2,251 research outputs found

    A Comprehensive Survey of Potential Game Approaches to Wireless Networks

    Get PDF
    Potential games form a class of non-cooperative games where unilateral improvement dynamics are guaranteed to converge in many practical cases. The potential game approach has been applied to a wide range of wireless network problems, particularly to a variety of channel assignment problems. In this paper, the properties of potential games are introduced, and games in wireless networks that have been proven to be potential games are comprehensively discussed.Comment: 44 pages, 6 figures, to appear in IEICE Transactions on Communications, vol. E98-B, no. 9, Sept. 201

    Cooperative Routing in Multi-Radio Multi-Hop Wireless Network

    Get PDF
    There are many recent interests on cooperative communication (CC) in wireless networks. Despite the large capacity gain of CC in small wireless networks, CC can result in severe interference in large networks and even degraded throughput. The aim of this chapter is to concurrently exploit multi-radio and multi-channel (MRMC) and CC technique to combat co-channel interference and improve the performance of multi-hop wireless network. Our proposed solution concurrently considers cooperative routing, channel assignment, and relay selection and takes advantage of both MRMC technique and spatial diversity to improve the throughput. We propose two important metrics, contention-aware channel utilization routing metric (CACU) to capture the interference cost from both direct and cooperative transmission, and traffic aware channel condition metric (TACC) to evaluate the channel load condition. Based on these metrics, we propose three algorithms for interference-aware cooperative routing, local channel adjustment, and local path and relay adaptation, respectively, to ensure high-performance communications in dynamic wireless networks. Our algorithms are fully distributed and can effectively mitigate co-channel interference and achieve cooperative diversity gain. To our best knowledge, this is the first distributed solution that supports CC in MRMC networks. Our performance studies demonstrate that our algorithms can significantly increase the aggregate throughput

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Multipath Routing over Wireless Mesh Networks

    Get PDF
    Master'sMASTER OF SCIENC
    corecore