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ABSTRACT 
 
 

The objective of this study is to assess the feasibility of cloud-based real-time 

connected vehicle (CV) applications. The author developed a cloud-based speed advisory 

application for CVs in a signalized corridor (COSACC) to achieve this objective. The 

contribution of this study is threefold. First, it introduced a serverless cloud computing 

architecture using Amazon Web Services (AWS) for real-time CV applications. Second, 

the author developed a real-time optimization-based speed advisory algorithm that is 

deployable in AWS. Third, this study utilized a cloud-in-the-loop simulation testbed using 

AWS and Simulation of Urban Mobility (SUMO), which is a microscopic traffic simulator. 

The author conducted experiments on cloud access at three-hour intervals over 24 hours in 

one day. These experiments revealed that the total data upload and download time to and 

from AWS via LTE is on average 92 milliseconds, which meets the allowable delay 

requirement for real-time CV traffic mobility applications. The author conducted a case 

study by implementing the COSACC in a cloud-in-the-loop simulation testbed. The 

analyses revealed that COSACC can reduce vehicle stopped delay at the signalized 

intersections up to 98% and fuel consumption in the signalized corridor up to 12.7%, 

compared to the baseline scenario, i.e., no speed advisory on the signalized corridor.  

Moreover, the authors observed an average end-to-end delay from a CV sending basic 

safety messages to it receiving a speed advisory from the cloud  to be about  443 ms, which 

is well under the 1000 ms threshold required for any real-time traffic mobility application 

for connected vehicles. 
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CHAPTER ONE 

INTRODUCTION 

As the sources of connected vehicle (CV) data increase and become more diverse 

[1], infrastructure to support these data must be scaled up to accommodate many types of 

very large data sets related to connected and automated vehicles (CAV), such as sensor 

data, text messages, and images [2]. Furthermore, these infrastructures must securely 

support real-time processing for many applications, must be trustworthy, and must preserve 

privacy [3]. Public clouds have evolved to a level capable of supporting applications while 

also meeting these requirements.  Recent advances in public cloud infrastructure address 

these issues in a cost-competitive manner vis-a-vis in-house infrastructure development 

and labor costs. For example, the Amazon Web Service (AWS) GovCloud region supports 

significant levels of high speed and secure data processing, which makes a case for an 

investigation of CV applications utilizing public cloud technologies. Additionally, Google 

Cloud Platform (GCP) and Microsoft Azure are also competing in the commercial cloud 

space [4][5][6].  

In CV applications, there are constant streams of data to be processed and analyzed, 

often in real-time. This means that there is a deadline to complete the analysis, after which 

the results of the analysis could become useless. Cloud computing could be a cost-effective 

solution for backend data processing and archiving, which are required for many CV 

applications. This study utilized a serverless cloud computing architecture with a real-time 

platoon-based speed advisory algorithm using AWS to assess the feasibility of commercial 

cloud services for CV mobility applications. The serverless architecture features a pay-as-
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you-go model without the burden of managing resources and systems as would be the case 

when using traditional server-based cloud services. This architecture is defined as 

Function-as-a-Service (FaaS), which can be triggered and executed as per application 

requirements after deployment [7][8]. Many services such as stream services, data storage, 

and notification services can stimulate a CV application to be executed in the serverless 

architecture.  

The author developed a cloud-based, platoon-based speed advisory application that 

functions in real-time for connected vehicles in a signalized corridor (COSACC). CVs and 

roadway traffic signals send information of the conditions (i.e., location and speed of CVs 

and traffic signal phasing and timing information) to the serverless cloud computing 

infrastructure and trigger execution of the speed advisory application automatically. 

COSACC is more scalable in terms of communication coverage area and number of CVs 

due to high availability and scalability of cloud computing compared to an application 

supported by edge computing without any cloud infrastructure.  

The author conducted several focused experiments in the field to test the feasibility of 

COSACC. In addition, the author also developed a cloud-in-the-loop simulation testbed 

using AWS and Simulation of Urban Mobility (SUMO), which is a microscopic roadway 

traffic simulator, to evaluate COSACC at a macroscopic level.   

In Chapter Two, this thesis discusses three things: 1. the general architecture for a 

cloud-based CV application,  2. previous works, and 3. real-time speed advisory 

applications. In Chapter Three, the author delineates the architectural view of COSACC 

based on the serverless features provided by AWS. Chapter Four discusses some of the 
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author’s attempts to improve the scalability and performance of the application in AWS 

and lessons learned from them. Chapter Five describes multiple experiments at a 

microscopic level concerning evaluating the feasibility of cloud computing for CVs. In 

Chapter Five, the author presents COSACC, a novel platoon-based speed advisory 

application. Chapter Six discusses the results of a case study with a cloud-in-the-loop 

simulation to evaluate the feasibility of COSACC macroscopically. Lastly, in Chapter 

Seven, the author presents the potential of CV applications supported by cloud computing. 
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CHAPTER TWO 
 

RELATED WORKS 
 
 
 Cloud Computing for CVs  

In general, a Connected and Autonomous Vehicle (CAV) can be considered to be 

a mobile node with a group of sensors (i.e., GPS, Radar, camera, LIDAR). Cloud 

infrastructure and transportation infrastructure through V2I communication, use wireless 

(e.g., DSRC, Long-Term Evolution (LTE), 5G) or wired (e.g., optical fiber) 

communication technologies. Services in the cloud can be used to aggregate and analyze 

the collected data and generate appropriate responses based on the data. 

A CV sends basic safety messages (BSM) to the cloud using wireless 

communication. On the other hand, traffic control infrastructure (i.e., traffic signals) sends 

its traffic control information, such as signal phase and timing (SPaT) messages to the 

cloud through wired or wireless communication. Data included in a BSM are shown in 

Table 1 [9]. Traffic management centers share their recorded roadway traffic information 

with the cloud.  

 

TABLE 1 
Basic Safety Message [9] 

Type Description Size 
(byte) 

DSRCmsgID Data elements used in each message to 
define the Message type 

1 

MsgCount Check the flow of consecutive 
messages having the same 
DSRCmsgID received from the same 
message sender 

1 
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TemporaryID Temporary device identifier. When 
used in a mobile on-board unit (OBU) 
device, this value is periodically 
changed to ensure anonymity 

4 

Dsecond Time information 2 
Latitude Geographic latitude of an object 4 
Longtitude Geographic longtitude of an object 4 
Elevation Altitude measured by the WGS84 

coordinate system 
2 

PositionAccuracy Various quality parameters used to 
model the positioning accuracy for 
each given axis 

4 

TransmissionAndSpeed Speed of the vehicle 2 
Heading Current direction value expressed in 

units of 0.0125 degrees 
2 

SteeringWheelAngle Current steering angle of the steering 
wheel 

1 

AccelerationSet4Way Consists of three orthogonal directions 
of acceleration and yaw rate 

7 

BrakeSystemStatus Data element that records various 
control states related to braking of the 
vehicle 

1 

VehicleSize Length and width of the vehicle 3 
 

Moreover, other transportation-related services, such as weather services, news 

services, and emergency management centers, can send their information into the cloud, 

too. 

Inside the cloud architecture, a message broker exchanges data from producers (e.g., 

CVs) and consumers (e.g., CV applications). A typical cloud-based CV application 

includes three abstraction layers: infrastructure-as-a-service (IaaS), platform-as-a-service 

(PaaS), and software-as-a-service (SaaS). CV application developers utilize IaaS to set up 

low-level requirements of an application, such as data storage, and operating system. 

Beyond the infrastructure, PaaS provides flexible and scalable services (e.g., database 
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management and computing services) for developers to build their applications. Last but 

not the least, CV applications are implemented on the SaaS layer. Developers can 

implement real-time or non-real-time applications according to CV requirements. Figure 

2.1 shows a cloud-based architecture for CV applications development. Many studies have 

now used the cloud as a platform to develop a CV application. Ning et al. utilized a cloud-

based fog computing architecture to implement real-time traffic management [10]. Li et. 

al. provided a maximum value density-based heuristic algorithm through vehicular edge 

cloud computing to develop a traffic energy efficiency application [11], and Jin et. al. 

presented a method of constructing cloud-based mobility services for connected and 

automated vehicles highway [12].  Each of these studies used a traditional server-based 

approach to develop real-time CV applications. However, according to the author’s 

knowledge, no studies have used a serverless architecture as the platform for the 

development of a real-time CV application. 
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Figure 2.1: Architecture for a cloud-based CV application 

 

 Cloud-based Real-time Speed Advisory Application  

 In the field of traffic engineering, many methods are developed to integrate traffic 

signal data and vehicular information to enhance traffic operational efficiency [13]. 

However, with increasing traffic demands and new technology, it is necessary to develop 

these applications in smarter ways. Intelligent Transportation System (ITS) develops smart 

solutions for improving traffic operational efficiency and safety. However, investing in 

developing roadside data infrastructure and maintaining it may not be a cost-effective 

solution.  Thus, the use of cloud computing could be a viable solution for real-time CV 
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application development to improve traffic efficiency and reduce a significant amount of 

infrastructure deployment cost. Figure 2.2 presents a physical architecture of the cloud-

based speed advisory application for CVs. The speed advisory application can be deployed 

in cloud infrastructure that collects vehicle location and motion information provided by 

CVs, and signal phase and timing (SPaT) information provided by roadside infrastructures 

(i.e., traffic signal). By analyzing and aggregating these data, the speed advisory 

application can generate an appropriate speed advisory for CVs. However, computing time 

for running the speed advisory application in the cloud and data exchange delay between 

the cloud and CVs must satisfy real-time requirements.  

 

Figure 2.2: Cloud-based speed advisory application for CVs 
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The Green Light Optimal Speed Advisory (GLOSA) algorithm tries to optimize 

stopped delay, fuel consumption, and CO2 emission while processing vehicles through 

signalized intersections. Among the recent works, Suzuki and Marumo developed a 

GLOSA system that projects a green rectangle on the roadway through the heads-up 

display of a GLOSA-enabled vehicle [14]. The green rectangle is an advised area for that 

vehicle to cross the intersection within the allocated green-time. Simchon and Rabinovici 

developed a dynamic GLOSA system for real-time implementation on roadways [15]. The 

authors utilized a relaxation procedure to cut the computation time short for real-time 

implementation. Stebbins et al. combined model predictive control (MPC) with state-space 

reduction and GLOSA to yield efficient trajectories for the CVs [16]. However, very few 

studies have considered platoon formation. In [17], Stebbins et al. developed a platoon-

based optimization technique for GLOSA. The authors included a safety constraint in 

consideration of the fact that, in some situations, human drivers may not follow an advised 

speed if they feel that they would not be able to stop their vehicles while approaching an 

intersection. Zhao et al. developed a platoon-based MPC to optimize fuel consumption 

while enabling a platoon of vehicles to pass an intersection within a green interval [18]. 

The authors evaluated the efficacy of their model for different CV penetration rates. 

However, none of these studies considered a real-time implementation of a platoon-based 

system running in the cloud for speed advisory at a signalized corridor. In this study, the 

authors developed a cloud-based, real-time speed advisory application using a platooning 

concept. 
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CHAPTER THREE 
 

CLOUD-BASED SERVERLESS ARCHITECTURE 
 
 

In a traditional cloud computing architecture, a skilled system administrator is 

required to create a CV application development and implementation environment (e.g., 

virtual machines configuration, operating system installation, and computing resource 

management) manually. Whereas, a serverless cloud architecture provides functionalities 

to a user without hardcoding integration (embedding data directly into the source code). 

Furthermore, a CV application developer is not required to create and maintain computing 

instances or to configure a cloud environment as per CV application requirements. This 

would significantly reduce application development time, as the developers of CV 

applications would only need to focus on the development and implementation of the 

algorithm. Typically, serverless computing services support various languages, such as 

Node.JS, Python, .NET, and Java. The primary advantage of cloud-based CV application 

development is that an application deployed using a serverless architecture can work with 

other cloud services (e.g., data storage, streaming services), the event-driven feature makes 

the application can be triggered to launch.   

Currently available commercial cloud services support a serverless cloud 

architecture in addition to a more traditional server-based cloud architecture. Microsoft 

introduced “Azure Functions,” which allow users to develop event-driven applications 

utilizing Visual Studio, as a part of the serverless computing services [19]. Google Cloud 

Platform (GCP) offers its serverless computing application programming interface (API), 
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called “Knative,” for developers to manage their applications using the serverless cloud 

computing services along with other GCP services, such as cloud storage and data flow 

services [20]. AWS provides “Lambda” as its serverless method [21]. A user can deploy 

any CV application using Lambda cooperated with other AWS services (e.g. DynamoDB, 

Kinesis Data Stream).  

In this study, the author developed a cloud-based serverless architecture for 

developing a real-time speed advisory application using AWS for CVs along a signalized 

corridor. However, the same approach can be applied to the development of serverless 

architecture for CV applications using other commercial cloud services, such as Microsoft 

Azure and GCP. AWS, as well as Microsoft and Google, maintains a vast cloud 

infrastructure and services, which makes it highly available and scalable for real-time CV 

applications.  
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Figure 3.1: Serverless COSACC architecture. 

 

The author presents a serverless architecture that can manage computing resources, 

databases, and streaming services for COSACC so that the application can run in real-time 

while guaranteeing Quality of Service (QoS). Figure 3.1 illustrates the COSACC 

architecture and lists the AWS services used, which include (i) DynamoDB, (ii) Kinesis 

Data Stream, and (iii) Lambda. 

DynamoDB is a NoSQL cloud database service with a key-value structure [22], 

which the author utilized to develop databases (i.e., a speed advisory database, a vehicle 

trajectory database, and a historical database). The author created a “vehicle trajectory 

database” for CVs to update their trajectory information and a speed advisory database to 
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store a set of speed advisories calculated using the algorithm developed in this study. CVs 

can subscribe to these messages from the speed advisory database. For each traffic signal, 

the author also created a historical database to save and update the distance between CVs 

and a traffic signal in real-time. 

Kinesis Data Stream is a data stream service that continuously delivers data 

messages [23] in AWS. For each traffic signal, the author established a Kinesis Data 

Stream service for sending a streaming message into the cloud every second to trigger the 

speed advisory algorithm.  

Lambda [21], which is the core component of our application, is a computation 

service for serverless COSACC architecture. The author designed a group of Lambda 

functions for every traffic signal triggered by the Kinesis Data Stream. Each Lambda 

function originally stores basic information, such as physical location and signal phase 

duration of the corresponding traffic signals. Once a Lambda function is triggered, it 

collects information from traffic signals and CVs, computes speed advisories based on our 

algorithm, and updates speed advisories for CVs.  

In the real world, a CV generates a BSM, and each traffic signal generates SPaT 

messages. In COSACC, each CV uploads a filtered BSM, which contains the vehicle’s ID, 

location, speed, and the gap between two successive vehicles of a CV into the vehicle 

trajectory database. Each traffic signal sends a filtered SPaT message containing the current 

traffic signal phase and the remaining time of that phase to the Kinesis Data Stream. Using 

this serverless architecture, the author developed a cloud-based optimization algorithm that 

utilizes these BSMs and SPaT messages to generate speed advisories for CVs in real-time. 
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CHAPTER FOUR 
 

SCALABILITY OF THE CLOUD FOR INCREASING NUMBER OF CONNECTED 
VEHICLES  

 
 

Due to the dynamic scaling characteristics of traffic conditions, COSACC in the 

cloud must scale up and down in response to changing traffic demands. Although a 

serverless architecture supports dynamic resource allocation, there are a few restrictions 

imposed by the commercial cloud providers to prevent applications from exceeding certain 

cloud infrastructure limits. For instance, AWS allows a Lambda function to utilize up to 

3008 MB of memory when processing. Because of this, the cloud application may not be 

able to support a large number of CVs in real-time.  

 Single Core Single Thread 

The author originally established only one Lambda function (single core) 3008 MB 

memory configuration to handle all traffic conditions, as Figure 4.1 indicates. The Lambda 

function processed vehicles in a sequential manner (single thread). The author tested the 

Lambda function with single core and single thread under different numbers of vehicles 

(i.e., 50, 100, 150, 200) in simulation, as discussed in Chapter 5. However, as Figure 4.2 

shows, the processing time increased as the number of connected vehicles increased. The 

average processing time was 689 ms in the case of 50 connected vehicles and increased to 

1128 ms for 100 connected vehicles, 1694 ms for the 150 connected vehicles scenario, and 

2603 ms for 200 connected vehicles. This simulation experiment suggested that using 

single core single thread to support real-time CV applications would be problematic in 

AWS.   



 15 

 

 

Figure 4.1: Serverless COSACC architecture with single core single thread. 



 16 

 

Figure 4.2: Processing time in Lambda with single core single thread. 

 

 Multithreading 

To tackle this issue, the author applied multithreading to AWS Lambda. Rather 

than adding vehicles into the computation sequentially, COSACC assigns vehicles into 

multiple threads before the data processing occurs with all vehicle data. Figure 4.3 shows 

that, compared to the single core single thread solution, applying multithreading 

significantly reduced the processing time in the cloud infrastructure. On average, the 

multithreaded Lambda approach was able to process 50 vehicles in 487 ms and 100 

vehicles in 778 ms. Figure 4.3 shows the processing time for the multithreaded approach 
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with an increasing number of vehicles. With 150 vehicles, the average processing time was 

1193 ms, and with 200 vehicles, the processing time was 1522 ms, which still did not meet 

the acceptable delay requirement of a real-time traffic mobility application [24]. The 

experiments revealed that this approach, while an improvement, could not meet the delay 

requirement of a mobility application.   

 

 

Figure 4.3: Processing time in Lambda with multithreading. 
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 Parallel Computing 

The author next applied the concept of parallel computing in the cloud, as shown in 

Figure 3.1 (Chapter 3). Here, instead of employing a single Lambda function, the author 

established a fleet of Lambda functions for each traffic signal to handle different 

penetration levels of CVs. To make all Lambda functions work in real-time, the author 

defined a desired computing capacity for each Lambda function (i.e., the number of 

vehicles to process) to a maximum of 50 vehicles per Lambda function. All Lambda 

functions shared one trigger that started their parallel processing. This approach provided 

more computing power in the cloud for application processing to handle increasing 

computational demand. As shown in Figure 4.4, applying a parallel computing strategy 

with multiple Lambda functions achieved consistent and reduced processing time in the 

cloud even with different penetration levels of connected vehicles. Figure 4.4 shows that 

the average processing time in the cloud was about 250 ms for 50, 100, 150 and 200 

connected vehicles, which is acceptable for a real-time traffic mobility application [24].  
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Figure 4.4: Processing time in Lambda with parallel computing. 
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CHAPTER FIVE 
 

COMMUNICATION WITH THE CLOUD 
 
 
  It is necessary to meet wireless communication acceptable delay requirements 

between the vehicle and the cloud to guarantee QoS for real-time CV applications. In this 

section, the author describes several experiments conducted to examine the wireless 

communication delay when accessing AWS services for CV applications.  

 
 Evaluation of cloud round-trip time 

 Experiment Setup 

The author established an Elastic Computing Cloud (EC2) instance in the AWS 

US-EAST-1 region (N. Virginia) to evaluate the communication delay between a CV and 

the cloud. Both the server (i.e., EC2) and the client (i.e., CV) were equipped with a socket 

program (see Appendix A) and communicated with each other using Transmission Control 

Protocol (TCP). To calculate the round-trip time (RTT), the client recorded a timestamp 

before sending a message to the server and then recorded another timestamp after receiving 

a message back from the server. Figure 5.1 presents the experimental setup between the 

server and the client. 
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Figure 5.1: Overview of a socket program with AWS EC2 

 

 Evaluation scenarios  

The author conducted each experiment in three-hour increments for 24 hours in one 

day to determine the peak and off-peak hours of bandwidth usage. For each experiment, 

the author collected 1000 samples of RTTs.  

 

 Evaluation results 

Figure 5.2 illustrates that the average RTT over 24 hours was 72 milliseconds. 

Moreover, the RTT of 99 percent of the samples was within 500 milliseconds. In 

addition, the author found that the peak periods were from 11:00 AM to 02:00 PM 
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(14:00) and from 08:00 PM (20:00) to 11:00 PM (23:00), Eastern Daylight Time 

(EDT).    

 
Figure 5.2: CDF results for Round-trip time accessing to AWS US-EAST-1 

 

 Evaluation of Communication Delay Between a CV and the Cloud 

 Experiment Setup 

After developing the serverless architecture for COSACC using AWS, it was 

necessary to evaluate the communication delays between a CV and the cloud. As Figure 

5.3 shows, two databases were built using DynamoDB in AWS: a vehicle trajectory 

database and a speed advisory database. A CV sends trajectory updates (i.e., BSMs) to the 
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vehicular trajectory database and downloads its speed advisory from the speed advisory 

database. The author executed a Python script on a laptop (see Appendix B) to simulate a 

CV communicating with the cloud using LTE wireless communication. The experiment 

consisted of two parts: uploading data to the cloud and downloading data from the cloud. 

For the upload experiment, the author collected upload times for BSMs to the cloud from 

the computer. For the download experiment, the author collected download times for a 

speed advisory from the cloud to the computer.  

 
Figure 5.3: Simulation of  a CV communicating to the cloud 
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 Evaluation scenarios 

The author experimented with three-hour increments for 24 hours in one day to 

estimate the communication delay for uploading and downloading of data. For each 

experiment, the author collected 1000 samples. The author estimated the 95th percentile of 

both upload and download delays, which is the threshold for QoS guarantees [25][26]. 

 Evaluation results 

Figure 5.4 and Figure 5.5 presents the results of each experiment. The 

maximum upload and download delays were both 100 milliseconds. The author 

observed that the peak hours for uploading BSMs were from 9:00 AM to 12:00 PM 

and 06:00 PM to 09:00 PM EDT, and the peak hours for downloading speed advisory 

were from 3:00 AM to 12:00 PM and 06:00 PM to 09:00 PM EDT. Using the serverless 

architecture, the author found that the maximum RTT for both upload and download 

data was 200 milliseconds.  
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Figure 5.4: 95th percentile of upload delay in 24 hours 
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Figure 5.5: 95th percentile of download delay in 24 hours 

 

 Field Experiment 

Although the analysis in the previous section shows an RTT under 200 milliseconds 

for a CV to communicate with the cloud, these experiments were conducted from a fixed 

physical location. It is necessary to evaluate variations in communication delays with a 

moving CV. The author performed experiments by uploading BSMs to the Vehicle 

Trajectory Database and downloading speed advisories from the Speed Advisory Database 

through LTE to observe the communication delay from a CV traveling on the road. 

 

 



 27 

 Experimental setup 

The author conducted the experiments by driving a vehicle on a fixed route located 

along Perimeter Road, Clemson, SC, where the LTE signal is available. The speed of the 

vehicle was 35 mph during the experiment. Figure 5.6 shows a macroscopic view of a CV 

connected to cloud services through roadside infrastructure. 

 

Figure 5.6: Field Experiment Setup 

 

 Evaluation scenarios 

Based on the results in the previous section, the author considered 10:00 AM as the 

peak hour and 2:00 PM EDT as the off-peak hour for uploading and downloading BSMs. 

One thousand samples were collected for each experiment.  
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 Evaluation results 

As shown in Figure 5.7, a moving CV needed a total of 92 milliseconds to upload 

BSMs and download speed advisories within the 95th percentile. This is well within the 

acceptable maximum delay of 200 milliseconds, with an average delay of 150 milliseconds 

RTT. This supports the feasibility of a real-world COSACC implementation in a connected 

vehicle environment [27].   

 

 

Figure 5.7: Average and 95th percentile communication delay in the field test. 

 
  



 29 

CHAPTER FIVE 
 

CLOUD-BASED SPEED ADVISORY APPLICATION 
 
 
  In this section, the author presents more details about the optimization-based speed 

advisory application, COSACC, which runs in the AWS cloud. It generates a speed 

advisory for platoons of CVs to minimize the stopped delay at a signalized intersection. 

COSACC consists of two parts: (i) vehicle platoon identification and (ii) an optimization-

based speed advisory algorithm. Table I presents all the symbols that are required for the 

application. 

 

TABLE 2 
Notations Used in Speed Advisory Algorithm 

Symbol Meaning 
𝑆𝑆𝑖𝑖𝑡𝑡 Current speed of the 𝑖𝑖𝑡𝑡ℎ C 
𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡  Speed advisory at time 𝑡𝑡 
𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚 Maximum speed, same as the speed limit 
𝑡𝑡𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎
𝑖𝑖  Time required by the 𝑖𝑖𝑡𝑡ℎ  CV to reach the intersection after 

achieving 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡  
𝑡𝑡𝑖𝑖,𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 Total time required by the 𝑖𝑖𝑡𝑡ℎ  CV to reach the intersection 

from its current state by accelerating to 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡  and then 
continuing at 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡  until it reaches the intersection 

𝑡𝑡𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚
𝑖𝑖  Time required by 𝑖𝑖𝑡𝑡ℎ CV to reach intersection after achieving 

𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚 
𝑡𝑡𝑖𝑖,𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚 Total time required by the 𝑖𝑖𝑡𝑡ℎ CV to reach an intersection from 

its current state by accelerating to 𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚 and then continuing at 
𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚 till it reaches the intersection 

𝑡𝑡𝑟𝑟𝑟𝑟𝑚𝑚𝑎𝑎𝑖𝑖𝑛𝑛 Remaining time of the current green interval 
𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎 Available time to pass an intersection 
𝑡𝑡𝑔𝑔,𝑜𝑜 (Minimum) Green interval of other phases 
𝑡𝑡𝑌𝑌 Yellow interval 
𝑡𝑡𝐴𝐴𝐴𝐴 All red interval 
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𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎 Distance covered by a CV while accelerating to a certain speed 
𝑙𝑙𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎 Distance covered by a CV while traveling at the advised speed 
𝑙𝑙𝑠𝑠𝑚𝑚𝑎𝑎𝑚𝑚 Distance covered by a CV while traveling at the maximum 

speed, 𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚 
𝑙𝑙1𝑠𝑠𝑠𝑠 𝑎𝑎𝑟𝑟ℎ𝑖𝑖𝑎𝑎𝑎𝑎𝑟𝑟 Distance from the 1st CV in a platoon to the target signal 
𝑑𝑑𝑖𝑖𝑡𝑡 Delay of the 𝑖𝑖𝑡𝑡ℎ CV 
𝑑𝑑𝑇𝑇𝑜𝑜𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡  The total delay of all observed CVs 
𝑎𝑎𝐴𝐴𝑎𝑎𝑎𝑎 Acceleration rate 

 

 Vehicle Platoon Identification 

  The author formed a platoon based upon a gap between two successive CVs. If 

the distance between two successive CVs was less than or equal to 50 meters, then they 

were considered to be within the same platoon [28]. Moreover, to be identified as a 

platoon of 𝑛𝑛  CVs, the last (𝑛𝑛𝑡𝑡ℎ ) CV of the platoon must have met the following 

criterion: 

min 𝑡𝑡𝑖𝑖𝑛𝑛𝑡𝑡𝑛𝑛 ≤ 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎                                                                                                                      (1)                                                                          

To estimate the minimum of 𝑡𝑡𝑖𝑖𝑛𝑛𝑡𝑡𝑛𝑛 , the author considered the total time required 

by the 𝑛𝑛𝑡𝑡ℎ CV to accelerate from its current state to 𝑆𝑆max and then continue to operate 

at 𝑆𝑆max until it reaches the intersection, which is given by the following equation,  

𝑡𝑡𝑖𝑖𝑛𝑛𝑡𝑡𝑛𝑛 = 𝑡𝑡𝐴𝐴𝑎𝑎𝑎𝑎𝑛𝑛 + 𝑡𝑡𝑆𝑆max
𝑛𝑛                                                                                                                    (2)  

This study considers 100% CV penetration. There are two cases based on the 

current phase of the signal that CVs are approaching; case I: the platoon can pass the 

signal within the current green interval, and case II: the platoon can pass the signal in 

the next green interval. For case I, available time to reach the intersection before the 

signal turns red is, 
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𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎 = 𝑡𝑡𝑟𝑟𝑟𝑟𝑚𝑚𝑎𝑎𝑖𝑖𝑛𝑛                                                                                                                       (3) 

and for case II, available time is an accumulation of other intervals until the next cycle, 

i.e., 

𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎 = 𝑡𝑡𝑟𝑟𝑟𝑟𝑚𝑚𝑎𝑎𝑖𝑖𝑛𝑛 + �𝑡𝑡𝑔𝑔.𝑜𝑜 + �𝑡𝑡𝑌𝑌 + �𝑡𝑡𝐴𝐴𝐴𝐴                                                                   (4) 

For the CVs in case I, the speed advisory tries to assist vehicles across the 

intersection as fast as possible. For case II, the application first splits CVs into platoons 

using the gap between any two successive CVs loaded from the vehicle trajectory 

database. Then, the application provides each platoon with an optimal solution (i.e., 

speed advisory) based on the objective function and constraints.  

 

 Optimization-based Speed Advisory Model 

  To address the objective function of the speed advisory optimization, this study 

considers the total delay of a platoon of CVs when the platoon travels from an origin 

to a destination. In this context, “delay” is considered as the additional time required 

by each CV of the platoon to reach the intersection using the advised speed (𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 ) 

compared to the shortest possible time to reach the intersection using the maximum 

speed (i.e., speed limit), which is given by the following equation, 

min
𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎

𝑑𝑑𝑇𝑇𝑜𝑜𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡 (𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎) = �𝑑𝑑𝑖𝑖𝑡𝑡                                                                                                    (5)
𝑛𝑛

𝑖𝑖=1

 

Where, 𝑑𝑑𝑖𝑖𝑡𝑡 = 𝑡𝑡𝑖𝑖,𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑡𝑡𝑖𝑖,𝑠𝑠max                                                                                                  (6)                                                                          

Both 𝑡𝑡𝑖𝑖,𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑡𝑡𝑖𝑖,𝑠𝑠max consist of two periods: 1) acceleration period: the time 

required to accelerate from the CV’s current speed 𝑆𝑆𝑖𝑖𝑡𝑡 to 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡  or 𝑆𝑆max, and 2) constant 
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speed period: the time required to reach the intersection at a constant speed after 

achieving 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡  or 𝑆𝑆max. Therefore, to determine 𝑡𝑡𝑖𝑖,𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑡𝑡𝑖𝑖,𝑠𝑠max, we must determine 

these two time periods. The first step is to determine 𝑡𝑡𝐴𝐴𝑎𝑎𝑎𝑎𝑖𝑖 . To accelerate from 𝑆𝑆𝑖𝑖𝑡𝑡 to a 

target speed 𝑆𝑆𝑡𝑡𝑎𝑎𝑟𝑟 (which can take the value of either 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡  or 𝑆𝑆max here), the required 

time is given by 

𝑡𝑡𝐴𝐴𝑎𝑎𝑎𝑎𝑖𝑖 =
𝑆𝑆𝑡𝑡𝑎𝑎𝑟𝑟 − 𝑆𝑆𝑖𝑖𝑡𝑡

𝑎𝑎𝐴𝐴𝑎𝑎𝑎𝑎
                                                                                                                      (7) 

The next step is to determine the distance covered during the acceleration 

period. Distance covered while accelerating from 𝑆𝑆𝑖𝑖𝑡𝑡 to 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡  is calculated as  

𝑙𝑙𝐴𝐴𝑎𝑎𝑎𝑎𝑖𝑖 =
𝑆𝑆𝑡𝑡𝑎𝑎𝑟𝑟2 − 𝑆𝑆𝑖𝑖𝑡𝑡

2

2𝑎𝑎𝐴𝐴𝑎𝑎𝑎𝑎
                                                                                                                  (8) 

To determine 𝑡𝑡𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎
𝑖𝑖  or 𝑡𝑡𝑆𝑆max

𝑖𝑖 , the distance to be covered during a constant speed 

period (𝑙𝑙𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎
𝑖𝑖  or 𝑙𝑙𝑆𝑆max

𝑖𝑖 ) needs to be determined. It can be obtained as follows: 

𝑙𝑙𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎
𝑖𝑖 = 𝑙𝑙𝑖𝑖𝑡𝑡 − 𝑙𝑙𝐴𝐴𝑎𝑎𝑎𝑎𝑖𝑖 = 𝑙𝑙𝑖𝑖𝑡𝑡 −

(𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 )2 − 𝑆𝑆𝑖𝑖𝑡𝑡
2

2𝑎𝑎𝐴𝐴𝑎𝑎𝑎𝑎
                                                                           (11) 

𝑙𝑙𝑆𝑆max
𝑖𝑖 = 𝑙𝑙𝑖𝑖𝑡𝑡 − 𝑙𝑙𝐴𝐴𝑎𝑎𝑎𝑎𝑖𝑖 = 𝑙𝑙𝑖𝑖𝑡𝑡 −

𝑆𝑆max2 − 𝑆𝑆𝑖𝑖𝑡𝑡
2

2𝑎𝑎𝐴𝐴𝑎𝑎𝑎𝑎
                                                                                (12) 

Now, 𝑡𝑡𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎
𝑖𝑖  or 𝑡𝑡𝑆𝑆max

𝑖𝑖  can be determined as follows: 

𝑡𝑡𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎
𝑖𝑖 =

𝑙𝑙𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎
𝑖𝑖

𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 =
1

𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 �𝑙𝑙𝑖𝑖𝑡𝑡 −
(𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 )2 − 𝑆𝑆𝑖𝑖𝑡𝑡

2

2𝑎𝑎𝐴𝐴𝑎𝑎𝑎𝑎
�                                                                      (13) 

𝑡𝑡𝑆𝑆max
𝑖𝑖 =

𝑙𝑙𝑆𝑆max
𝑖𝑖

𝑆𝑆max
=

1
𝑆𝑆max

�𝑙𝑙𝑖𝑖𝑡𝑡 −
𝑆𝑆max2 − 𝑆𝑆𝑖𝑖𝑡𝑡

2

2𝑎𝑎𝐴𝐴𝑎𝑎𝑎𝑎
�                                                                          (14) 

Therefore, the delay can be formulated as follows: 
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𝑑𝑑𝑖𝑖𝑡𝑡 = �𝑡𝑡𝐴𝐴𝑎𝑎𝑎𝑎𝑖𝑖 + 𝑡𝑡𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎
𝑖𝑖 �

𝑓𝑓𝑜𝑜𝑟𝑟 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎
− �𝑡𝑡𝐴𝐴𝑎𝑎𝑎𝑎𝑖𝑖 + 𝑡𝑡𝑆𝑆max

𝑖𝑖 �
𝑓𝑓𝑜𝑜𝑟𝑟 𝑆𝑆max

                                                    (15)    

Substituting the derived terms into Eq. (15) leads to the equation  

𝑑𝑑𝑖𝑖𝑡𝑡 = −
𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 − 𝑆𝑆max

2𝑎𝑎𝐴𝐴𝑎𝑎𝑎𝑎
+ �𝑙𝑙𝑖𝑖𝑡𝑡 +

𝑆𝑆𝑖𝑖𝑡𝑡
2

2𝑎𝑎𝐴𝐴𝑎𝑎𝑎𝑎
� �

1
𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 −

1
𝑆𝑆max

�                                                     (16) 

To optimize the speed advisory, this study considered two constraints: 1) 

constraint 1 ensures that the advised speed does not exceed the speed limit of the road, 

and 2) constraint 2 ensures that the signal will be green when the first CV of a platoon 

reaches the intersection. The constraints are formulated as follows:  

Constraint 1: 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 ≤ 𝑆𝑆𝑚𝑚𝑎𝑎𝑚𝑚                                                                                                  (17) 

Constraint 2: 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡 ≤
𝑎𝑎1𝑠𝑠𝑠𝑠 𝑎𝑎𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑣𝑣
𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖

                                                                                           (18) 

For case I CVs, only constraint 1 is applicable, whereas, for case II platoons, 

both constraints (1 and 2) are applicable. 

 
  



 34 

CHAPTER SIX 
 

CASE STUDY 
 
 
  The author conducted a case study by developing a cloud-in-the-loop 

simulation platform to evaluate the feasibility of COSACC at a system level.  

 

 Cloud-in-the-loop Simulation 

  This study used SUMO, a microscopic traffic simulator, in which the author 

simulated a  roadway section including traffic signals and CVs [29]. AWS was 

integrated with SUMO to develop a cloud-in-the-loop testbed to evaluate COSACC. 

SUMO TraCI [30] is a Python-based interface compatible with SUMO to extract 

BSMs (e.g., location and motion of CVs) and SPaT messages (e.g., current interval, 

remaining green time) from CVs and traffic signals, respectively, and transfer them to  

AWS services. As described in Chapter three, when AWS Lambda is triggered by the 

Kinesis Data Stream, it first receives BSMs from the vehicle trajectory database and 

the historical database to compute the distance from each CV to the target traffic signal 

in real-time. Current states of the CVs are then transferred as updates to its historical 

database. Each CV is assigned two possible cases based on their distances from the 

target signal and the available time, and are split into platoons based on the gap 

information described in Chapter five. The output of the application is speed advisories 

that are stored in the speed advisory database. 
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Figure 6.1: Route Configuration. 

 

The author simulated a roadway section including three connected traffic signals 

along Perimeter Road in Clemson, SC. All CVs followed a speed limit of 35 mph (16m/s). 

In Figure 6.1, the simulated roadway is in orange and is a 1.5-mile-long 4-lane highway (2 

lanes in each direction). The solid green circles indicate connected traffic signals. Traffic 

signals 1 and 2 maintain 42 seconds green with 3 seconds yellow and all-red intervals for 

each cycle. Signal 3 has 34 seconds on green for each phase and 5 seconds for yellow and 

all red. Four cases with different numbers of CVs on the roadway, i.e., 50, 100, 150, and 

200 CVs were established. The red arrow represents the traffic flow direction. The author 

also calculated the number of CVs necessary to simulate traffic at the two-lane roadway 
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capacity of 1900 passenger cars per hour per lane and generated CVs equal to (200 CVs 

generated in a 15-minute period) or under this rate [31].  

For each case, the author evaluated two scenarios in the simulation. The first 

scenario represents the baseline, i.e., no speed advisory application is implemented. In 

the second scenario, the author deployed COSACC to evaluate the feasibility of the 

real-time application through LTE wireless communication. 

 
 Evaluation Results and Discussion 

  To evaluate the performance of COSACC at a system level, this study 

compared the average stopped delay and the average fuel consumption. The fuel 

consumption was determined by SUMO’s default fuel consumption model. Figure 6.2 

shows a significant reduction in stopped delay with COSACC. CVs with speed 

advisories experienced at most 98% less waiting time or in a traffic queue at the 

signalized intersections of a corridor compared to the baseline scenario (i.e., no speed 

advisory) (50 vehicles). COSACC also resulted in less fuel consumption (Figure 6.3). 

CVs that used COSACC experienced up to 12.7% less fuel consumption compared to 

the baseline scenario (100 vehicles). 
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Figure 6.2: Stopped delay
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Figure 6.3: Fuel consumption. 

 

  Table 3 provides processing time in the cloud and communication delay for 

each step for the cloud-in-the-loop simulation in all four cases. A communication delay 

includes upload latency for sending BSMs and SPaT messages to the cloud and 

download latency of speed advisories from the cloud. As observed from Table 3, the 

upload delays and download delays per vehicle are under 85 ms on average, and 

processing time in the cloud is 277 ms on average. This leads to an end-to-end delay 

of 443 ms on average, which meets the requirement of a real-time traffic mobility 

application (i.e., a maximum delay of 1000 ms) [24]. 
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TABLE 3 
AVERAGE COMMUNICATION DELAY AND PROCESSING TIME 

 50 veh. 100 veh. 150 veh. 200 veh. 

Upload 

latency (ms) 

80 85 85 84 

Download 

latency (ms) 

82 84 84 81 

Processing 

latency (ms) 

258 279 281 292 

End-to-end 

Delay (ms) 

420 448 450 457 
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CHAPTER SEVEN 

 
CONCLUSIONS AND RECOMMENDATIONS 

 
 
 Conclusions 

 
In the coming years, connected vehicles will be typical in the transportation system. 

CVs will contribute to improved mobility and safety, as well as reduced air pollution and 

energy consumption. However, significant backend computing infrastructure is needed to 

support CV processing and other related data to support CV applications. Generally, state 

departments of transportation (DOTs) deploy transportation applications based on servers 

in their traffic management centers, which requires significant investments in computing 

and human resources. This study supports the use of cloud infrastructure to meet the 

dynamic computing needs of CV applications and at lower total costs than traditional 

infrastructure.  

This study confirmed that developing a CV application using a serverless cloud 

architecture can achieve the same or better results as a server-based cloud architecture. 

Moreover, a serverless cloud architecture can be more cost-effective and provide even 

more scalability and flexibility for CV applications.  

The study also showed that COSACC improves operational efficiency and fuel 

consumption for connected vehicles by reducing stopped delay at signalized intersections 

up to 98%  and fuel consumption up to 12.7% compared to the baseline scenario (i.e., no 

speed advisory). Additionally, field experiments showed that the maximum RTT was under 

200 milliseconds and the average RTT was under 100 milliseconds for cloud access from 
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CVs. The results prove that COSACC is implementable in the real world for CV mobility 

applications with a serverless architecture.    

 
 Recommendations 

The following recommendations are made based on this research:   

1. Future research should evaluate the relative performance of the serverless and server-

based cloud architecture for CV applications in a real-world testbed with different 

penetration levels of CVs. Evaluation parameters will include cost, delay, and reliability 

associated with different CV applications. 

2. Future research should compare different commercial cloud services, such as AWS, 

GCP, and Microsoft Azure, for supporting different CV applications in the real world.    

3. Cloud services that support CV applications must be secure. Otherwise, real-time CV 

applications could be compromised. Future research should identify cyber-security risks 

associated with CV applications using commercial cloud services and possible 

countermeasures. Critical security elements, which include confidentiality, integrity, 

availability, authentication, accountability, and privacy, must be evaluated for cloud 

services accessed by CVs. 

4. Although cloud infrastructure supports real-time CV applications, it is not 

recommended for safety applications (e.g., collision avoidance) in the cloud. Currently, 

observed RTT exceeds the low communication latency requirements for safety 

applications. 
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5. The availability of on-demand computing services and the reliability of all-cloud 

services make it suitable for developing applications with an increasing number of CVs. 

Future research should focus on the scalability of cloud computing with increasing 

penetration levels of CVs on roadways. 
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Appendix A 

Socket Program 

 Socket Program in a server 

Server.cpp 

#include <iostream> 

#include <cstdio> 

#include <cstring> 

#include <cstdlib> 

#include <sys/socket.h> 

#include <netinet/in.h> 

#include <arpa/inet.h> 

 

int main() 

{ 

int server_sockfd; //server socket 

int client_sockfd; // client socket 

 

int len; 

int speed; 

 

struct sockaddr_in my_addr; //server address structure 

struct sockaddr_in remote_addr; //client address structure 
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int sin_size; 

char buff[BUFSIZ]; //buffer 

char *buffsend = (char *) "Speed Advisory is XX mph"; 

 

memset(&my_addr, 0, sizeof(my_addr)); //Initialization 

my_addr.sin_family = AF_INET; //IP communication 

my_adddr.sin_addr.s_addr = INADDR_ANY; 

my_addr.sin_port = htons(8000); //Port number 

 

cout << "Server Socket program start" << endl; 

if((server_sockfd=socket(PF_INET,SOCK_STREAM,0))<0) 

{ 

perror("Socket Error"); 

return 1; 

} 

 

if(bind(server_sockfd, (stuct sockaddr *)&my_addr, sizeof(struct sockaddr))<0) 

{ 

perror("Bind Error"); 

return 1; 

} 

 

if(listen(server_sockfd,5)<0) 

{ 
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perror("Listen Error"); 

return 1; 

} 

 

sin_size = sizeof(struct sockaddr_in); 

int counter = 0; 

 

while(1) 

{ 

//Wait for client request reach 

if((client_sockfd=accept(server_sockfd, (struct sockaddr *)&remote_addr, 
(socklen_t*)&sin_size))<0) 

{ 

perror("Accept Error"); 

continue; 

} 

cout << "Accept Client " << inet_nota(remote_addr.sin_addr) << endl; 

len = send(client_sockfd,buffsend,strlen(buffsend)+1,0); 

while((len=recv(client_sockfd,buff,BUFSIZ,0))>0) 

{ 

buff[len] = '\0'; 

cout << "Test No." << counter << " " << buff << endl; 

if(send(client_sockfd,buff,len,0)<0) 

{ 
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perror("Write Error"); 

continue; 

} 

} 

counter++; 

close(client_sockfd); 

} 

 

close(server_sockfd); 

return 0; 

} 

 

 Socket Program in a client 

Client.cpp 

#define _WINSOCK_DEPRECATED_NO_WARNINGS 

 

#include <iostream> 

#include <cstdio> 

#include <cstdlib> 

#include <cstring> 
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#include <WinSock2.h> 

#include <windows.h> 

#include <vector> 

#include <fstream> 

#include <sstream> 

#include <ctime> 

using namespace std; 

 

#pragma comment(lib, "libws2_32.a") 

 

string int2str(int &val) 

{ 

    string s; 

    stringstream ss(s); 

    ss << val; 

    return ss.str(); 

} 
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int main() 

{ 

    time_t now = time(0); 

    tm *ltm = localtime(&now); 

 

    vector<int> RTT; 

    WSADATA wsaData; 

    char buff[1024]; 

    bool isSend = false; 

 

    DWORD t_start, t_end; 

    char *buffsend = "BSM: 10.00000, 12.00000, 8.56957, 5.12121, 6.87777, 

9.68547, 0, 1"; 

 

    for(int k = 0; k < 12; k++) 

    { 
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        for(int i = 0; i < 201; i++) 

        { 

            memset(buff,0,sizeof(buff)); 

 

            if(WSAStartup(MAKEWORD(2,2),&wsaData) != 0) 

            { 

                cout << "Failed to load WinSock" << endl; 

                return 1; 

            } 

 

            SOCKADDR_IN addrsrv; 

            addrsrv.sin_family = AF_INET; 

            addrsrv.sin_port = htons(8000); 

            addrsrv.sin_addr.S_un.S_addr = inet_addr("3.87.202.164"); 

 

            SOCKET sockClient = socket(AF_INET, SOCK_STREAM, 0); 

            if(SOCKET_ERROR == sockClient) 
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            { 

                cout << "Socket Error: " << WSAGetLastError() << endl; 

                return 1; 

            } 

            else 

            { 

                cout << "Socket Initialized" << endl; 

            } 

 

            if(connect(sockClient, (struct sockaddr*)&addrsrv, sizeof(addrsrv)) == 

INVALID_SOCKET) 

            { 

                cout << "Connect Failed: " << WSAGetLastError() << endl; 

                continue; 

            } 

            //send(sockClient, buffsend, strlen(buffsend)+100, 0); 
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            if((GetTickCount() - t_start) > 10000 && (GetTickCount() - t_start) < 

11000) 

            { 

                cout << "No. " << i << " failed" << endl; 

                t_start = GetTickCount(); 

                send(sockClient, buffsend, strlen(buffsend)+500, 0); 

                closesocket(sockClient); 

                WSACleanup(); 

            }else{ 

                recv(sockClient, buff, sizeof(buff), 0); 

                cout << buff << endl; 

                t_end = GetTickCount(); 

                cout << "No. " << i << " RTT is " << t_end - t_start << endl; 

                RTT.push_back((int)(t_end-t_start)); 

 

                t_start = GetTickCount(); 

                send(sockClient, buffsend, strlen(buffsend)+500, 0); 
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                closesocket(sockClient); 

                WSACleanup(); 

            } 

        } 

 

        now = time(0); 

        ltm = localtime(&now); 

 

        cout << "Time:"<< ltm->tm_hour << ":" << ltm->tm_min << endl; 

        if(k < 11) 

        { 

            Sleep(1800000); 

        } 

    } 

    ofstream outFile; 

    outFile.open("RTT.csv", ios::out); 
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    cout << endl << "Round Trip Time Summary:" << endl; 

    for(int j = 1; j < RTT.size(); j++) 

    { 

        cout << "No " << j << " RTT is " << RTT[j] << endl; 

        outFile << RTT[j] << endl; 

    } 

 

    outFile.close(); 

    return 0; 

} 
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Appendix B 

Connected Vehicle communication program 

Vehicle.py 

 

import boto3 

import json 

import time 

from decimal import * 

import csv 

 

def Vehicle_State_upload(Table, ID, pos_x, pos_y, speed, gap): 

Table.put_item( 

Item={ 

'vehicle':ID, 

'pos_x':Decimal(pos_x), 

'pos_y':Decimal(pos_y), 

'speed':Decimal(speed), 

'gap':Decimal(gap) 

} 

) 

dynamodb = boto3.resource('dynamodb') 

state_table = dynamodb.Table('Speed_file') 

advisory_table = dynamodb.Table('Speed_advisory') 
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ULs = [] 

DLs = [] 

 

#Record upload time 

For i in range(1000): 

start_time = time.time()*1000 

Vehicle_State_upload(state_table, '0', '375.28', '442.02', '16.0', '10000.0') 

process_time = int(time.time()*1000 - start_time) 

ULs.append(process_time) 

print('Trip Time: ',process_time, 'ms\n') 

 

print(ULs) 

 

with open('UL.csv', 'w', newline='') as csvfile: 

writer = csv.writer(csvfile) 

writer.writerow(ULs) 

 

#Record download time 

For i in range(1000): 

start_time = time.time()*1000 

response = advisory_table.get_item(Key={'vehicle':'0'}) 

Speed = float(response['Item']['advisory']) 
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process_time = int(time.time()*1000 - start_time) 

DLs.append(process_time) 

print('Trip Time: ',process_time, 'ms\n') 

 

print(DLs) 

 

with open('DL.csv', 'w', newline='') as csvfile: 

writer = csv.writer(csvfile) 

writer.writerow(DLs) 

 

print('done') 
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Appendix C 

Speed Advisory in Lambda Function 

Lambda_function.py 

 

import base64 

import json 

import boto3 

import time 

import math 

from decimal import * 

from threading import Thread 

 

dynamodb = boto3.resource('dynamodb') 

 

TLS_position_x = 745.45 

TLS_position_y = 1118.61 

 

Distance_Table = {} 

Speed_Table = {} 

Gap_Table = {} 

 

input_table = dynamodb.Table('Speed_file') 
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output_table = dynamodb.Table('Speed_advisory') 

Historical_Table = dynamodb.Table('Historical_State_Table_113850262') 

queue = sqs.get_queue_by_name(QueueName='TLS_ACK_113850262') 

input = '' 

 

def get_Distance(table,ID): 

    try: 

        response = table.get_item(Key={'vehicle': ID}) 

    except ClientError as e: 

        print(e.response['Error']['Message']) 

    else: 

        return float(response['Item']['distance']) 

 

def Historical_State_Update(Table, ID, distance): 

    Table.put_item( 

        Item={ 

            'vehicle':ID, 

            'distance':Decimal(str(distance)) 

             } 

      ) 

       

def Assign_Vehicle(pos_x,pos_y,phase,remain,ID,speed,gap): 
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    X = TLS_position_x - float(pos_x) 

    Y = TLS_position_y - float(pos_y) 

    distance = round(math.sqrt(X*X+Y*Y),2) 

             

    if phase == 0: 

        if distance <= get_Distance(Historical_Table,ID) and distance > remain * 16.0: 

            Distance_Table[ID] = distance 

            Speed_Table[ID] = speed 

            Gap_Table[ID] = gap 

    else: 

        #Speed Advisories only give to vehicles approaching TLS 

        if distance <= get_Distance(Historical_Table,ID): 

            Distance_Table[ID] = distance 

            Speed_Table[ID] = speed 

            Gap_Table[ID] = gap 

    Historical_State_Update(Historical_Table,ID,distance) 

     

         

def compute_advisory(platoon,Distance_Table,Speed_Table,delay_time): 

    Platoon_Distance = [] 

    Platoon_Speed = [] 
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    for vehicle in platoon: 

        Platoon_Distance.append(Distance_Table[vehicle]) 

        Platoon_Speed.append(Speed_Table[vehicle]) 

 

    adv = round(min(Platoon_Distance) / delay_time,1) 

    if adv > 16.0: 

        adv = 16.0 

     

    output_table.put_item( 

        Item={ 

            'vehicle': platoon[0], 

            'advisory':Decimal(str(adv)) 

             } 

    ) 

     

def scan_and_process_input_table(current_phase,remain): 

    thread_list = [] 

    total_segments = 8 # number of parallel scans 

    for i in range(total_segments): 

        # Instantiate and store the thread 

        thread = Thread(target=parallel_scan_and_process_input_table, 

args=(i,total_segments,current_phase,remain)) 
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        thread_list.append(thread) 

    # Start threads 

    for thread in thread_list: 

        thread.start() 

    # Block main thread until all threads are finished 

    for thread in thread_list: 

        thread.join() 

         

def parallel_scan_and_process_input_table(segment, total_segments, current_phase, 

remain): 

    threads = [] 

    thread_number = 0 

    #print("Total segments = "+str(total_segments)+" segment "+str(segment)) 

    vehicles = input_table.scan( 

        Segment=segment,  

        TotalSegments=total_segments, 

        ConsistentRead=True 

        ) 

    print('Looking at segment ' + str(segment) + ' of '+ str(total_segments) + " 

"+str(len(vehicles['Items']))+" vehicles\n") 

     

    for i in vehicles['Items']: 
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        thread = Thread(target=Assign_Vehicle, 

args=(i['pos_x'],i['pos_y'],current_phase,remain,i['vehicle'],i['speed'],i['gap'])) 

        threads.append(thread) 

        thread_number += 1 

        if thread_number > 8: 

            for thread in threads: 

                thread.start() 

            thread_number = 0 

            threads.clear() 

         

    for thread in threads: 

        thread.start() 

     

 

 

def lambda_handler(event, context): 

    payload = '' 

    current_phase = 0 

     

    Platoons = [] 

    Platoon_index = -1 
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    threads = [] 

    thread_number = 0 

     

    test_records =["Test"] 

     

    # TODO implement 

    #for record in event['Records']: 

    for record in test_records: 

        input = str(base64.b64decode(record['kinesis']['data']))[2:-1] 

 

        if ',' == input[1]: 

            decoded_message = input.split(',') 

            current_phase = int(decoded_message[0]) 

            remain = int(decoded_message[1]) 

        else: 

            payload = input 

             

        if current_phase == 0: 

            delay_time = remain + 48 

        elif current_phase == 1: 

            delay_time = remain + 45 

        elif current_phase == 2: 
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            delay_time = remain + 3 

        else: 

            delay_time = remain 

 

        start_time = int(round(time.time() * 1000)) 

         

        vehicles = input_table.scan() 

        for i in vehicles['Items']: 

            if int(i['vehicle']) < 50: 

                threads.append(Thread(target=Assign_Vehicle, 

args=(i['pos_x'],i['pos_y'],current_phase,remain,i['vehicle'],i['speed'],i['gap']))) 

                thread_number += 1 

                if thread_number > 12: 

                    for thread in threads: 

                        thread.start() 

                    thread_number = 0 

                    threads.clear() 

        for thread in threads: 

            thread.start() 

                 

        end_time = int(round(time.time() * 1000)) 

        print('Speed file processing time is: ', end_time-start_time) 
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        start_time = int(round(time.time() * 1000))    

        if Distance_Table: 

            Sorted_Distance = sorted(Distance_Table.items(), key=lambda x: x[1]) 

             

            for i in range(len(Sorted_Distance)): 

                if float(Gap_Table[Sorted_Distance[i][0]]) > 50.0 or i == 0: 

                    Platoon_index += 1 

                    Platoons.append([]) 

                    Platoons[Platoon_index].append(Sorted_Distance[i][0]) 

                else: 

                    Platoons[Platoon_index].append(Sorted_Distance[i][0]) 

             

            threads.clear() 

            thread_number = 0 

            for platoon in Platoons: 

                

threads.append(Thread(target=compute_advisory,args=(platoon,Distance_Table,Speed_T

able,delay_time,))) 

                thread_number += 1 

            for thread in threads: 

                thread.start() 
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        end_time = int(round(time.time() * 1000)) 

        payload += str(end_time-start_time) 

        response = queue.send_message(MessageBody=payload) 

        print(payload) 

        print('Processing time is: ', end_time-start_time) 

    return 'successfully processed {} records.'.format(len(test_records)) 
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Appendix D 

Simulation Program 

 Baseline Scenario

Baseline.py 

#!/usr/bin/env python 

import os 

import sys 

import optparse 

import time 

import json 

import math 

vechicleID = [] 

trafficsignalID = [] 

# we need to import some python modules from the $SUMO_HOME/tools directory 

if 'SUMO_HOME' in os.environ: 

    tools = os.path.join(os.environ['SUMO_HOME'], 'tools') 

    sys.path.append(tools) 

else: 

    sys.exit("please declare environment variable 'SUMO_HOME'") 
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from sumolib import checkBinary  # Checks for the binary in environ vars 

import traci 

def get_options(): 

    opt_parser = optparse.OptionParser() 

    opt_parser.add_option("--nogui", action="store_true", 

default=False, help="run the commandline version of sumo") 

    options, args = opt_parser.parse_args() 

    return options 

# contains TraCI control loop 

def run(): 

    step = 0 

    Stopping_Steps = [-1,-1,-1,-1,-1, 

-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,
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-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1

] 

    fuel_consumption = [ 0.0,0.0,0.0,0.0,0.0, 

0.0,0.0,0.0,0.0,0.0, 

0.0,0.0,0.0,0.0,0.0, 

0.0,0.0,0.0,0.0,0.0, 

0.0,0.0,0.0,0.0,0.0, 

0.0,0.0,0.0,0.0,0.0, 

0.0,0.0,0.0,0.0,0.0, 

0.0,0.0,0.0,0.0,0.0, 

0.0,0.0,0.0,0.0,0.0, 

0.0,0.0,0.0,0.0,0.0 

] 

    while traci.simulation.getMinExpectedNumber() > 0 and step < 3600: 

      traci.simulationStep() 

        print('Step: ',step) 

        #Condition for each vehicle 
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        vehicleID = traci.vehicle.getIDList() 

        for vehicles in vehicleID: 

            traci.vehicle.setSpeed(vehicles, Vehicle_Advisory[vehicles]) 

      fuel_consumption[int(vehicles)] += 

round(traci.vehicle.getFuelConsumption(vehicles),0) 

            if traci.vehicle.getSpeed(vehicles) == 0.0: 

Stopping_Steps[int(vehicles)] += 1 

    print(Stopping_Steps) 

    print(fuel_consumption) 

    traci.close() 

    sys.stdout.flush() 

# main entry point 

if __name__ == "__main__": 

    options = get_options() 

    # check binary 

    if options.nogui: 
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        sumoBinary = checkBinary('sumo') 

    else: 

        sumoBinary = checkBinary('sumo-gui') 

    print("TRaCI Starts Sumo") 

    # traci starts sumo as a subprocess and then this script connects and runs 

    traci.start([sumoBinary, "-c", "map.sumo.cfg", 

"--tripinfo-output", "tripinfo.xml"]) 

    run() 

 COSACC Scenario

COSACC_50.py 

#!/usr/bin/env python 

import os 

import sys 

import optparse 

import time 

import boto3 

import botocore 

import json 
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import math 

from decimal import * 

from threading import Thread 

vechicleID = [] 

trafficsignalID = [] 

RRT = [] 

MSGS = [] 

my_stream = 'Speed_Input' 

kinesis_client = boto3.client('kinesis',region_name='us-east-1') 

sqs = boto3.client('sqs') 

queue_url = 'https://sqs.us-east-1.amazonaws.com/233952390740/Speed_Advisory' 

record_data = '' 

received_data = '' 

config = botocore.config.Config(max_pool_connections=100) 

dynamodb = boto3.resource('dynamodb',config=config) 

Vehicle_State_Table = dynamodb.Table('Speed_file') 

Speed_Advisory_Table = dynamodb.Table('Speed_advisory') 

# we need to import some python modules from the $SUMO_HOME/tools directory 

if 'SUMO_HOME' in os.environ: 
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    tools = os.path.join(os.environ['SUMO_HOME'], 'tools') 

    sys.path.append(tools) 

else: 

    sys.exit("please declare environment variable 'SUMO_HOME'") 

from sumolib import checkBinary  # Checks for the binary in environ vars 

import traci 

def Vehicle_State_Init(Table, ID): 

    Table.put_item( 

        Item={ 

            'vehicle':ID, 

            'advisory':Decimal('16.0'), 

        } 

    ) 

def Vehicle_State_upload(Table, ID, pos_x, pos_y, speed, gap): 

    Table.put_item( 

        Item={ 

            'vehicle':ID, 

            'pos_x':Decimal(pos_x), 



75 

            'pos_y':Decimal(pos_y), 

            'speed':Decimal(speed), 

            'gap':Decimal(gap) 

        } 

    ) 

def Vehicle_Advisory_Download(DLTable, ID, Table): 

    response = DLTable.get_item(Key={'vehicle':ID}) 

    adv = float(response['Item']['advisory']) 

    Table[ID] = adv 

def kinesis_upload(stream, data): 

    response = kinesis_client.put_record( 

        StreamName=stream, 

        Data=data.encode(), 

        PartitionKey='0', 

        ExplicitHashKey='0', 

        SequenceNumberForOrdering='0' 

    ) 

    return 

def sqs_download(url): 



76 

    response = sqs.receive_message( 

    QueueUrl = url, 

        AttributeNames=[ 

            'All', 

        ], 

        MessageAttributeNames=[ 

            'All', 

        ], 

        MaxNumberOfMessages=1, 

        VisibilityTimeout=0, 

        WaitTimeSeconds=5, 

        ReceiveRequestAttemptId='string' 

    ) 

    message = response['Messages'][0] 

    receipt_handle = message['ReceiptHandle'] 

    message_body = message['Body'] 

    resonsea = sqs.delete_message( 

        QueueUrl = url, 

        ReceiptHandle = receipt_handle 

    ) 

    return message_body 
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def get_options(): 

    opt_parser = optparse.OptionParser() 

    opt_parser.add_option("--nogui", action="store_true", 

default=False, help="run the commandline version of sumo") 

    options, args = opt_parser.parse_args() 

    return options 

# contains TraCI control loop 

def run(): 

    step = 0 

    record_113913026 = '' 

    record_113850262 = '' 

    record_113915746 = '' 

    current_phase_113913026 = 0 

    current_phase_113850262 = 0 

    current_phase_113915746 = 0 

    tls_timer_113913026 = 0.0 

    tls_timer_113850262 = 0.0 

    tls_timer_113915746 = 0.0 
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    Stopping_Steps = [-1,-1,-1,-1,-1, 

-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1,

-1,-1,-1,-1,-1

] 

    fuel_consumption = [ 0.0,0.0,0.0,0.0,0.0, 

0.0,0.0,0.0,0.0,0.0, 

0.0,0.0,0.0,0.0,0.0, 

0.0,0.0,0.0,0.0,0.0, 

0.0,0.0,0.0,0.0,0.0, 

0.0,0.0,0.0,0.0,0.0, 

0.0,0.0,0.0,0.0,0.0, 

0.0,0.0,0.0,0.0,0.0, 

0.0,0.0,0.0,0.0,0.0, 
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                         0.0,0.0,0.0,0.0,0.0 

                       ] 

 

    threads = [] 

    threads_number = 0 

 

    while traci.simulation.getMinExpectedNumber() > 0 and step < 3600: 

        traci.simulationStep() 

        print('Step: ',step) 

 

        #Condition for each vehicle 

        vehicleID = traci.vehicle.getIDList() 

 

        #Initialization 

        threads.clear() 

        for vehicle in vehicleID: 

            

threads.append(Thread(target=Vehicle_State_Init,args=(Speed_Advisory_Table,vehicle))

) 

            threads_number += 1 

            if threads_number > 8: 

                for thread in threads: 
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thread.start() 

threads_number = 0 

threads.clear() 

        threads_number = 0 

        for thread in threads: 

            thread.start() 

        #Gathering vehicles' states 

        threads.clear() 

        for vehicle in vehicleID: 

            Vehicle_Advisory = 16.0 

            Vehicle_Location = traci.vehicle.getPosition(vehicle) 

            Vehicle_Speed = round(traci.vehicle.getSpeed(vehicle),1) 

            if traci.vehicle.getLeader(vehicle): 

Vehicle_Gap = round(traci.vehicle.getLeader(vehicle)[1],2) 

            else: 

Vehicle_Gap = 10000.0 
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            threads.append(Thread(target=Vehicle_State_upload,args=(Vehicle_State_Table, 

vehicle, str(round(Vehicle_Location[0],2)), str(round(Vehicle_Location[1],2)), 

str(Vehicle_Speed), str(Vehicle_Gap),))) 

            threads_number += 1 

            if threads_number > 8: 

for thread in threads: 

thread.start() 

threads.clear() 

threads_number = 0 

        for thread in threads: 

            thread.start() 

        #TLS timer to get remaining green time 

        if current_phase_113913026 != traci.trafficlight.getPhase('113913026'): 

            current_phase_113913026 = traci.trafficlight.getPhase('113913026') 

            tls_timer_113913026 = 0.0 

        record_113913026 = str(current_phase_113913026) 

        remain_113913026 = traci.trafficlight.getPhaseDuration('113913026') - 

tls_timer_113913026 

        record_113913026 += ',' + str(int(remain_113913026)) 
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        #TLS timer to get remaining green time 

        if current_phase_113850262 != traci.trafficlight.getPhase('113850262'): 

            current_phase_113850262 = traci.trafficlight.getPhase('113850262') 

 tls_timer_113850262 = 0.0 

        record_113850262 = str(current_phase_113850262) 

        remain_113850262 = traci.trafficlight.getPhaseDuration('113850262') - 

tls_timer_113850262 

        record_113850262 += ',' + str(int(remain_113850262)) 

        #TLS timer to get remaining green time 

        if current_phase_113915746 != traci.trafficlight.getPhase('113915746'): 

            current_phase_113915746 = traci.trafficlight.getPhase('113915746') 

            tls_timer_113915746 = 0.0 

        record_113915746 = str(current_phase_113915746) 

        remain_113915746 = traci.trafficlight.getPhaseDuration('113915746') - 

tls_timer_113915746 

        record_113915746 += ',' + str(int(remain_113915746)) 

        #Advisory by cloud 

        kinesis_upload('TLS_State_113913026',record_113913026) 

        print('A:',sqs_download('https://sqs.us-east-

1.amazonaws.com/233952390740/TLS_ACK_113913026'))
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        kinesis_upload('TLS_State_113850262',record_113850262) 

        print('B:',sqs_download('https://sqs.us-east-

1.amazonaws.com/233952390740/TLS_ACK_113850262')) 

        kinesis_upload('TLS_State_113915746',record_113915746) 

        print('C:',sqs_download('https://sqs.us-east-

1.amazonaws.com/233952390740/TLS_ACK_113915746')) 

 

        #Gathering Advisories on cloud 

        threads.clear() 

        threads_number = 0 

        for vehicle in vehicleID: 

            threads.append(Thread(target=Vehicle_Advisory_Download, 

args=(Speed_Advisory_Table,vehicle,Vehicle_Advisory))) 

            threads_number += 1 

            if threads_number > 8: 

                for thread in threads: 

                    thread.start() 

                threads_number = 0 

                threads.clear() 

        for thread in threads: 

            thread.start() 
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        for vehicles in vehicleID: 

            traci.vehicle.setSpeed(vehicles, Vehicle_Advisory[vehicles]) 

            fuel_consumption[int(vehicles)] += 

round(traci.vehicle.getFuelConsumption(vehicles),0) 

            Travel_Time[int(vehicles)] += 1 

            if traci.vehicle.getSpeed(vehicles) == 0.0: 

Stopping_Steps[int(vehicles)] += 1 

        step += 1 

        tls_timer_113913026 += 1 

        tls_timer_113850262 += 1 

        tls_timer_113915746 += 1 

    print(Stopping_Steps) 

    print(fuel_consumption) 

    traci.close() 

    sys.stdout.flush() 

# main entry point 
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if __name__ == "__main__": 

    options = get_options() 

    # check binary 

    if options.nogui: 

        sumoBinary = checkBinary('sumo') 

    else: 

        sumoBinary = checkBinary('sumo-gui') 

    print("TRaCI Starts Sumo") 

    # traci starts sumo as a subprocess and then this script connects and runs 

    traci.start([sumoBinary, "-c", "map.sumo.cfg", 

"--tripinfo-output", "tripinfo.xml"]) 

    run() 
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