1,587 research outputs found

    Ant-based Survivable Routing in Dynamic WDM Networks with Shared Backup Paths

    Get PDF

    WDM optical network: Efficient techniques for fault-tolerant logic topology design

    Get PDF
    The rapid increase of bandwidth intensive applications has created an unprecedented demand for bandwidth on the Internet. With recent advances in optical technologies, especially the development of wavelength division multiplexing (WDM) techniques, the amount of raw bandwidth available on the fibre links has increased by several orders of magnitude. Due to the large volume of traffic these optical networks carry, there is one very important issue---design of robust networks that can survive faults. Two common mechanisms to protect against the network failure: one is protection and another is restoration. My research focuses on studying the efficient techniques for fault-tolerant logical topology design for the WDM optical network. In my research, the goal is to determine a topology that accommodates the entire traffic flow and provides protection against any single fiber failure. I solve the problem by formulating the logical topology design problem as a MILP optimization problem, which generates the optimum logical topology and the optimum traffic routing scheme. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .S54. Source: Masters Abstracts International, Volume: 43-01, page: 0244. Adviser: Arunita Jaekel. Thesis (M.Sc.)--University of Windsor (Canada), 2004

    Priority based dynamic lightpath allocation in WDM networks.

    Get PDF
    Internet development generates new bandwidth requirement every day. Optical networks employing WDM (wavelength division multiplexing) technology can provide high capacity, low error rate and low delay. They are considered to be future backbone networks. Since WDM networks usually operate in a high speed, network failure (such as fiber cut), even for a short term, can cause huge data lost. So design robust WDM network to survive faults is a crucial issue in WDM networks. This thesis introduces a new and efficient MILP (Mixed Integer Linear Programming) formulation to solve dynamic lightpath allocation problem in survivable WDM networks, using both shared and dedicated path protection. The formulation defines multiple levels of service to further improve resource utilization. Dijkstra\u27s shortest path algorithm is used to pre-compute up to 3 alternative routes between any node pair, so as to limit the lightpath routing problem within up to 3 routes instead of whole network-wide. This way can shorten the solution time of MILP formulation; make it acceptable for practical size network. Extensive experiments carried out on a number of networks show this new MILP formulation can improve performance and is feasible for real-life network. Source: Masters Abstracts International, Volume: 43-01, page: 0249. Adviser: Arunita Jaekel. Thesis (M.Sc.)--University of Windsor (Canada), 2004

    Protection and restoration algorithms for WDM optical networks

    Get PDF
    Currently, Wavelength Division Multiplexing (WDM) optical networks play a major role in supporting the outbreak in demand for high bandwidth networks driven by the Internet. It can be a catastrophe to millions of users if a single optical fiber is somehow cut off from the network, and there is no protection in the design of the logical topology for a restorative mechanism. Many protection and restoration algorithms are needed to prevent, reroute, and/or reconfigure the network from damages in such a situation. In the past few years, many works dealing with these issues have been reported. Those algorithms can be implemented in many ways with several different objective functions such as a minimization of protection path lengths, a minimization of restoration times, a maximization of restored bandwidths, etc. This thesis investigates, analyzes and compares the algorithms that are mainly aimed to guarantee or maximize the amount of remaining bandwidth still working over a damaged network. The parameters considered in this thesis are the routing computation and implementation mechanism, routing characteristics, recovering computation timing, network capacity assignment, and implementing layer. Performance analysis in terms of the restoration efficiency, the hop length, the percentage of bandwidth guaranteed, the network capacity utilization, and the blocking probability is conducted and evaluated

    A Novel Network Coded Parallel Transmission Framework for High-Speed Ethernet

    Get PDF
    Parallel transmission, as defined in high-speed Ethernet standards, enables to use less expensive optoelectronics and offers backwards compatibility with legacy Optical Transport Network (OTN) infrastructure. However, optimal parallel transmission does not scale to large networks, as it requires computationally expensive multipath routing algorithms to minimize differential delay, and thus the required buffer size, optimize traffic splitting ratio, and ensure frame synchronization. In this paper, we propose a novel framework for high-speed Ethernet, which we refer to as network coded parallel transmission, capable of effective buffer management and frame synchronization without the need for complex multipath algorithms in the OTN layer. We show that using network coding can reduce the delay caused by packet reordering at the receiver, thus requiring a smaller overall buffer size, while improving the network throughput. We design the framework in full compliance with high-speed Ethernet standards specified in IEEE802.3ba and present solutions for network encoding, data structure of coded parallel transmission, buffer management and decoding at the receiver side. The proposed network coded parallel transmission framework is simple to implement and represents a potential major breakthrough in the system design of future high-speed Ethernet.Comment: 6 pages, 8 figures, Submitted to Globecom201

    Architecture and sparse placement of limited-wavelength converters for optical networks

    Get PDF
    Equipping all nodes of a large optical network with full conversion capability is prohibitively costly. To improve performance at reduced cost, sparse converter placement algorithms are used to select a subset of nodes for full-conversion deployment. Further cost reduction can be obtained by deploying only limited conversion capability in the selected nodes. We present a limited wavelength converter placement algorithm based on the k-minimum dominating set (k-MDS) concept. We propose three different cost-effective optical switch designs using the technologically feasible nontunable optical multiplexers. These three switch designs are flexible node sharing, strict node sharing, and static mapping. Compared to the full search heuristic of O(N-3) complexity based on ranking nodes by blocking percentages, our algorithm not only has a better time complexity O(RN2), where R is the number of disjoint sets provided by k-MIDS, but also avoids the local minimum problem. The performance benefit of our algorithm is demonstrated by network simulation with the U.S Long Haul topology having 28 nodes (91 is 5) and the National Science Foundation (NSF) network having 16 nodes (91 is 4). Our simulation considers the case when the traffic is not uniformly distributed between node pairs in the network using a weighted placement approach, referred to as k-WMDS. From the optical network management point of view, our results also show that the limited conversion capability can achieve performance very close to that of the full conversion capability, while not only decreasing the optical switch cost but also enhancing its fault tolerance
    corecore