10 research outputs found

    Using Connected Vehicle Data to Reassess Dilemma Zone Performance of Heavy Vehicles

    Get PDF
    The rate of fatalities at signalized intersections involving heavy vehicles is nearly five times higher than for passenger vehicles in the US. Previous studies in the US have found that heavy vehicles are twice as likely to violate a red light compared with passenger vehicles. Current technologies leverage setback detection to extend green time for a particular phase and are based upon typical deceleration rates for passenger cars. Furthermore, dilemma zone detectors are not effective when the max out time expires and forces the onset of yellow. This study proposes the use of connected vehicle (CV) technology to trigger force gap out (FGO) before a vehicle is expected to arrive within the dilemma zone limit at max out time. The method leverages position data from basic safety messages (BSMs) to map-match virtual waypoints located up to 1,050 ft in advance of the stop bar. For a 55 mph approach, field tests determined that using a 6 ft waypoint radius at 50 ft spacings would be sufficient to match 95% of BSM data within a 5% lag threshold of 0.59 s. The study estimates that FGOs reduce dilemma zone incursions by 34% for one approach and had no impact for the other. For both approaches, the total dilemma zone incursions decreased from 310 to 225. Although virtual waypoints were used for evaluating FGO, the study concludes by recommending that trajectory-based processing logic be incorporated into controllers for more robust support of dilemma zone and other emerging CV applications

    COSACC: Cloud-Based Speed Advisory for Connected Vehicles in a Signalized Corridor

    Get PDF
    The objective of this study is to assess the feasibility of cloud-based real-time connected vehicle (CV) applications. The author developed a cloud-based speed advisory application for CVs in a signalized corridor (COSACC) to achieve this objective. The contribution of this study is threefold. First, it introduced a serverless cloud computing architecture using Amazon Web Services (AWS) for real-time CV applications. Second, the author developed a real-time optimization-based speed advisory algorithm that is deployable in AWS. Third, this study utilized a cloud-in-the-loop simulation testbed using AWS and Simulation of Urban Mobility (SUMO), which is a microscopic traffic simulator. The author conducted experiments on cloud access at three-hour intervals over 24 hours in one day. These experiments revealed that the total data upload and download time to and from AWS via LTE is on average 92 milliseconds, which meets the allowable delay requirement for real-time CV traffic mobility applications. The author conducted a case study by implementing the COSACC in a cloud-in-the-loop simulation testbed. The analyses revealed that COSACC can reduce vehicle stopped delay at the signalized intersections up to 98% and fuel consumption in the signalized corridor up to 12.7%, compared to the baseline scenario, i.e., no speed advisory on the signalized corridor. Moreover, the authors observed an average end-to-end delay from a CV sending basic safety messages to it receiving a speed advisory from the cloud to be about 443 ms, which is well under the 1000 ms threshold required for any real-time traffic mobility application for connected vehicles

    Connected and Autonomous Vehicles Applications Development and Evaluation for Transportation Cyber-Physical Systems

    Get PDF
    Cyber-Physical Systems (CPS) seamlessly integrate computation, networking and physical devices. A Connected and Autonomous Vehicle (CAV) system in which each vehicle can wirelessly communicate and share data with other vehicles or infrastructures (e.g., traffic signal, roadside unit), requires a Transportation Cyber-Physical System (TCPS) for improving safety and mobility, and reducing greenhouse gas emissions. Unfortunately, a typical TCPS with a centralized computing service cannot support real-time CAV applications due to the often unpredictable network latency, high data loss rate and expensive communication bandwidth, especially in a mobile network, such as a CAV environment. Edge computing, a new concept for the CPS, distributes the resources for communication, computation, control, and storage at different edges of the systems. TCPS with edge computing strategy forms an edge-centric TCPS. This edge-centric TCPS system can reduce data loss and data delivery delay, and fulfill the high bandwidth requirements. Within the edge-centric TCPS, Vehicle-to-X (V2X) communication, along with the in-vehicle sensors, provides a 360-degree view for CAVs that enables autonomous vehicles’ operation beyond the sensor range. The addition of wireless connectivity would improve the operational efficiency of CAVs by providing real-time roadway information, such as traffic signal phasing and timing information, downstream traffic incident alerts, and predicting future traffic queue information. In addition, temporal variation of roadway traffic can be captured by sharing Basic Safety Messages (BSMs) from each vehicle through the communication between vehicles as well as with roadside infrastructures (e.g., traffic signal, roadside unit) and traffic management centers. In the early days of CAVs, data will be collected only from a limited number of CAVs due to a low CAV penetration rate and not from other non-connected vehicles. This will result in noise in the traffic data because of low penetration rate of CAVs. This lack of data combined with the data loss rate in the wireless CAV environment makes it challenging to predict traffic behavior, which is dynamic over time. To address this challenge, it is important to develop and evaluate a machine learning technique to capture stochastic variation in traffic patterns over time. This dissertation focuses on the development and evaluation of various connected and autonomous vehicles applications in an edge-centric TCPS. It includes adaptive queue prediction, traffic data prediction, dynamic routing and Cooperative Adaptive Cruise Control (CACC) applications. An adaptive queue prediction algorithm is described in Chapter 2 for predicting real-time traffic queue status in an edge-centric TCPS. Chapter 3 presents noise reduction models to reduce the noise from the traffic data generated from the BSMs at different penetration of CAVs and evaluate the performance of the Long Short-Term Memory (LSTM) prediction model for predicting traffic data using the resulting filtered data set. The development and evaluation of a dynamic routing application in a CV environment is detailed in Chapter 4 to reduce incident recovery time and increase safety on a freeway. The development of an evaluation framework is detailed in Chapter 5 to evaluate car-following models for CACC controller design in terms of vehicle dynamics and string stability to ensure user acceptance is detailed in Chapter 5. Innovative methods presented in this dissertation were proven to be providing positive improvements in transportation mobility. These research will lead to the real-world deployment of these applications in an edge-centric TCPS as the dissertation focuses on the edge-centric TCPS deployment strategy. In addition, as multiple CAV applications as presented in this dissertation can be supported simultaneously by the same TCPS, public investments will only include infrastructure investments, such as investments in roadside infrastructure and back-end computing infrastructure. These connected and autonomous vehicle applications can potentially provide significant economic benefits compared to its cost

    Safe and Secure Control of Connected and Automated Vehicles

    Get PDF
    Evolution of Connected and Automated Vehicles (CAV), as an important class of Cyber-Physical Systems (CPS), plays a crucial role in providing innovative services in transport and traffic management. Vehicle platoons, as a set of CAV, forming a string of connected vehicles, have offered significant enhancements in traffic management, energy consumption, and safety in intelligent transportation systems. However, due to the existence of the cyber layer in these systems, subtle security related issues have been underlined and need to be taken into account with sufficient attention. In fact, despite the benefits brought by the platoons, they potentially suffer from insecure networks which provide the connectivity among the vehicles participating in the platoon which makes these systems prone to be under the risk of cyber attacks. One (or more) external intelligent intruder(s) might attack one (or more) of the vehicles participating in a platoon. In this respect, the need for a safe and secure driving experience is highly sensible and crucial. Hence, we will concentrate on improving the safety and security of CAVs in different scenarios by taking advantage of security related approaches and CAV control systems. In this thesis, we are going to focus on two main levels of platoon control, namely I) High level secure platoon control, and II) Low level secure platoon control. In particular, in the high level part, we consider platoons with arbitrary inter-vehicular communication topoloy whereby the vehicles are able to exchange their driving data with each other through DSRC-based environment. The whole platoon is modeled using graph-theoretic notions by denoting the vehicles as the nodes and the inter-vehicular communication quality as the edge weights. We study the security of the vehicle platoon exposed to cyber attacks using a novel game-theoretic approach. The platoon topologies under investigation are directed (called predecessor following) or undirected (bidirectional) weighted graphs. The attacker-detector game is defined as follows. The attacker targets some vehicles in the platoon to attack and the detector deploys monitoring sensors on the vehicles. The attacker's objective is to be as stealthy to the sensors as possible while the detector tries to place the monitoring sensors to detect the attack impact as much as he can. The existence of equilibrium strategies for this game is investigated based on which the detector can choose specific vehicles to put his sensors on and increase the security level of the system. Moreover, we study the effect of adding (or removing) communication links between vehicles on the game value. We then address the same problem while investigating the optimal actuator placement strategy needed by the defender to mitigate the effects of the attack. In this respect, the energy needed by the attacker to steer the consensus follower-leader dynamics of the system towards his desired direction is used as the game payoff. Simulation and experimental results conducted on a vehicle platoon setup using Robotic Operating System (ROS) demonstrate the effectiveness of our analyses. In the low level platoon control, we exploit novel secure model predictive controller algorithms to provide suitable countermeasure against a prevalent data availability attack, namely Denial-of-Service (DoS) attack. A DoS intruder can endanger the security of platoon by jamming the communication network among the vehicles which is responsible to transmit inter-vehicular data throughout the platoon. In other words, he may cause a failure in the network by jamming it or injecting a huge amount of delay, which in essence makes the outdated transferred data useless. This can potentially result in huge performance degradation or even hazardous collisions. We propose novel secure distributed nonlinear model predictive control algorithms for both static and dynamic nonlinear heterogeneous platoons which are capable of handling DoS attack performed on a platoon equipped by different communication topologies and at the same time they guarantee the desired formation control performance. Notably, in the dynamic case, our proposed method is capable of providing safe and secure control of the platoon in which arbitrary vehicles might perform cut-in and/or cut-out maneuvers. Convergence time analysis of the system are also investigated. Simulation results on a sample heterogeneous attacked platoon exploiting two-predecessor follower communication environment demonstrates the fruitfulness of the method
    corecore