architecture is competitive with respect to alternative metropolitan area network (MAN) approaches, including synchronous digital hierarchy, resilient packet rings (RPR), and star-based Ethernet. Finally, the proposed OPS architectures are discussed from a logical performance point of view, and a high-quality scheduling algorithm to control the packet-switching operations in the rings is explained

    An energy-efficient distributed dynamic bandwidth allocation algorithm for Passive Optical Access Networks

    Get PDF
    The rapid deployment of passive optical access networks (PONs) increases the global energy consumption of networking infrastructure. This paper focuses on the minimization of energy consumption in Ethernet PONs (EPONs). We present an energy-efficient, distributed dynamic bandwidth allocation (DBA) algorithm able to power off the transmitter and receiver of an optical network unit (ONU) when there is no upstream or downstream traffic. Our main contribution is combining the advantages of a distributed DBA (namely, a smaller packet delay compared to centralized DBAs, due to less time being needed to allocate the transmission slot) with energy saving features (that come at a price of longer delays due to the longer queue waiting times when transmitters are switched off). The proposed algorithm analyzes the queue size of the ONUs in order to switch them to doze/sleep mode when there is no upstream/downstream traffic in the network, respectively. Our results show that we minimized the ONU energy consumption across a wide range of network loads while keeping delay bounded.Postprint (published version

    Dynamic bandwidth allocation with SLA awareness for QoS in ethernet passive optical networks

    Get PDF
    Quality-of-service (QoS) support in Ethernet passive optical networks is a crucial concern. We propose a new dynamic bandwidth allocation (DBA) algorithm for service differentiation that meets the service-level agreements (SLAs) of the users. The proposed delay-aware (DA) online DBA algorithm provides constant and predictable average packet delay and reduced delay variation for the high-and medium-priority traffic while keeping the packet loss rate under check. We prove the effectiveness of the proposed algorithm by exhaustive simulations

    New dynamic bandwidth allocation algorithm analysis: DDSPON for ethernet passive optical networks

    Get PDF
    This project aims to present the state of the art in Dynamic Bandwidth Allocation (DBA) solutions, as well as the study and evaluation of one proposal of DBA algorithm: the Distributed Dynamic Scheduling for EPON (DDSPON), which is the UPC contribution to the research in scheduling algorithms for EPON

    Upstream traffic capacity of a WDM EPON under online GATE-driven scheduling

    Full text link
    Passive optical networks are increasingly used for access to the Internet and it is important to understand the performance of future long-reach, multi-channel variants. In this paper we discuss requirements on the dynamic bandwidth allocation (DBA) algorithm used to manage the upstream resource in a WDM EPON and propose a simple novel DBA algorithm that is considerably more efficient than classical approaches. We demonstrate that the algorithm emulates a multi-server polling system and derive capacity formulas that are valid for general traffic processes. We evaluate delay performance by simulation demonstrating the superiority of the proposed scheduler. The proposed scheduler offers considerable flexibility and is particularly efficient in long-reach access networks where propagation times are high
    • 

    corecore