
Clemson University Clemson University

TigerPrints TigerPrints

All Theses Theses

December 2020

COSACC: Cloud-Based Speed Advisory for Connected Vehicles in COSACC: Cloud-Based Speed Advisory for Connected Vehicles in

a Signalized Corridor a Signalized Corridor

Hsien-Wen Deng
Clemson University, hsienwd@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Recommended Citation Recommended Citation
Deng, Hsien-Wen, "COSACC: Cloud-Based Speed Advisory for Connected Vehicles in a Signalized Corridor"
(2020). All Theses. 3466.
https://tigerprints.clemson.edu/all_theses/3466

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for
inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact
kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_theses
https://tigerprints.clemson.edu/theses
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3466&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/3466?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3466&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

COSACC: CLOUD-BASED SPEED ADVISORY FOR CONNECTED VEHICLES
IN A SIGNALIZED CORRIDOR

A Thesis
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science
Computer Science

by
Hsien-Wen Deng
December 2020

Accepted by:
Amy W. Apon, Committee Chair
Mashrur Chowdhury, Co-Chair

Mitch Shue

 ii

ABSTRACT

The objective of this study is to assess the feasibility of cloud-based real-time

connected vehicle (CV) applications. The author developed a cloud-based speed advisory

application for CVs in a signalized corridor (COSACC) to achieve this objective. The

contribution of this study is threefold. First, it introduced a serverless cloud computing

architecture using Amazon Web Services (AWS) for real-time CV applications. Second,

the author developed a real-time optimization-based speed advisory algorithm that is

deployable in AWS. Third, this study utilized a cloud-in-the-loop simulation testbed using

AWS and Simulation of Urban Mobility (SUMO), which is a microscopic traffic simulator.

The author conducted experiments on cloud access at three-hour intervals over 24 hours in

one day. These experiments revealed that the total data upload and download time to and

from AWS via LTE is on average 92 milliseconds, which meets the allowable delay

requirement for real-time CV traffic mobility applications. The author conducted a case

study by implementing the COSACC in a cloud-in-the-loop simulation testbed. The

analyses revealed that COSACC can reduce vehicle stopped delay at the signalized

intersections up to 98% and fuel consumption in the signalized corridor up to 12.7%,

compared to the baseline scenario, i.e., no speed advisory on the signalized corridor.

Moreover, the authors observed an average end-to-end delay from a CV sending basic

safety messages to it receiving a speed advisory from the cloud to be about 443 ms, which

is well under the 1000 ms threshold required for any real-time traffic mobility application

for connected vehicles.

 iii

DEDICATION

To

My beloved parents

Who work all day to support me in achieving my dreams

Dr. Chowdhury and Dr. Apon

For supporting and providing advice for this project from start to end

Prof. Shue

For knowledge and suggestions on cloud computing

Dr. Rahman

For guiding me on every aspect from the beginning

M. Sabbir Salek

For constantly working with me and contributing useful content

iv

ACKNOWLEDGMENTS

This study is partially funded by the Center for Connected Multimodal Mobility

(C2M2) (a Tier 1 USDOT University Transportation Center) headquartered at Clemson

University, Clemson, South Carolina, USA. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author(s) and do not

necessarily reflect the views of the USDOT Center for Connected Multimodal Mobility

(C2M2), and the U.S. Government assumes no liability for the contents or use thereof.

I wish to express my gratitude to Dr. Chowdhury and Dr. Apon for their support of

this project, Prof. Shue for his extensive knowledge from the industry and generous help

on the thesis, Dr. Rahman for his selfless guidance to me from the start of the study and M.

Sabbir Salek for kindly working with me and for his contributions to my methodologies.

v

TABLE OF CONTENTS

Page

TITLE PAGE .. i

ABSTRACT ... ii

DEDICATION .. iii

ACKNOWLEDGMENTS .. iv

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

CHAPTER

I. INTRODUCTION ... 1

II. RELATED WORKS .. 4

Cloud Computing for CVs ... 4
Cloud-based Real-time Speed Advisory Application 7

III. CLOUD-BASED SERVERLESS ARCHITECTURE 10

IV. SCALABILITY OF THE CLOUD FOR INCREASING NUMBER OF
CONNECTED VEHICLES ... 14

Single Core Single Thread ... 14
Multithreading.. 16
Parallel Computing .. 18

V. COMMUNICATION WITH THE CLOUD ... 20

Evaluation of Round-trip Time .. 20
Experimental Setup .. 20
Evaluation Scenarios ... 21
Evaluation Results ... 21

Evaluation of Communication Delay between a CV to the Cloud 22
Experimental Setup .. 22
Evaluation Scenarios ... 24

vi

Table of Contents (Continued)

Page

Evaluation Results ... 24
Field Experiments .. 26

Experimental Setup .. 27
Evaluation Scenarios ... 27
Evaluation Results ... 28

VI. CLOUD-BASED SPEED ADVISORY APPLICATION 29

Vehicle Platoon Identification ... 30
Optimization-based Speed Advisory Algorithm 31

VII. CASE STUDY ... 34

Cloud-in-the-loop Simulation .. 34
Evaluation Result and Discussion .. 36

VIII. CONCLUSIONS AND RECOMMENDATIONS 40

Conclusions .. 40
Recommendations .. 41

APPENDICES ... 43

A: Socket Program .. 44
B: Connected Vehicle communication program ... 55
C: Speed Advisory in Lambda Function .. 58
D: Simulation Program ... 68

REFERENCES .. 86

vii

Table Page

1 Basic Safety Message .. 5

2 Notation of speed advisory .. 30

3 Average communication delay and processing time 39

LIST OF TABLES

viii

Figure Page

2.1 Overall architecture for a cloud-based CV application 7

2.2 Cloud-based speed advisory application for CVs .. 8

3.1 Serverless COSACC architecture .. 12

4.1 Serverless COSACC architecture with single core single thread 15

4.2 Processing time in Lambda with single core single thread 16

4.3 Processing time in Lambda with multithreading ... 17

4.4 Processing time in Lambda with parallel computing 19

5.1 Overview of a socket program with AWS EC2 ... 21

5.2 CDF results for Round-trip time accessing to AWS US-EAST-1 22

5.3 Simulation of a CV communicating to the cloud .. 23

5.4 95th percentile of upload delay in 24 hours .. 25

5.5 95th percentile of download delay in 24 hours ... 26

5.6 Field Experiment Setup .. 27

5.7 Average and 95th percentile communication delay in the field test 28

6.1 Route Configuration ... 35

6.2 Stopped delay ... 37

6.3 Fuel consumption ... 38

LIST OF FIGURES

1

CHAPTER ONE

INTRODUCTION

As the sources of connected vehicle (CV) data increase and become more diverse

[1], infrastructure to support these data must be scaled up to accommodate many types of

very large data sets related to connected and automated vehicles (CAV), such as sensor

data, text messages, and images [2]. Furthermore, these infrastructures must securely

support real-time processing for many applications, must be trustworthy, and must preserve

privacy [3]. Public clouds have evolved to a level capable of supporting applications while

also meeting these requirements. Recent advances in public cloud infrastructure address

these issues in a cost-competitive manner vis-a-vis in-house infrastructure development

and labor costs. For example, the Amazon Web Service (AWS) GovCloud region supports

significant levels of high speed and secure data processing, which makes a case for an

investigation of CV applications utilizing public cloud technologies. Additionally, Google

Cloud Platform (GCP) and Microsoft Azure are also competing in the commercial cloud

space [4][5][6].

In CV applications, there are constant streams of data to be processed and analyzed,

often in real-time. This means that there is a deadline to complete the analysis, after which

the results of the analysis could become useless. Cloud computing could be a cost-effective

solution for backend data processing and archiving, which are required for many CV

applications. This study utilized a serverless cloud computing architecture with a real-time

platoon-based speed advisory algorithm using AWS to assess the feasibility of commercial

cloud services for CV mobility applications. The serverless architecture features a pay-as-

 2

you-go model without the burden of managing resources and systems as would be the case

when using traditional server-based cloud services. This architecture is defined as

Function-as-a-Service (FaaS), which can be triggered and executed as per application

requirements after deployment [7][8]. Many services such as stream services, data storage,

and notification services can stimulate a CV application to be executed in the serverless

architecture.

The author developed a cloud-based, platoon-based speed advisory application that

functions in real-time for connected vehicles in a signalized corridor (COSACC). CVs and

roadway traffic signals send information of the conditions (i.e., location and speed of CVs

and traffic signal phasing and timing information) to the serverless cloud computing

infrastructure and trigger execution of the speed advisory application automatically.

COSACC is more scalable in terms of communication coverage area and number of CVs

due to high availability and scalability of cloud computing compared to an application

supported by edge computing without any cloud infrastructure.

The author conducted several focused experiments in the field to test the feasibility of

COSACC. In addition, the author also developed a cloud-in-the-loop simulation testbed

using AWS and Simulation of Urban Mobility (SUMO), which is a microscopic roadway

traffic simulator, to evaluate COSACC at a macroscopic level.

In Chapter Two, this thesis discusses three things: 1. the general architecture for a

cloud-based CV application, 2. previous works, and 3. real-time speed advisory

applications. In Chapter Three, the author delineates the architectural view of COSACC

based on the serverless features provided by AWS. Chapter Four discusses some of the

 3

author’s attempts to improve the scalability and performance of the application in AWS

and lessons learned from them. Chapter Five describes multiple experiments at a

microscopic level concerning evaluating the feasibility of cloud computing for CVs. In

Chapter Five, the author presents COSACC, a novel platoon-based speed advisory

application. Chapter Six discusses the results of a case study with a cloud-in-the-loop

simulation to evaluate the feasibility of COSACC macroscopically. Lastly, in Chapter

Seven, the author presents the potential of CV applications supported by cloud computing.

 4

CHAPTER TWO

RELATED WORKS

 Cloud Computing for CVs

In general, a Connected and Autonomous Vehicle (CAV) can be considered to be

a mobile node with a group of sensors (i.e., GPS, Radar, camera, LIDAR). Cloud

infrastructure and transportation infrastructure through V2I communication, use wireless

(e.g., DSRC, Long-Term Evolution (LTE), 5G) or wired (e.g., optical fiber)

communication technologies. Services in the cloud can be used to aggregate and analyze

the collected data and generate appropriate responses based on the data.

A CV sends basic safety messages (BSM) to the cloud using wireless

communication. On the other hand, traffic control infrastructure (i.e., traffic signals) sends

its traffic control information, such as signal phase and timing (SPaT) messages to the

cloud through wired or wireless communication. Data included in a BSM are shown in

Table 1 [9]. Traffic management centers share their recorded roadway traffic information

with the cloud.

TABLE 1
Basic Safety Message [9]

Type Description Size
(byte)

DSRCmsgID Data elements used in each message to
define the Message type

1

MsgCount Check the flow of consecutive
messages having the same
DSRCmsgID received from the same
message sender

1

 5

TemporaryID Temporary device identifier. When
used in a mobile on-board unit (OBU)
device, this value is periodically
changed to ensure anonymity

4

Dsecond Time information 2
Latitude Geographic latitude of an object 4
Longtitude Geographic longtitude of an object 4
Elevation Altitude measured by the WGS84

coordinate system
2

PositionAccuracy Various quality parameters used to
model the positioning accuracy for
each given axis

4

TransmissionAndSpeed Speed of the vehicle 2
Heading Current direction value expressed in

units of 0.0125 degrees
2

SteeringWheelAngle Current steering angle of the steering
wheel

1

AccelerationSet4Way Consists of three orthogonal directions
of acceleration and yaw rate

7

BrakeSystemStatus Data element that records various
control states related to braking of the
vehicle

1

VehicleSize Length and width of the vehicle 3

Moreover, other transportation-related services, such as weather services, news

services, and emergency management centers, can send their information into the cloud,

too.

Inside the cloud architecture, a message broker exchanges data from producers (e.g.,

CVs) and consumers (e.g., CV applications). A typical cloud-based CV application

includes three abstraction layers: infrastructure-as-a-service (IaaS), platform-as-a-service

(PaaS), and software-as-a-service (SaaS). CV application developers utilize IaaS to set up

low-level requirements of an application, such as data storage, and operating system.

Beyond the infrastructure, PaaS provides flexible and scalable services (e.g., database

 6

management and computing services) for developers to build their applications. Last but

not the least, CV applications are implemented on the SaaS layer. Developers can

implement real-time or non-real-time applications according to CV requirements. Figure

2.1 shows a cloud-based architecture for CV applications development. Many studies have

now used the cloud as a platform to develop a CV application. Ning et al. utilized a cloud-

based fog computing architecture to implement real-time traffic management [10]. Li et.

al. provided a maximum value density-based heuristic algorithm through vehicular edge

cloud computing to develop a traffic energy efficiency application [11], and Jin et. al.

presented a method of constructing cloud-based mobility services for connected and

automated vehicles highway [12]. Each of these studies used a traditional server-based

approach to develop real-time CV applications. However, according to the author’s

knowledge, no studies have used a serverless architecture as the platform for the

development of a real-time CV application.

 7

Figure 2.1: Architecture for a cloud-based CV application

 Cloud-based Real-time Speed Advisory Application

 In the field of traffic engineering, many methods are developed to integrate traffic

signal data and vehicular information to enhance traffic operational efficiency [13].

However, with increasing traffic demands and new technology, it is necessary to develop

these applications in smarter ways. Intelligent Transportation System (ITS) develops smart

solutions for improving traffic operational efficiency and safety. However, investing in

developing roadside data infrastructure and maintaining it may not be a cost-effective

solution. Thus, the use of cloud computing could be a viable solution for real-time CV

 8

application development to improve traffic efficiency and reduce a significant amount of

infrastructure deployment cost. Figure 2.2 presents a physical architecture of the cloud-

based speed advisory application for CVs. The speed advisory application can be deployed

in cloud infrastructure that collects vehicle location and motion information provided by

CVs, and signal phase and timing (SPaT) information provided by roadside infrastructures

(i.e., traffic signal). By analyzing and aggregating these data, the speed advisory

application can generate an appropriate speed advisory for CVs. However, computing time

for running the speed advisory application in the cloud and data exchange delay between

the cloud and CVs must satisfy real-time requirements.

Figure 2.2: Cloud-based speed advisory application for CVs

 9

The Green Light Optimal Speed Advisory (GLOSA) algorithm tries to optimize

stopped delay, fuel consumption, and CO2 emission while processing vehicles through

signalized intersections. Among the recent works, Suzuki and Marumo developed a

GLOSA system that projects a green rectangle on the roadway through the heads-up

display of a GLOSA-enabled vehicle [14]. The green rectangle is an advised area for that

vehicle to cross the intersection within the allocated green-time. Simchon and Rabinovici

developed a dynamic GLOSA system for real-time implementation on roadways [15]. The

authors utilized a relaxation procedure to cut the computation time short for real-time

implementation. Stebbins et al. combined model predictive control (MPC) with state-space

reduction and GLOSA to yield efficient trajectories for the CVs [16]. However, very few

studies have considered platoon formation. In [17], Stebbins et al. developed a platoon-

based optimization technique for GLOSA. The authors included a safety constraint in

consideration of the fact that, in some situations, human drivers may not follow an advised

speed if they feel that they would not be able to stop their vehicles while approaching an

intersection. Zhao et al. developed a platoon-based MPC to optimize fuel consumption

while enabling a platoon of vehicles to pass an intersection within a green interval [18].

The authors evaluated the efficacy of their model for different CV penetration rates.

However, none of these studies considered a real-time implementation of a platoon-based

system running in the cloud for speed advisory at a signalized corridor. In this study, the

authors developed a cloud-based, real-time speed advisory application using a platooning

concept.

 10

CHAPTER THREE

CLOUD-BASED SERVERLESS ARCHITECTURE

In a traditional cloud computing architecture, a skilled system administrator is

required to create a CV application development and implementation environment (e.g.,

virtual machines configuration, operating system installation, and computing resource

management) manually. Whereas, a serverless cloud architecture provides functionalities

to a user without hardcoding integration (embedding data directly into the source code).

Furthermore, a CV application developer is not required to create and maintain computing

instances or to configure a cloud environment as per CV application requirements. This

would significantly reduce application development time, as the developers of CV

applications would only need to focus on the development and implementation of the

algorithm. Typically, serverless computing services support various languages, such as

Node.JS, Python, .NET, and Java. The primary advantage of cloud-based CV application

development is that an application deployed using a serverless architecture can work with

other cloud services (e.g., data storage, streaming services), the event-driven feature makes

the application can be triggered to launch.

Currently available commercial cloud services support a serverless cloud

architecture in addition to a more traditional server-based cloud architecture. Microsoft

introduced “Azure Functions,” which allow users to develop event-driven applications

utilizing Visual Studio, as a part of the serverless computing services [19]. Google Cloud

Platform (GCP) offers its serverless computing application programming interface (API),

 11

called “Knative,” for developers to manage their applications using the serverless cloud

computing services along with other GCP services, such as cloud storage and data flow

services [20]. AWS provides “Lambda” as its serverless method [21]. A user can deploy

any CV application using Lambda cooperated with other AWS services (e.g. DynamoDB,

Kinesis Data Stream).

In this study, the author developed a cloud-based serverless architecture for

developing a real-time speed advisory application using AWS for CVs along a signalized

corridor. However, the same approach can be applied to the development of serverless

architecture for CV applications using other commercial cloud services, such as Microsoft

Azure and GCP. AWS, as well as Microsoft and Google, maintains a vast cloud

infrastructure and services, which makes it highly available and scalable for real-time CV

applications.

 12

Figure 3.1: Serverless COSACC architecture.

The author presents a serverless architecture that can manage computing resources,

databases, and streaming services for COSACC so that the application can run in real-time

while guaranteeing Quality of Service (QoS). Figure 3.1 illustrates the COSACC

architecture and lists the AWS services used, which include (i) DynamoDB, (ii) Kinesis

Data Stream, and (iii) Lambda.

DynamoDB is a NoSQL cloud database service with a key-value structure [22],

which the author utilized to develop databases (i.e., a speed advisory database, a vehicle

trajectory database, and a historical database). The author created a “vehicle trajectory

database” for CVs to update their trajectory information and a speed advisory database to

 13

store a set of speed advisories calculated using the algorithm developed in this study. CVs

can subscribe to these messages from the speed advisory database. For each traffic signal,

the author also created a historical database to save and update the distance between CVs

and a traffic signal in real-time.

Kinesis Data Stream is a data stream service that continuously delivers data

messages [23] in AWS. For each traffic signal, the author established a Kinesis Data

Stream service for sending a streaming message into the cloud every second to trigger the

speed advisory algorithm.

Lambda [21], which is the core component of our application, is a computation

service for serverless COSACC architecture. The author designed a group of Lambda

functions for every traffic signal triggered by the Kinesis Data Stream. Each Lambda

function originally stores basic information, such as physical location and signal phase

duration of the corresponding traffic signals. Once a Lambda function is triggered, it

collects information from traffic signals and CVs, computes speed advisories based on our

algorithm, and updates speed advisories for CVs.

In the real world, a CV generates a BSM, and each traffic signal generates SPaT

messages. In COSACC, each CV uploads a filtered BSM, which contains the vehicle’s ID,

location, speed, and the gap between two successive vehicles of a CV into the vehicle

trajectory database. Each traffic signal sends a filtered SPaT message containing the current

traffic signal phase and the remaining time of that phase to the Kinesis Data Stream. Using

this serverless architecture, the author developed a cloud-based optimization algorithm that

utilizes these BSMs and SPaT messages to generate speed advisories for CVs in real-time.

 14

CHAPTER FOUR

SCALABILITY OF THE CLOUD FOR INCREASING NUMBER OF CONNECTED
VEHICLES

Due to the dynamic scaling characteristics of traffic conditions, COSACC in the

cloud must scale up and down in response to changing traffic demands. Although a

serverless architecture supports dynamic resource allocation, there are a few restrictions

imposed by the commercial cloud providers to prevent applications from exceeding certain

cloud infrastructure limits. For instance, AWS allows a Lambda function to utilize up to

3008 MB of memory when processing. Because of this, the cloud application may not be

able to support a large number of CVs in real-time.

 Single Core Single Thread

The author originally established only one Lambda function (single core) 3008 MB

memory configuration to handle all traffic conditions, as Figure 4.1 indicates. The Lambda

function processed vehicles in a sequential manner (single thread). The author tested the

Lambda function with single core and single thread under different numbers of vehicles

(i.e., 50, 100, 150, 200) in simulation, as discussed in Chapter 5. However, as Figure 4.2

shows, the processing time increased as the number of connected vehicles increased. The

average processing time was 689 ms in the case of 50 connected vehicles and increased to

1128 ms for 100 connected vehicles, 1694 ms for the 150 connected vehicles scenario, and

2603 ms for 200 connected vehicles. This simulation experiment suggested that using

single core single thread to support real-time CV applications would be problematic in

AWS.

 15

Figure 4.1: Serverless COSACC architecture with single core single thread.

 16

Figure 4.2: Processing time in Lambda with single core single thread.

 Multithreading

To tackle this issue, the author applied multithreading to AWS Lambda. Rather

than adding vehicles into the computation sequentially, COSACC assigns vehicles into

multiple threads before the data processing occurs with all vehicle data. Figure 4.3 shows

that, compared to the single core single thread solution, applying multithreading

significantly reduced the processing time in the cloud infrastructure. On average, the

multithreaded Lambda approach was able to process 50 vehicles in 487 ms and 100

vehicles in 778 ms. Figure 4.3 shows the processing time for the multithreaded approach

 17

with an increasing number of vehicles. With 150 vehicles, the average processing time was

1193 ms, and with 200 vehicles, the processing time was 1522 ms, which still did not meet

the acceptable delay requirement of a real-time traffic mobility application [24]. The

experiments revealed that this approach, while an improvement, could not meet the delay

requirement of a mobility application.

Figure 4.3: Processing time in Lambda with multithreading.

 18

 Parallel Computing

The author next applied the concept of parallel computing in the cloud, as shown in

Figure 3.1 (Chapter 3). Here, instead of employing a single Lambda function, the author

established a fleet of Lambda functions for each traffic signal to handle different

penetration levels of CVs. To make all Lambda functions work in real-time, the author

defined a desired computing capacity for each Lambda function (i.e., the number of

vehicles to process) to a maximum of 50 vehicles per Lambda function. All Lambda

functions shared one trigger that started their parallel processing. This approach provided

more computing power in the cloud for application processing to handle increasing

computational demand. As shown in Figure 4.4, applying a parallel computing strategy

with multiple Lambda functions achieved consistent and reduced processing time in the

cloud even with different penetration levels of connected vehicles. Figure 4.4 shows that

the average processing time in the cloud was about 250 ms for 50, 100, 150 and 200

connected vehicles, which is acceptable for a real-time traffic mobility application [24].

 19

Figure 4.4: Processing time in Lambda with parallel computing.

 20

CHAPTER FIVE

COMMUNICATION WITH THE CLOUD

 It is necessary to meet wireless communication acceptable delay requirements

between the vehicle and the cloud to guarantee QoS for real-time CV applications. In this

section, the author describes several experiments conducted to examine the wireless

communication delay when accessing AWS services for CV applications.

 Evaluation of cloud round-trip time

 Experiment Setup

The author established an Elastic Computing Cloud (EC2) instance in the AWS

US-EAST-1 region (N. Virginia) to evaluate the communication delay between a CV and

the cloud. Both the server (i.e., EC2) and the client (i.e., CV) were equipped with a socket

program (see Appendix A) and communicated with each other using Transmission Control

Protocol (TCP). To calculate the round-trip time (RTT), the client recorded a timestamp

before sending a message to the server and then recorded another timestamp after receiving

a message back from the server. Figure 5.1 presents the experimental setup between the

server and the client.

 21

Figure 5.1: Overview of a socket program with AWS EC2

 Evaluation scenarios

The author conducted each experiment in three-hour increments for 24 hours in one

day to determine the peak and off-peak hours of bandwidth usage. For each experiment,

the author collected 1000 samples of RTTs.

 Evaluation results

Figure 5.2 illustrates that the average RTT over 24 hours was 72 milliseconds.

Moreover, the RTT of 99 percent of the samples was within 500 milliseconds. In

addition, the author found that the peak periods were from 11:00 AM to 02:00 PM

 22

(14:00) and from 08:00 PM (20:00) to 11:00 PM (23:00), Eastern Daylight Time

(EDT).

Figure 5.2: CDF results for Round-trip time accessing to AWS US-EAST-1

 Evaluation of Communication Delay Between a CV and the Cloud

 Experiment Setup

After developing the serverless architecture for COSACC using AWS, it was

necessary to evaluate the communication delays between a CV and the cloud. As Figure

5.3 shows, two databases were built using DynamoDB in AWS: a vehicle trajectory

database and a speed advisory database. A CV sends trajectory updates (i.e., BSMs) to the

 23

vehicular trajectory database and downloads its speed advisory from the speed advisory

database. The author executed a Python script on a laptop (see Appendix B) to simulate a

CV communicating with the cloud using LTE wireless communication. The experiment

consisted of two parts: uploading data to the cloud and downloading data from the cloud.

For the upload experiment, the author collected upload times for BSMs to the cloud from

the computer. For the download experiment, the author collected download times for a

speed advisory from the cloud to the computer.

Figure 5.3: Simulation of a CV communicating to the cloud

 24

 Evaluation scenarios

The author experimented with three-hour increments for 24 hours in one day to

estimate the communication delay for uploading and downloading of data. For each

experiment, the author collected 1000 samples. The author estimated the 95th percentile of

both upload and download delays, which is the threshold for QoS guarantees [25][26].

 Evaluation results

Figure 5.4 and Figure 5.5 presents the results of each experiment. The

maximum upload and download delays were both 100 milliseconds. The author

observed that the peak hours for uploading BSMs were from 9:00 AM to 12:00 PM

and 06:00 PM to 09:00 PM EDT, and the peak hours for downloading speed advisory

were from 3:00 AM to 12:00 PM and 06:00 PM to 09:00 PM EDT. Using the serverless

architecture, the author found that the maximum RTT for both upload and download

data was 200 milliseconds.

 25

Figure 5.4: 95th percentile of upload delay in 24 hours

 26

Figure 5.5: 95th percentile of download delay in 24 hours

 Field Experiment

Although the analysis in the previous section shows an RTT under 200 milliseconds

for a CV to communicate with the cloud, these experiments were conducted from a fixed

physical location. It is necessary to evaluate variations in communication delays with a

moving CV. The author performed experiments by uploading BSMs to the Vehicle

Trajectory Database and downloading speed advisories from the Speed Advisory Database

through LTE to observe the communication delay from a CV traveling on the road.

 27

 Experimental setup

The author conducted the experiments by driving a vehicle on a fixed route located

along Perimeter Road, Clemson, SC, where the LTE signal is available. The speed of the

vehicle was 35 mph during the experiment. Figure 5.6 shows a macroscopic view of a CV

connected to cloud services through roadside infrastructure.

Figure 5.6: Field Experiment Setup

 Evaluation scenarios

Based on the results in the previous section, the author considered 10:00 AM as the

peak hour and 2:00 PM EDT as the off-peak hour for uploading and downloading BSMs.

One thousand samples were collected for each experiment.

 28

 Evaluation results

As shown in Figure 5.7, a moving CV needed a total of 92 milliseconds to upload

BSMs and download speed advisories within the 95th percentile. This is well within the

acceptable maximum delay of 200 milliseconds, with an average delay of 150 milliseconds

RTT. This supports the feasibility of a real-world COSACC implementation in a connected

vehicle environment [27].

Figure 5.7: Average and 95th percentile communication delay in the field test.

 29

CHAPTER FIVE

CLOUD-BASED SPEED ADVISORY APPLICATION

 In this section, the author presents more details about the optimization-based speed

advisory application, COSACC, which runs in the AWS cloud. It generates a speed

advisory for platoons of CVs to minimize the stopped delay at a signalized intersection.

COSACC consists of two parts: (i) vehicle platoon identification and (ii) an optimization-

based speed advisory algorithm. Table I presents all the symbols that are required for the

application.

TABLE 2
Notations Used in Speed Advisory Algorithm

Symbol Meaning
𝑆𝑆𝑖𝑖𝑡𝑡 Current speed of the 𝑖𝑖𝑡𝑡ℎ C
𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 Speed advisory at time 𝑡𝑡
𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚 Maximum speed, same as the speed limit
𝑡𝑡𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎
𝑖𝑖 Time required by the 𝑖𝑖𝑡𝑡ℎ CV to reach the intersection after

achieving 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡
𝑡𝑡𝑖𝑖,𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 Total time required by the 𝑖𝑖𝑡𝑡ℎ CV to reach the intersection

from its current state by accelerating to 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 and then
continuing at 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 until it reaches the intersection

𝑡𝑡𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚
𝑖𝑖 Time required by 𝑖𝑖𝑡𝑡ℎ CV to reach intersection after achieving

𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚
𝑡𝑡𝑖𝑖,𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚 Total time required by the 𝑖𝑖𝑡𝑡ℎ CV to reach an intersection from

its current state by accelerating to 𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚 and then continuing at
𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚 till it reaches the intersection

𝑡𝑡𝑟𝑟𝑟𝑟𝑚𝑚𝑎𝑎𝑖𝑖𝑛𝑛 Remaining time of the current green interval
𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎 Available time to pass an intersection
𝑡𝑡𝑔𝑔,𝑜𝑜 (Minimum) Green interval of other phases
𝑡𝑡𝑌𝑌 Yellow interval
𝑡𝑡𝐴𝐴𝐴𝐴 All red interval

 30

𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎 Distance covered by a CV while accelerating to a certain speed
𝑙𝑙𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎 Distance covered by a CV while traveling at the advised speed
𝑙𝑙𝑠𝑠𝑚𝑚𝑎𝑎𝑚𝑚 Distance covered by a CV while traveling at the maximum

speed, 𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚
𝑙𝑙1𝑠𝑠𝑠𝑠 𝑎𝑎𝑟𝑟ℎ𝑖𝑖𝑎𝑎𝑎𝑎𝑟𝑟 Distance from the 1st CV in a platoon to the target signal
𝑑𝑑𝑖𝑖𝑡𝑡 Delay of the 𝑖𝑖𝑡𝑡ℎ CV
𝑑𝑑𝑇𝑇𝑜𝑜𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡 The total delay of all observed CVs
𝑎𝑎𝐴𝐴𝑎𝑎𝑎𝑎 Acceleration rate

 Vehicle Platoon Identification

 The author formed a platoon based upon a gap between two successive CVs. If

the distance between two successive CVs was less than or equal to 50 meters, then they

were considered to be within the same platoon [28]. Moreover, to be identified as a

platoon of 𝑛𝑛 CVs, the last (𝑛𝑛𝑡𝑡ℎ) CV of the platoon must have met the following

criterion:

min 𝑡𝑡𝑖𝑖𝑛𝑛𝑡𝑡𝑛𝑛 ≤ 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎 (1)

To estimate the minimum of 𝑡𝑡𝑖𝑖𝑛𝑛𝑡𝑡𝑛𝑛 , the author considered the total time required

by the 𝑛𝑛𝑡𝑡ℎ CV to accelerate from its current state to 𝑆𝑆max and then continue to operate

at 𝑆𝑆max until it reaches the intersection, which is given by the following equation,

𝑡𝑡𝑖𝑖𝑛𝑛𝑡𝑡𝑛𝑛 = 𝑡𝑡𝐴𝐴𝑎𝑎𝑎𝑎𝑛𝑛 + 𝑡𝑡𝑆𝑆max
𝑛𝑛 (2)

This study considers 100% CV penetration. There are two cases based on the

current phase of the signal that CVs are approaching; case I: the platoon can pass the

signal within the current green interval, and case II: the platoon can pass the signal in

the next green interval. For case I, available time to reach the intersection before the

signal turns red is,

 31

𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎 = 𝑡𝑡𝑟𝑟𝑟𝑟𝑚𝑚𝑎𝑎𝑖𝑖𝑛𝑛 (3)

and for case II, available time is an accumulation of other intervals until the next cycle,

i.e.,

𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎 = 𝑡𝑡𝑟𝑟𝑟𝑟𝑚𝑚𝑎𝑎𝑖𝑖𝑛𝑛 + �𝑡𝑡𝑔𝑔.𝑜𝑜 + �𝑡𝑡𝑌𝑌 + �𝑡𝑡𝐴𝐴𝐴𝐴 (4)

For the CVs in case I, the speed advisory tries to assist vehicles across the

intersection as fast as possible. For case II, the application first splits CVs into platoons

using the gap between any two successive CVs loaded from the vehicle trajectory

database. Then, the application provides each platoon with an optimal solution (i.e.,

speed advisory) based on the objective function and constraints.

 Optimization-based Speed Advisory Model

 To address the objective function of the speed advisory optimization, this study

considers the total delay of a platoon of CVs when the platoon travels from an origin

to a destination. In this context, “delay” is considered as the additional time required

by each CV of the platoon to reach the intersection using the advised speed (𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡)

compared to the shortest possible time to reach the intersection using the maximum

speed (i.e., speed limit), which is given by the following equation,

min
𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎

𝑑𝑑𝑇𝑇𝑜𝑜𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡 (𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎) = �𝑑𝑑𝑖𝑖𝑡𝑡 (5)
𝑛𝑛

𝑖𝑖=1

Where, 𝑑𝑑𝑖𝑖𝑡𝑡 = 𝑡𝑡𝑖𝑖,𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑡𝑡𝑖𝑖,𝑠𝑠max (6)

Both 𝑡𝑡𝑖𝑖,𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑡𝑡𝑖𝑖,𝑠𝑠max consist of two periods: 1) acceleration period: the time

required to accelerate from the CV’s current speed 𝑆𝑆𝑖𝑖𝑡𝑡 to 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 or 𝑆𝑆max, and 2) constant

 32

speed period: the time required to reach the intersection at a constant speed after

achieving 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 or 𝑆𝑆max. Therefore, to determine 𝑡𝑡𝑖𝑖,𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑡𝑡𝑖𝑖,𝑠𝑠max, we must determine

these two time periods. The first step is to determine 𝑡𝑡𝐴𝐴𝑎𝑎𝑎𝑎𝑖𝑖 . To accelerate from 𝑆𝑆𝑖𝑖𝑡𝑡 to a

target speed 𝑆𝑆𝑡𝑡𝑎𝑎𝑟𝑟 (which can take the value of either 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 or 𝑆𝑆max here), the required

time is given by

𝑡𝑡𝐴𝐴𝑎𝑎𝑎𝑎𝑖𝑖 =
𝑆𝑆𝑡𝑡𝑎𝑎𝑟𝑟 − 𝑆𝑆𝑖𝑖𝑡𝑡

𝑎𝑎𝐴𝐴𝑎𝑎𝑎𝑎
 (7)

The next step is to determine the distance covered during the acceleration

period. Distance covered while accelerating from 𝑆𝑆𝑖𝑖𝑡𝑡 to 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 is calculated as

𝑙𝑙𝐴𝐴𝑎𝑎𝑎𝑎𝑖𝑖 =
𝑆𝑆𝑡𝑡𝑎𝑎𝑟𝑟2 − 𝑆𝑆𝑖𝑖𝑡𝑡

2

2𝑎𝑎𝐴𝐴𝑎𝑎𝑎𝑎
 (8)

To determine 𝑡𝑡𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎
𝑖𝑖 or 𝑡𝑡𝑆𝑆max

𝑖𝑖 , the distance to be covered during a constant speed

period (𝑙𝑙𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎
𝑖𝑖 or 𝑙𝑙𝑆𝑆max

𝑖𝑖) needs to be determined. It can be obtained as follows:

𝑙𝑙𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎
𝑖𝑖 = 𝑙𝑙𝑖𝑖𝑡𝑡 − 𝑙𝑙𝐴𝐴𝑎𝑎𝑎𝑎𝑖𝑖 = 𝑙𝑙𝑖𝑖𝑡𝑡 −

(𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡)2 − 𝑆𝑆𝑖𝑖𝑡𝑡
2

2𝑎𝑎𝐴𝐴𝑎𝑎𝑎𝑎
 (11)

𝑙𝑙𝑆𝑆max
𝑖𝑖 = 𝑙𝑙𝑖𝑖𝑡𝑡 − 𝑙𝑙𝐴𝐴𝑎𝑎𝑎𝑎𝑖𝑖 = 𝑙𝑙𝑖𝑖𝑡𝑡 −

𝑆𝑆max2 − 𝑆𝑆𝑖𝑖𝑡𝑡
2

2𝑎𝑎𝐴𝐴𝑎𝑎𝑎𝑎
 (12)

Now, 𝑡𝑡𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎
𝑖𝑖 or 𝑡𝑡𝑆𝑆max

𝑖𝑖 can be determined as follows:

𝑡𝑡𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎
𝑖𝑖 =

𝑙𝑙𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎
𝑖𝑖

𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 =
1

𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 �𝑙𝑙𝑖𝑖𝑡𝑡 −
(𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡)2 − 𝑆𝑆𝑖𝑖𝑡𝑡

2

2𝑎𝑎𝐴𝐴𝑎𝑎𝑎𝑎
� (13)

𝑡𝑡𝑆𝑆max
𝑖𝑖 =

𝑙𝑙𝑆𝑆max
𝑖𝑖

𝑆𝑆max
=

1
𝑆𝑆max

�𝑙𝑙𝑖𝑖𝑡𝑡 −
𝑆𝑆max2 − 𝑆𝑆𝑖𝑖𝑡𝑡

2

2𝑎𝑎𝐴𝐴𝑎𝑎𝑎𝑎
� (14)

Therefore, the delay can be formulated as follows:

 33

𝑑𝑑𝑖𝑖𝑡𝑡 = �𝑡𝑡𝐴𝐴𝑎𝑎𝑎𝑎𝑖𝑖 + 𝑡𝑡𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎
𝑖𝑖 �

𝑓𝑓𝑜𝑜𝑟𝑟 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎
− �𝑡𝑡𝐴𝐴𝑎𝑎𝑎𝑎𝑖𝑖 + 𝑡𝑡𝑆𝑆max

𝑖𝑖 �
𝑓𝑓𝑜𝑜𝑟𝑟 𝑆𝑆max

 (15)

Substituting the derived terms into Eq. (15) leads to the equation

𝑑𝑑𝑖𝑖𝑡𝑡 = −
𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 − 𝑆𝑆max

2𝑎𝑎𝐴𝐴𝑎𝑎𝑎𝑎
+ �𝑙𝑙𝑖𝑖𝑡𝑡 +

𝑆𝑆𝑖𝑖𝑡𝑡
2

2𝑎𝑎𝐴𝐴𝑎𝑎𝑎𝑎
� �

1
𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 −

1
𝑆𝑆max

� (16)

To optimize the speed advisory, this study considered two constraints: 1)

constraint 1 ensures that the advised speed does not exceed the speed limit of the road,

and 2) constraint 2 ensures that the signal will be green when the first CV of a platoon

reaches the intersection. The constraints are formulated as follows:

Constraint 1: 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 ≤ 𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚 (17)

Constraint 2: 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 ≤
𝑎𝑎1𝑠𝑠𝑠𝑠 𝑎𝑎𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑣𝑣
𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖

 (18)

For case I CVs, only constraint 1 is applicable, whereas, for case II platoons,

both constraints (1 and 2) are applicable.

 34

CHAPTER SIX

CASE STUDY

 The author conducted a case study by developing a cloud-in-the-loop

simulation platform to evaluate the feasibility of COSACC at a system level.

 Cloud-in-the-loop Simulation

 This study used SUMO, a microscopic traffic simulator, in which the author

simulated a roadway section including traffic signals and CVs [29]. AWS was

integrated with SUMO to develop a cloud-in-the-loop testbed to evaluate COSACC.

SUMO TraCI [30] is a Python-based interface compatible with SUMO to extract

BSMs (e.g., location and motion of CVs) and SPaT messages (e.g., current interval,

remaining green time) from CVs and traffic signals, respectively, and transfer them to

AWS services. As described in Chapter three, when AWS Lambda is triggered by the

Kinesis Data Stream, it first receives BSMs from the vehicle trajectory database and

the historical database to compute the distance from each CV to the target traffic signal

in real-time. Current states of the CVs are then transferred as updates to its historical

database. Each CV is assigned two possible cases based on their distances from the

target signal and the available time, and are split into platoons based on the gap

information described in Chapter five. The output of the application is speed advisories

that are stored in the speed advisory database.

 35

Figure 6.1: Route Configuration.

The author simulated a roadway section including three connected traffic signals

along Perimeter Road in Clemson, SC. All CVs followed a speed limit of 35 mph (16m/s).

In Figure 6.1, the simulated roadway is in orange and is a 1.5-mile-long 4-lane highway (2

lanes in each direction). The solid green circles indicate connected traffic signals. Traffic

signals 1 and 2 maintain 42 seconds green with 3 seconds yellow and all-red intervals for

each cycle. Signal 3 has 34 seconds on green for each phase and 5 seconds for yellow and

all red. Four cases with different numbers of CVs on the roadway, i.e., 50, 100, 150, and

200 CVs were established. The red arrow represents the traffic flow direction. The author

also calculated the number of CVs necessary to simulate traffic at the two-lane roadway

 36

capacity of 1900 passenger cars per hour per lane and generated CVs equal to (200 CVs

generated in a 15-minute period) or under this rate [31].

For each case, the author evaluated two scenarios in the simulation. The first

scenario represents the baseline, i.e., no speed advisory application is implemented. In

the second scenario, the author deployed COSACC to evaluate the feasibility of the

real-time application through LTE wireless communication.

 Evaluation Results and Discussion

 To evaluate the performance of COSACC at a system level, this study

compared the average stopped delay and the average fuel consumption. The fuel

consumption was determined by SUMO’s default fuel consumption model. Figure 6.2

shows a significant reduction in stopped delay with COSACC. CVs with speed

advisories experienced at most 98% less waiting time or in a traffic queue at the

signalized intersections of a corridor compared to the baseline scenario (i.e., no speed

advisory) (50 vehicles). COSACC also resulted in less fuel consumption (Figure 6.3).

CVs that used COSACC experienced up to 12.7% less fuel consumption compared to

the baseline scenario (100 vehicles).

 37

Figure 6.2: Stopped delay

 38

Figure 6.3: Fuel consumption.

 Table 3 provides processing time in the cloud and communication delay for

each step for the cloud-in-the-loop simulation in all four cases. A communication delay

includes upload latency for sending BSMs and SPaT messages to the cloud and

download latency of speed advisories from the cloud. As observed from Table 3, the

upload delays and download delays per vehicle are under 85 ms on average, and

processing time in the cloud is 277 ms on average. This leads to an end-to-end delay

of 443 ms on average, which meets the requirement of a real-time traffic mobility

application (i.e., a maximum delay of 1000 ms) [24].

 39

TABLE 3
AVERAGE COMMUNICATION DELAY AND PROCESSING TIME

 50 veh. 100 veh. 150 veh. 200 veh.

Upload

latency (ms)

80 85 85 84

Download

latency (ms)

82 84 84 81

Processing

latency (ms)

258 279 281 292

End-to-end

Delay (ms)

420 448 450 457

 40

CHAPTER SEVEN

CONCLUSIONS AND RECOMMENDATIONS

 Conclusions

In the coming years, connected vehicles will be typical in the transportation system.

CVs will contribute to improved mobility and safety, as well as reduced air pollution and

energy consumption. However, significant backend computing infrastructure is needed to

support CV processing and other related data to support CV applications. Generally, state

departments of transportation (DOTs) deploy transportation applications based on servers

in their traffic management centers, which requires significant investments in computing

and human resources. This study supports the use of cloud infrastructure to meet the

dynamic computing needs of CV applications and at lower total costs than traditional

infrastructure.

This study confirmed that developing a CV application using a serverless cloud

architecture can achieve the same or better results as a server-based cloud architecture.

Moreover, a serverless cloud architecture can be more cost-effective and provide even

more scalability and flexibility for CV applications.

The study also showed that COSACC improves operational efficiency and fuel

consumption for connected vehicles by reducing stopped delay at signalized intersections

up to 98% and fuel consumption up to 12.7% compared to the baseline scenario (i.e., no

speed advisory). Additionally, field experiments showed that the maximum RTT was under

200 milliseconds and the average RTT was under 100 milliseconds for cloud access from

 41

CVs. The results prove that COSACC is implementable in the real world for CV mobility

applications with a serverless architecture.

 Recommendations

The following recommendations are made based on this research:

1. Future research should evaluate the relative performance of the serverless and server-

based cloud architecture for CV applications in a real-world testbed with different

penetration levels of CVs. Evaluation parameters will include cost, delay, and reliability

associated with different CV applications.

2. Future research should compare different commercial cloud services, such as AWS,

GCP, and Microsoft Azure, for supporting different CV applications in the real world.

3. Cloud services that support CV applications must be secure. Otherwise, real-time CV

applications could be compromised. Future research should identify cyber-security risks

associated with CV applications using commercial cloud services and possible

countermeasures. Critical security elements, which include confidentiality, integrity,

availability, authentication, accountability, and privacy, must be evaluated for cloud

services accessed by CVs.

4. Although cloud infrastructure supports real-time CV applications, it is not

recommended for safety applications (e.g., collision avoidance) in the cloud. Currently,

observed RTT exceeds the low communication latency requirements for safety

applications.

 42

5. The availability of on-demand computing services and the reliability of all-cloud

services make it suitable for developing applications with an increasing number of CVs.

Future research should focus on the scalability of cloud computing with increasing

penetration levels of CVs on roadways.

 43

APPENDICES

 44

Appendix A

Socket Program

 Socket Program in a server

Server.cpp

#include <iostream>

#include <cstdio>

#include <cstring>

#include <cstdlib>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

int main()

{

int server_sockfd; //server socket

int client_sockfd; // client socket

int len;

int speed;

struct sockaddr_in my_addr; //server address structure

struct sockaddr_in remote_addr; //client address structure

 45

int sin_size;

char buff[BUFSIZ]; //buffer

char *buffsend = (char *) "Speed Advisory is XX mph";

memset(&my_addr, 0, sizeof(my_addr)); //Initialization

my_addr.sin_family = AF_INET; //IP communication

my_adddr.sin_addr.s_addr = INADDR_ANY;

my_addr.sin_port = htons(8000); //Port number

cout << "Server Socket program start" << endl;

if((server_sockfd=socket(PF_INET,SOCK_STREAM,0))<0)

{

perror("Socket Error");

return 1;

}

if(bind(server_sockfd, (stuct sockaddr *)&my_addr, sizeof(struct sockaddr))<0)

{

perror("Bind Error");

return 1;

}

if(listen(server_sockfd,5)<0)

{

 46

perror("Listen Error");

return 1;

}

sin_size = sizeof(struct sockaddr_in);

int counter = 0;

while(1)

{

//Wait for client request reach

if((client_sockfd=accept(server_sockfd, (struct sockaddr *)&remote_addr,
(socklen_t*)&sin_size))<0)

{

perror("Accept Error");

continue;

}

cout << "Accept Client " << inet_nota(remote_addr.sin_addr) << endl;

len = send(client_sockfd,buffsend,strlen(buffsend)+1,0);

while((len=recv(client_sockfd,buff,BUFSIZ,0))>0)

{

buff[len] = '\0';

cout << "Test No." << counter << " " << buff << endl;

if(send(client_sockfd,buff,len,0)<0)

{

 47

perror("Write Error");

continue;

}

}

counter++;

close(client_sockfd);

}

close(server_sockfd);

return 0;

}

 Socket Program in a client

Client.cpp

#define _WINSOCK_DEPRECATED_NO_WARNINGS

#include <iostream>

#include <cstdio>

#include <cstdlib>

#include <cstring>

 48

#include <WinSock2.h>

#include <windows.h>

#include <vector>

#include <fstream>

#include <sstream>

#include <ctime>

using namespace std;

#pragma comment(lib, "libws2_32.a")

string int2str(int &val)

{

 string s;

 stringstream ss(s);

 ss << val;

 return ss.str();

}

 49

int main()

{

 time_t now = time(0);

 tm *ltm = localtime(&now);

 vector<int> RTT;

 WSADATA wsaData;

 char buff[1024];

 bool isSend = false;

 DWORD t_start, t_end;

 char *buffsend = "BSM: 10.00000, 12.00000, 8.56957, 5.12121, 6.87777,

9.68547, 0, 1";

 for(int k = 0; k < 12; k++)

 {

 50

 for(int i = 0; i < 201; i++)

 {

 memset(buff,0,sizeof(buff));

 if(WSAStartup(MAKEWORD(2,2),&wsaData) != 0)

 {

 cout << "Failed to load WinSock" << endl;

 return 1;

 }

 SOCKADDR_IN addrsrv;

 addrsrv.sin_family = AF_INET;

 addrsrv.sin_port = htons(8000);

 addrsrv.sin_addr.S_un.S_addr = inet_addr("3.87.202.164");

 SOCKET sockClient = socket(AF_INET, SOCK_STREAM, 0);

 if(SOCKET_ERROR == sockClient)

 51

 {

 cout << "Socket Error: " << WSAGetLastError() << endl;

 return 1;

 }

 else

 {

 cout << "Socket Initialized" << endl;

 }

 if(connect(sockClient, (struct sockaddr*)&addrsrv, sizeof(addrsrv)) ==

INVALID_SOCKET)

 {

 cout << "Connect Failed: " << WSAGetLastError() << endl;

 continue;

 }

 //send(sockClient, buffsend, strlen(buffsend)+100, 0);

 52

 if((GetTickCount() - t_start) > 10000 && (GetTickCount() - t_start) <

11000)

 {

 cout << "No. " << i << " failed" << endl;

 t_start = GetTickCount();

 send(sockClient, buffsend, strlen(buffsend)+500, 0);

 closesocket(sockClient);

 WSACleanup();

 }else{

 recv(sockClient, buff, sizeof(buff), 0);

 cout << buff << endl;

 t_end = GetTickCount();

 cout << "No. " << i << " RTT is " << t_end - t_start << endl;

 RTT.push_back((int)(t_end-t_start));

 t_start = GetTickCount();

 send(sockClient, buffsend, strlen(buffsend)+500, 0);

 53

 closesocket(sockClient);

 WSACleanup();

 }

 }

 now = time(0);

 ltm = localtime(&now);

 cout << "Time:"<< ltm->tm_hour << ":" << ltm->tm_min << endl;

 if(k < 11)

 {

 Sleep(1800000);

 }

 }

 ofstream outFile;

 outFile.open("RTT.csv", ios::out);

 54

 cout << endl << "Round Trip Time Summary:" << endl;

 for(int j = 1; j < RTT.size(); j++)

 {

 cout << "No " << j << " RTT is " << RTT[j] << endl;

 outFile << RTT[j] << endl;

 }

 outFile.close();

 return 0;

}

 55

Appendix B

Connected Vehicle communication program

Vehicle.py

import boto3

import json

import time

from decimal import *

import csv

def Vehicle_State_upload(Table, ID, pos_x, pos_y, speed, gap):

Table.put_item(

Item={

'vehicle':ID,

'pos_x':Decimal(pos_x),

'pos_y':Decimal(pos_y),

'speed':Decimal(speed),

'gap':Decimal(gap)

}

)

dynamodb = boto3.resource('dynamodb')

state_table = dynamodb.Table('Speed_file')

advisory_table = dynamodb.Table('Speed_advisory')

 56

ULs = []

DLs = []

#Record upload time

For i in range(1000):

start_time = time.time()*1000

Vehicle_State_upload(state_table, '0', '375.28', '442.02', '16.0', '10000.0')

process_time = int(time.time()*1000 - start_time)

ULs.append(process_time)

print('Trip Time: ',process_time, 'ms\n')

print(ULs)

with open('UL.csv', 'w', newline='') as csvfile:

writer = csv.writer(csvfile)

writer.writerow(ULs)

#Record download time

For i in range(1000):

start_time = time.time()*1000

response = advisory_table.get_item(Key={'vehicle':'0'})

Speed = float(response['Item']['advisory'])

 57

process_time = int(time.time()*1000 - start_time)

DLs.append(process_time)

print('Trip Time: ',process_time, 'ms\n')

print(DLs)

with open('DL.csv', 'w', newline='') as csvfile:

writer = csv.writer(csvfile)

writer.writerow(DLs)

print('done')

 58

Appendix C

Speed Advisory in Lambda Function

Lambda_function.py

import base64

import json

import boto3

import time

import math

from decimal import *

from threading import Thread

dynamodb = boto3.resource('dynamodb')

TLS_position_x = 745.45

TLS_position_y = 1118.61

Distance_Table = {}

Speed_Table = {}

Gap_Table = {}

input_table = dynamodb.Table('Speed_file')

 59

output_table = dynamodb.Table('Speed_advisory')

Historical_Table = dynamodb.Table('Historical_State_Table_113850262')

queue = sqs.get_queue_by_name(QueueName='TLS_ACK_113850262')

input = ''

def get_Distance(table,ID):

 try:

 response = table.get_item(Key={'vehicle': ID})

 except ClientError as e:

 print(e.response['Error']['Message'])

 else:

 return float(response['Item']['distance'])

def Historical_State_Update(Table, ID, distance):

 Table.put_item(

 Item={

 'vehicle':ID,

 'distance':Decimal(str(distance))

 }

)

def Assign_Vehicle(pos_x,pos_y,phase,remain,ID,speed,gap):

 60

 X = TLS_position_x - float(pos_x)

 Y = TLS_position_y - float(pos_y)

 distance = round(math.sqrt(X*X+Y*Y),2)

 if phase == 0:

 if distance <= get_Distance(Historical_Table,ID) and distance > remain * 16.0:

 Distance_Table[ID] = distance

 Speed_Table[ID] = speed

 Gap_Table[ID] = gap

 else:

 #Speed Advisories only give to vehicles approaching TLS

 if distance <= get_Distance(Historical_Table,ID):

 Distance_Table[ID] = distance

 Speed_Table[ID] = speed

 Gap_Table[ID] = gap

 Historical_State_Update(Historical_Table,ID,distance)

def compute_advisory(platoon,Distance_Table,Speed_Table,delay_time):

 Platoon_Distance = []

 Platoon_Speed = []

 61

 for vehicle in platoon:

 Platoon_Distance.append(Distance_Table[vehicle])

 Platoon_Speed.append(Speed_Table[vehicle])

 adv = round(min(Platoon_Distance) / delay_time,1)

 if adv > 16.0:

 adv = 16.0

 output_table.put_item(

 Item={

 'vehicle': platoon[0],

 'advisory':Decimal(str(adv))

 }

)

def scan_and_process_input_table(current_phase,remain):

 thread_list = []

 total_segments = 8 # number of parallel scans

 for i in range(total_segments):

 # Instantiate and store the thread

 thread = Thread(target=parallel_scan_and_process_input_table,

args=(i,total_segments,current_phase,remain))

 62

 thread_list.append(thread)

 # Start threads

 for thread in thread_list:

 thread.start()

 # Block main thread until all threads are finished

 for thread in thread_list:

 thread.join()

def parallel_scan_and_process_input_table(segment, total_segments, current_phase,

remain):

 threads = []

 thread_number = 0

 #print("Total segments = "+str(total_segments)+" segment "+str(segment))

 vehicles = input_table.scan(

 Segment=segment,

 TotalSegments=total_segments,

 ConsistentRead=True

)

 print('Looking at segment ' + str(segment) + ' of '+ str(total_segments) + "

"+str(len(vehicles['Items']))+" vehicles\n")

 for i in vehicles['Items']:

 63

 thread = Thread(target=Assign_Vehicle,

args=(i['pos_x'],i['pos_y'],current_phase,remain,i['vehicle'],i['speed'],i['gap']))

 threads.append(thread)

 thread_number += 1

 if thread_number > 8:

 for thread in threads:

 thread.start()

 thread_number = 0

 threads.clear()

 for thread in threads:

 thread.start()

def lambda_handler(event, context):

 payload = ''

 current_phase = 0

 Platoons = []

 Platoon_index = -1

 64

 threads = []

 thread_number = 0

 test_records =["Test"]

 # TODO implement

 #for record in event['Records']:

 for record in test_records:

 input = str(base64.b64decode(record['kinesis']['data']))[2:-1]

 if ',' == input[1]:

 decoded_message = input.split(',')

 current_phase = int(decoded_message[0])

 remain = int(decoded_message[1])

 else:

 payload = input

 if current_phase == 0:

 delay_time = remain + 48

 elif current_phase == 1:

 delay_time = remain + 45

 elif current_phase == 2:

 65

 delay_time = remain + 3

 else:

 delay_time = remain

 start_time = int(round(time.time() * 1000))

 vehicles = input_table.scan()

 for i in vehicles['Items']:

 if int(i['vehicle']) < 50:

 threads.append(Thread(target=Assign_Vehicle,

args=(i['pos_x'],i['pos_y'],current_phase,remain,i['vehicle'],i['speed'],i['gap'])))

 thread_number += 1

 if thread_number > 12:

 for thread in threads:

 thread.start()

 thread_number = 0

 threads.clear()

 for thread in threads:

 thread.start()

 end_time = int(round(time.time() * 1000))

 print('Speed file processing time is: ', end_time-start_time)

 66

 start_time = int(round(time.time() * 1000))

 if Distance_Table:

 Sorted_Distance = sorted(Distance_Table.items(), key=lambda x: x[1])

 for i in range(len(Sorted_Distance)):

 if float(Gap_Table[Sorted_Distance[i][0]]) > 50.0 or i == 0:

 Platoon_index += 1

 Platoons.append([])

 Platoons[Platoon_index].append(Sorted_Distance[i][0])

 else:

 Platoons[Platoon_index].append(Sorted_Distance[i][0])

 threads.clear()

 thread_number = 0

 for platoon in Platoons:

threads.append(Thread(target=compute_advisory,args=(platoon,Distance_Table,Speed_T

able,delay_time,)))

 thread_number += 1

 for thread in threads:

 thread.start()

67

 end_time = int(round(time.time() * 1000))

 payload += str(end_time-start_time)

 response = queue.send_message(MessageBody=payload)

 print(payload)

 print('Processing time is: ', end_time-start_time)

 return 'successfully processed {} records.'.format(len(test_records))

68

Appendix D

Simulation Program

 Baseline Scenario

Baseline.py

#!/usr/bin/env python

import os

import sys

import optparse

import time

import json

import math

vechicleID = []

trafficsignalID = []

we need to import some python modules from the $SUMO_HOME/tools directory

if 'SUMO_HOME' in os.environ:

 tools = os.path.join(os.environ['SUMO_HOME'], 'tools')

 sys.path.append(tools)

else:

 sys.exit("please declare environment variable 'SUMO_HOME'")

69

from sumolib import checkBinary # Checks for the binary in environ vars

import traci

def get_options():

 opt_parser = optparse.OptionParser()

 opt_parser.add_option("--nogui", action="store_true",

default=False, help="run the commandline version of sumo")

 options, args = opt_parser.parse_args()

 return options

contains TraCI control loop

def run():

 step = 0

 Stopping_Steps = [-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,

70

-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1

]

 fuel_consumption = [0.0,0.0,0.0,0.0,0.0,

0.0,0.0,0.0,0.0,0.0,

0.0,0.0,0.0,0.0,0.0,

0.0,0.0,0.0,0.0,0.0,

0.0,0.0,0.0,0.0,0.0,

0.0,0.0,0.0,0.0,0.0,

0.0,0.0,0.0,0.0,0.0,

0.0,0.0,0.0,0.0,0.0,

0.0,0.0,0.0,0.0,0.0,

0.0,0.0,0.0,0.0,0.0

]

 while traci.simulation.getMinExpectedNumber() > 0 and step < 3600:

 traci.simulationStep()

 print('Step: ',step)

 #Condition for each vehicle

71

 vehicleID = traci.vehicle.getIDList()

 for vehicles in vehicleID:

 traci.vehicle.setSpeed(vehicles, Vehicle_Advisory[vehicles])

 fuel_consumption[int(vehicles)] +=

round(traci.vehicle.getFuelConsumption(vehicles),0)

 if traci.vehicle.getSpeed(vehicles) == 0.0:

Stopping_Steps[int(vehicles)] += 1

 print(Stopping_Steps)

 print(fuel_consumption)

 traci.close()

 sys.stdout.flush()

main entry point

if __name__ == "__main__":

 options = get_options()

 # check binary

 if options.nogui:

72

 sumoBinary = checkBinary('sumo')

 else:

 sumoBinary = checkBinary('sumo-gui')

 print("TRaCI Starts Sumo")

 # traci starts sumo as a subprocess and then this script connects and runs

 traci.start([sumoBinary, "-c", "map.sumo.cfg",

"--tripinfo-output", "tripinfo.xml"])

 run()

 COSACC Scenario

COSACC_50.py

#!/usr/bin/env python

import os

import sys

import optparse

import time

import boto3

import botocore

import json

73

import math

from decimal import *

from threading import Thread

vechicleID = []

trafficsignalID = []

RRT = []

MSGS = []

my_stream = 'Speed_Input'

kinesis_client = boto3.client('kinesis',region_name='us-east-1')

sqs = boto3.client('sqs')

queue_url = 'https://sqs.us-east-1.amazonaws.com/233952390740/Speed_Advisory'

record_data = ''

received_data = ''

config = botocore.config.Config(max_pool_connections=100)

dynamodb = boto3.resource('dynamodb',config=config)

Vehicle_State_Table = dynamodb.Table('Speed_file')

Speed_Advisory_Table = dynamodb.Table('Speed_advisory')

we need to import some python modules from the $SUMO_HOME/tools directory

if 'SUMO_HOME' in os.environ:

74

 tools = os.path.join(os.environ['SUMO_HOME'], 'tools')

 sys.path.append(tools)

else:

 sys.exit("please declare environment variable 'SUMO_HOME'")

from sumolib import checkBinary # Checks for the binary in environ vars

import traci

def Vehicle_State_Init(Table, ID):

 Table.put_item(

 Item={

 'vehicle':ID,

 'advisory':Decimal('16.0'),

 }

)

def Vehicle_State_upload(Table, ID, pos_x, pos_y, speed, gap):

 Table.put_item(

 Item={

 'vehicle':ID,

 'pos_x':Decimal(pos_x),

75

 'pos_y':Decimal(pos_y),

 'speed':Decimal(speed),

 'gap':Decimal(gap)

 }

)

def Vehicle_Advisory_Download(DLTable, ID, Table):

 response = DLTable.get_item(Key={'vehicle':ID})

 adv = float(response['Item']['advisory'])

 Table[ID] = adv

def kinesis_upload(stream, data):

 response = kinesis_client.put_record(

 StreamName=stream,

 Data=data.encode(),

 PartitionKey='0',

 ExplicitHashKey='0',

 SequenceNumberForOrdering='0'

)

 return

def sqs_download(url):

76

 response = sqs.receive_message(

 QueueUrl = url,

 AttributeNames=[

 'All',

],

 MessageAttributeNames=[

 'All',

],

 MaxNumberOfMessages=1,

 VisibilityTimeout=0,

 WaitTimeSeconds=5,

 ReceiveRequestAttemptId='string'

)

 message = response['Messages'][0]

 receipt_handle = message['ReceiptHandle']

 message_body = message['Body']

 resonsea = sqs.delete_message(

 QueueUrl = url,

 ReceiptHandle = receipt_handle

)

 return message_body

77

def get_options():

 opt_parser = optparse.OptionParser()

 opt_parser.add_option("--nogui", action="store_true",

default=False, help="run the commandline version of sumo")

 options, args = opt_parser.parse_args()

 return options

contains TraCI control loop

def run():

 step = 0

 record_113913026 = ''

 record_113850262 = ''

 record_113915746 = ''

 current_phase_113913026 = 0

 current_phase_113850262 = 0

 current_phase_113915746 = 0

 tls_timer_113913026 = 0.0

 tls_timer_113850262 = 0.0

 tls_timer_113915746 = 0.0

78

 Stopping_Steps = [-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1

]

 fuel_consumption = [0.0,0.0,0.0,0.0,0.0,

0.0,0.0,0.0,0.0,0.0,

0.0,0.0,0.0,0.0,0.0,

0.0,0.0,0.0,0.0,0.0,

0.0,0.0,0.0,0.0,0.0,

0.0,0.0,0.0,0.0,0.0,

0.0,0.0,0.0,0.0,0.0,

0.0,0.0,0.0,0.0,0.0,

0.0,0.0,0.0,0.0,0.0,

 79

 0.0,0.0,0.0,0.0,0.0

]

 threads = []

 threads_number = 0

 while traci.simulation.getMinExpectedNumber() > 0 and step < 3600:

 traci.simulationStep()

 print('Step: ',step)

 #Condition for each vehicle

 vehicleID = traci.vehicle.getIDList()

 #Initialization

 threads.clear()

 for vehicle in vehicleID:

threads.append(Thread(target=Vehicle_State_Init,args=(Speed_Advisory_Table,vehicle))

)

 threads_number += 1

 if threads_number > 8:

 for thread in threads:

80

thread.start()

threads_number = 0

threads.clear()

 threads_number = 0

 for thread in threads:

 thread.start()

 #Gathering vehicles' states

 threads.clear()

 for vehicle in vehicleID:

 Vehicle_Advisory = 16.0

 Vehicle_Location = traci.vehicle.getPosition(vehicle)

 Vehicle_Speed = round(traci.vehicle.getSpeed(vehicle),1)

 if traci.vehicle.getLeader(vehicle):

Vehicle_Gap = round(traci.vehicle.getLeader(vehicle)[1],2)

 else:

Vehicle_Gap = 10000.0

81

 threads.append(Thread(target=Vehicle_State_upload,args=(Vehicle_State_Table,

vehicle, str(round(Vehicle_Location[0],2)), str(round(Vehicle_Location[1],2)),

str(Vehicle_Speed), str(Vehicle_Gap),)))

 threads_number += 1

 if threads_number > 8:

for thread in threads:

thread.start()

threads.clear()

threads_number = 0

 for thread in threads:

 thread.start()

 #TLS timer to get remaining green time

 if current_phase_113913026 != traci.trafficlight.getPhase('113913026'):

 current_phase_113913026 = traci.trafficlight.getPhase('113913026')

 tls_timer_113913026 = 0.0

 record_113913026 = str(current_phase_113913026)

 remain_113913026 = traci.trafficlight.getPhaseDuration('113913026') -

tls_timer_113913026

 record_113913026 += ',' + str(int(remain_113913026))

82

 #TLS timer to get remaining green time

 if current_phase_113850262 != traci.trafficlight.getPhase('113850262'):

 current_phase_113850262 = traci.trafficlight.getPhase('113850262')

 tls_timer_113850262 = 0.0

 record_113850262 = str(current_phase_113850262)

 remain_113850262 = traci.trafficlight.getPhaseDuration('113850262') -

tls_timer_113850262

 record_113850262 += ',' + str(int(remain_113850262))

 #TLS timer to get remaining green time

 if current_phase_113915746 != traci.trafficlight.getPhase('113915746'):

 current_phase_113915746 = traci.trafficlight.getPhase('113915746')

 tls_timer_113915746 = 0.0

 record_113915746 = str(current_phase_113915746)

 remain_113915746 = traci.trafficlight.getPhaseDuration('113915746') -

tls_timer_113915746

 record_113915746 += ',' + str(int(remain_113915746))

 #Advisory by cloud

 kinesis_upload('TLS_State_113913026',record_113913026)

 print('A:',sqs_download('https://sqs.us-east-

1.amazonaws.com/233952390740/TLS_ACK_113913026'))

 83

 kinesis_upload('TLS_State_113850262',record_113850262)

 print('B:',sqs_download('https://sqs.us-east-

1.amazonaws.com/233952390740/TLS_ACK_113850262'))

 kinesis_upload('TLS_State_113915746',record_113915746)

 print('C:',sqs_download('https://sqs.us-east-

1.amazonaws.com/233952390740/TLS_ACK_113915746'))

 #Gathering Advisories on cloud

 threads.clear()

 threads_number = 0

 for vehicle in vehicleID:

 threads.append(Thread(target=Vehicle_Advisory_Download,

args=(Speed_Advisory_Table,vehicle,Vehicle_Advisory)))

 threads_number += 1

 if threads_number > 8:

 for thread in threads:

 thread.start()

 threads_number = 0

 threads.clear()

 for thread in threads:

 thread.start()

84

 for vehicles in vehicleID:

 traci.vehicle.setSpeed(vehicles, Vehicle_Advisory[vehicles])

 fuel_consumption[int(vehicles)] +=

round(traci.vehicle.getFuelConsumption(vehicles),0)

 Travel_Time[int(vehicles)] += 1

 if traci.vehicle.getSpeed(vehicles) == 0.0:

Stopping_Steps[int(vehicles)] += 1

 step += 1

 tls_timer_113913026 += 1

 tls_timer_113850262 += 1

 tls_timer_113915746 += 1

 print(Stopping_Steps)

 print(fuel_consumption)

 traci.close()

 sys.stdout.flush()

main entry point

85

if __name__ == "__main__":

 options = get_options()

 # check binary

 if options.nogui:

 sumoBinary = checkBinary('sumo')

 else:

 sumoBinary = checkBinary('sumo-gui')

 print("TRaCI Starts Sumo")

 # traci starts sumo as a subprocess and then this script connects and runs

 traci.start([sumoBinary, "-c", "map.sumo.cfg",

"--tripinfo-output", "tripinfo.xml"])

 run()

86

REFERENCES

[1] Y.Du, M. Chowdhury, M. Rahman, K. Dey, A. Apon, A. Luckow, and L. Ngo, “A
Distributed Message Delivery Infrastructure for Connected Vehicle Technology
Applications,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 3, pp. 787–801, 2018.

[2] A.Sarker, H. Shen, M. Rahman, M. Chowdhury, K. Dey, F. Li, Y. Wang, and H. S.
Narman, “A Review of Sensing and Communication, Human Factors, and
Controller Aspects for Information-Aware Connected and Automated Vehicles,”
IEEE Trans. Intell. Transp. Syst., vol. 21, no. 1, pp. 7–29, 2020.

[3] M.Chowdhury, M.Islam, and Z.Khan, “Security of connected and automated
vehicles,” Bridge, vol. 49, no. 3, pp. 46–56, 2019.

[4] Amazon, “AWS GovCloud (US),” 2000. [Online]. Available:
https://aws.amazon.com/govcloud-us/?whats-new-ess.sort-
by=item.additionalFields.postDateTime&whats-new-ess.sort-order=desc.

[5] Google, “Government & Public Sector Compliance | Google Cloud.” [Online].
Available: https://cloud.google.com/security/compliance/government-public-
sector.

[6] Microsoft, “Government Cloud Computing: Microsoft Azure.” [Online].
Available: https://azure.microsoft.com/en-us/global-infrastructure/government/.

[7] R. A. P.Rajan, “Serverless Architecture - A Revolution in Cloud Computing,”
2018 10th Int. Conf. Adv. Comput. ICoAC 2018, pp. 88–93, 2018.

[8] H.Shafiei, A.Khonsari, and P.Mousavi, “Serverless Computing: A Survey of
Opportunities, Challenges and Applications,” pp. 1–13, 2019.

[9] J. W.Kim, J. W.Kim, and D. K.Jeon, “A cooperative communication protocol for
QoS provisioning in IEEE 802.11p/wave vehicular networks,” Sensors
(Switzerland), vol. 18, no. 11, pp. 1–19, 2018.

[10] Z.Ning, J.Huang, and X.Wang, “Vehicular fog computing: Enabling real-time
traffic management for smart cities,” IEEE Wirel. Commun., vol. 26, no. 1, pp. 87–
93, 2019.

[11] X.Li, Y.Dang, M.Aazam, X.Peng, T.Chen, and C.Chen, “Energy-Efficient
Computation Offloading in Vehicular Edge Cloud Computing,” IEEE Access, vol.
8, pp. 37632–37644, 2020.

 87

[12] J.JIng, R.Bin, C.Tianyi, J.XIaowen, Z.Tianya, and Y.Zhenxing, “Cloud-based
Technology for Connected and Automated Vehicle Higway Systems,” 2019.

[13] A.Stevanovic, J.Stevanovic, and C.Kergaye, “Green light optimized speed

advisory systems,” Transp. Res. Rec., no. 2390, pp. 53–59, 2013.

[14] H.Suzuki and Y.Marumo, “A New Approach to Green Light Optimal Speed

Advisory (GLOSA) Systems for High-Density Traffic Flowe,” IEEE Conf. Intell.
Transp. Syst. Proceedings, ITSC, vol. 2018-Novem, pp. 362–367, 2018.

[15] L.Simchon and R.Rabinovici, “Real-Time Implementation of Green Light Optimal

Speed Advisory for Electric Vehicles,” Vehicles, vol. 2, no. 1, pp. 35–54, 2020.

[16] S.Stebbins, J.Kim, M.Hickman, and H. L.Vu, “Combining model predictive

intersection control with Green Light Optimal Speed Advisory in a connected
vehicle environment,” in Australasian Transport Research Forum (ATRF), 2016.

[17] S.Stebbins, M.Hickman, J.Kim, and H. L.Vu, “Characterising Green Light

Optimal Speed Advisory trajectories for platoon-based optimisation,” Transp. Res.
Part C Emerg. Technol., vol. 82, pp. 43–62, 2017.

[18] W.Zhao, D.Ngoduy, S.Shepherd, R.Liu, and M.Papageorgiou, “A platoon based

cooperative eco-driving model for mixed automated and human-driven vehicles at
a signalised intersection,” Transp. Res. Part C Emerg. Technol., vol. 95, no. May,
pp. 802–821, 2018.

[19] Microsoft, “Azure Functions Serverless Compute | Microsoft Azure,” 2020.

[Online]. Available: https://azure.microsoft.com/en-us/services/functions/.
[Accessed: 07-Jul-2020].

[20] Google Cloud, “Serverless computing | Google Cloud,” 2020. [Online]. Available:

https://cloud.google.com/serverless?hl=us. [Accessed: 07-Jul-2020].

[21] A. W.Services, “Developer Guide.”

[22] Amazon Web Services, “Amazon DynamoDB Developer Guide,” 2011.

[23] AWS, “Amazon Kinesis Data Streams - AWS,” Aws, 2019.

[24] USDOT, “Southeast Michigan Test Bed 2014 Comcept of Operations,” 2014.

[25] D. A.Menascé, “QoS issues in web services,” IEEE Internet Comput., vol. 6, no. 6,

pp. 72–75, 2002.

 88

[26] R.Garg, H.Saran, R. S.Randhawa, and M.Singh, “A SLA framework for QoS
provisioning and dynamic capacity allocation,” IEEE Int. Work. Qual. Serv.
IWQoS, vol. 2002-Janua, no. c, pp. 129–137, 2002.

[27] A.Ashok, P.Steenkiste, and F.Bai, “Adaptive cloud offloading for vehicular

applications,” IEEE Veh. Netw. Conf. VNC, vol. 0, 2016.

[28] T.Hardes and C.Sommer, “Dynamic Platoon Formation at Urban Intersections,”

Proc. - Conf. Local Comput. Networks, LCN, vol. 2019-Octob, pp. 101–104, 2019.

[29] P. A.Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y. Fl¨otter¨od, R. Hilbrich,

L. L¨ucken, J. Rummel, P. Wagner, and E. Wießner, “Microscopic Traffic
Simulation using SUMO,” IEEE Conf. Intell. Transp. Syst. Proceedings, ITSC,
vol. 2018-Novem, pp. 2575–2582, 2018.

[30] A.Wegener, M.Piórkowski, M.Raya, H.Hellbrück, S.Fischer, and J. P.Hubaux,

“TraCI: An interface for coupling road traffic and network simulators,” Proc. 11th
Commun. Netw. Simul. Symp. CNS’08, pp. 155–163, 2008.

[31] H. C.Manual, “Chapter 14 Multilane Highways,” no. December, 2010.

	COSACC: Cloud-Based Speed Advisory for Connected Vehicles in a Signalized Corridor
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	This study is partially funded by the Center for Connected Multimodal Mobility (C2M2) (a Tier 1 USDOT University Transportation Center) headquartered at Clemson University, Clemson, South Carolina, USA. Any opinions, findings, and conclusions or reco...
	I wish to express my gratitude to Dr. Chowdhury and Dr. Apon for their support of this project, Prof. Shue for his extensive knowledge from the industry and generous help on the thesis, Dr. Rahman for his selfless guidance to me from the start of the ...
	TABLE OF CONTENTS
	TABLE OF CONTENTS (CONTINUED)
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER ONE
	INTRODUCTION
	RELATED WORKS
	CLOUD-BASED SERVERLESS ARCHITECTURE
	SCALABILITY OF THE CLOUD FOR INCREASING NUMBER OF CONNECTED VEHICLES
	COMMUNICATION WITH THE CLOUD
	CLOUD-BASED SPEED ADVISORY APPLICATION
	CASE STUDY
	CONCLUSIONS AND RECOMMENDATIONS
	APPENDICES

