4,331 research outputs found

    A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

    Full text link
    Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow

    CellSim: a validated modular heterogeneous multiprocessor simulator

    Get PDF
    As the number of transistors on a chip continues increasing the power consumption has become the most important constraint in processors design. Therefore, to increase performance, computer architects have decided to use multiprocessors. Moreover, recent studies have shown that heterogeneous chip multiprocessors have greater potential than homogeneous ones. We have built a modular simulator for heterogeneous multiprocessors that can be configure to model IBM's Cell Processor. The simulator has been validated against the real machine to be used as a research tool.Peer ReviewedPostprint (published version

    Evaluating Cache Coherent Shared Virtual Memory for Heterogeneous Multicore Chips

    Full text link
    The trend in industry is towards heterogeneous multicore processors (HMCs), including chips with CPUs and massively-threaded throughput-oriented processors (MTTOPs) such as GPUs. Although current homogeneous chips tightly couple the cores with cache-coherent shared virtual memory (CCSVM), this is not the communication paradigm used by any current HMC. In this paper, we present a CCSVM design for a CPU/MTTOP chip, as well as an extension of the pthreads programming model, called xthreads, for programming this HMC. Our goal is to evaluate the potential performance benefits of tightly coupling heterogeneous cores with CCSVM

    Exploring Task Mappings on Heterogeneous MPSoCs using a Bias-Elitist Genetic Algorithm

    Get PDF
    Exploration of task mappings plays a crucial role in achieving high performance in heterogeneous multi-processor system-on-chip (MPSoC) platforms. The problem of optimally mapping a set of tasks onto a set of given heterogeneous processors for maximal throughput has been known, in general, to be NP-complete. The problem is further exacerbated when multiple applications (i.e., bigger task sets) and the communication between tasks are also considered. Previous research has shown that Genetic Algorithms (GA) typically are a good choice to solve this problem when the solution space is relatively small. However, when the size of the problem space increases, classic genetic algorithms still suffer from the problem of long evolution times. To address this problem, this paper proposes a novel bias-elitist genetic algorithm that is guided by domain-specific heuristics to speed up the evolution process. Experimental results reveal that our proposed algorithm is able to handle large scale task mapping problems and produces high-quality mapping solutions in only a short time period.Comment: 9 pages, 11 figures, uses algorithm2e.st

    A case study for NoC based homogeneous MPSoC architectures

    Get PDF
    The many-core design paradigm requires flexible and modular hardware and software components to provide the required scalability to next-generation on-chip multiprocessor architectures. A multidisciplinary approach is necessary to consider all the interactions between the different components of the design. In this paper, a complete design methodology that tackles at once the aspects of system level modeling, hardware architecture, and programming model has been successfully used for the implementation of a multiprocessor network-on-chip (NoC)-based system, the NoCRay graphic accelerator. The design, based on 16 processors, after prototyping with field-programmable gate array (FPGA), has been laid out in 90-nm technology. Post-layout results show very low power, area, as well as 500 MHz of clock frequency. Results show that an array of small and simple processors outperform a single high-end general purpose processo

    Run-time Spatial Mapping of Streaming Applications to Heterogeneous Multi-Processor Systems

    Get PDF
    In this paper, we define the problem of spatial mapping. We present reasons why performing spatial mappings at run-time is both necessary and desirable. We propose what is—to our knowledge—the first attempt at a formal description of spatial mappings for the embedded real-time streaming application domain. Thereby, we introduce criteria for a qualitative comparison of these spatial mappings. As an illustration of how our formalization relates to practice, we relate our own spatial mapping algorithm to the formal model

    Framework for Simulation of Heterogeneous MpSoC for Design Space Exploration

    Full text link
    Due to the ever-growing requirements in high performance data computation, multiprocessor systems have been proposed to solve the bottlenecks in uniprocessor systems. Developing efficient multiprocessor systems requires effective exploration of design choices like application scheduling, mapping, and architecture design. Also, fault tolerance in multiprocessors needs to be addressed. With the advent of nanometer-process technology for chip manufacturing, realization of multiprocessors on SoC (MpSoC) is an active field of research. Developing efficient low power, fault-tolerant task scheduling, and mapping techniques for MpSoCs require optimized algorithms that consider the various scenarios inherent in multiprocessor environments. Therefore there exists a need to develop a simulation framework to explore and evaluate new algorithms on multiprocessor systems. This work proposes a modular framework for the exploration and evaluation of various design algorithms for MpSoC system. This work also proposes new multiprocessor task scheduling and mapping algorithms for MpSoCs. These algorithms are evaluated using the developed simulation framework. The paper also proposes a dynamic fault-tolerant (FT) scheduling and mapping algorithm for robust application processing. The proposed algorithms consider optimizing the power as one of the design constraints. The framework for a heterogeneous multiprocessor simulation was developed using SystemC/C++ language. Various design variations were implemented and evaluated using standard task graphs. Performance evaluation metrics are evaluated and discussed for various design scenarios

    Real-Time Task Migration for Dynamic Resource Management in Many-Core Systems

    Get PDF
    corecore